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Abstract 

Background: Quantifying cell-type abundance in bulk tissue RNA-sequencing 
enables researchers to better understand complex systems. Newer deconvolution 
methodologies, such as MuSiC, use cell-type signatures derived from single-cell RNA-
sequencing (scRNA-seq) data to make these calculations. Single-nuclei RNA-sequenc-
ing (snRNA-seq) reference data can be used instead of scRNA-seq data for tissues such 
as human brain where single-cell data are difficult to obtain, but accuracy suffers due 
to sequencing differences between the technologies.

Results: We propose a modification to MuSiC entitled ‘DeTREM’ which compensates 
for sequencing differences between the cell-type signature and bulk RNA-seq datasets 
in order to better predict cell-type fractions. We show DeTREM to be more accurate 
than MuSiC in simulated and real human brain bulk RNA-sequencing datasets with var-
ious cell-type abundance estimates. We also compare DeTREM to SCDC and CIBER-
SORTx, two recent deconvolution methods that use scRNA-seq cell-type signatures. 
We find that they perform well in simulated data but produce less accurate results 
than DeTREM when used to deconvolute human brain data.

Conclusion: DeTREM improves the deconvolution accuracy of MuSiC and outper-
forms other deconvolution methods when applied to snRNA-seq data. DeTREM ena-
bles accurate cell-type deconvolution in situations where scRNA-seq data are not avail-
able. This modification improves characterization cell-type specific effects in brain 
tissue and identification of cell-type abundance differences under various conditions.
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Background
Single-cell RNA-sequencing (scRNA-seq) has proven to be an integral method to study 
developmental and disease biology in humans and lower organisms [1, 2]. Researchers 
can characterize rare cell-types, identify novel cellular subtypes, and discover possible 
relevant interactions between cells by profiling the transcriptome of individual cells. 
By comparison, bulk tissue RNA-sequencing (bulk RNA-seq) measures the average 
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expression of genes in the tissue sample. Expression differences between bulk RNA-
seq samples can be due to RNA expression changes within cells, differences in cellular 
makeup, sequencing differences, or a combination of these factors. Single-nuclei RNA-
sequencing (snRNA-seq) is a newer technique that measures transcriptomes in indi-
vidual nuclei isolated from cells [3]. While both approaches typically capture RNA with 
poly-A tails, snRNA-seq does not capture cytoplasmic RNA and thus represents cell 
state differently. Although targeting nuclear RNA is reasonable for many gene expression 
analyses, snRNA-seq is particularly useful in tissues for which scRNA-seq data is dif-
ficult to obtain (e.g. frozen brain). It can be difficult to disassociate individual cells from 
brain tissue for scRNA-seq, but individual nuclei can be more easily isolated for snRNA-
seq [3]. This technical consideration is reflected in many recent Alzheimer disease (AD) 
studies that use snRNA-seq rather than scRNA-seq data [4–6]. In addition, snRNA-seq 
is still much more expensive than bulk RNA-seq [7], therefore current snRNA-seq data 
generally contain no more than a few dozen samples. On the other hand, bulk RNA-seq 
data are currently available for as many as several thousand frozen human brain speci-
mens, and this number is rapidly growing. Applying deconvolution methods to estimate 
cell type proportions from bulk-RNAseq data leverages the relative abundance of bulk 
RNA-seq data and the cell-type specificity of scRNA-seq.

Computational deconvolution methods leverage the cellular specificity of scRNA-seq 
to quantify cell-type or cell subtype proportions within bulk RNA-seq data. With a sin-
gle tissue-specific scRNA-seq reference dataset, bulk RNA-seq data from that tissue can 
be deconvoluted without the need for additional sequencing [8]. Several deconvolution 
methods have been developed including ones using a reference matrix of cell marker 
genes [9], sorted bulk-seq samples [10], scRNA-seq data, and no reference dataset [11, 
12].

MUlti-Subject SIngle Cell (MuSiC), one of the widely used deconvolution methods, 
employs weighted non-negative least squares regression to estimate cell proportion [13]. 
MuSiC does not require pre-selected cell marker genes, but effectively selects reliable 
and predictable marker genes through its gene weighing scheme. It performs similarly 
to other deconvolution methods such as DWLS and SCDC that use scRNA-seq data 
as a reference [14]. Although MuSiC was designed to deconvolute bulk RNA-seq data 
using a scRNA-seq reference dataset, it can also be used with a snRNA-seq reference 
data noting that cell-type proportions are often estimated to be zero perhaps because 
of sequencing limitations of snRNA-seq or the relatively lower quality of RNA extracted 
from nuclei compared to whole cells. MuSiC can compensate for the significant expres-
sion differences between snRNA-seq and bulk RNA-seq with its optional normalization 
parameter (MuSiC_N) which divides input expression values by their standard devia-
tions, centralization parameter (MuSiC_C) which subtracts the input expression values 
by their averages, or a combination of the two (MuSiC_CN). While these parameters 
increase estimation accuracy for some cell-types or samples, we show that they do not 
consistently improve estimation accuracy over default MuSiC. To address this prob-
lem, we developed software called Deconvolution with Target and Reference differences 
Extending MuSiC (DeTREM) which incorporates an alternative weight scheme that bet-
ter compensates for sequencing differences when using snRNA-seq or other disparate 
reference datasets. DeTREM increases the accuracy of cell-type proportion estimates 
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over MuSiC and performed similarly to two recently developed deconvolution algo-
rithms [15, 16] in simulated data. We further validated the deconvolution accuracy of 
DeTREM using bulk RNA-seq data, cell density measurements, and immunohistochem-
istry (IHC) data generated from human brain tissue (Fig. 1).

Results
Simulating biased and unbiased bulk RNA‑seq data

In order to determine which of our simulated bulk datasets best reflect real bulk RNA-
seq brain data, we plotted them with snRNA-seq data for each gene (Additional file 1: 
Fig. S1). The average expression for each gene in the unbiased simulated bulk data was 
highly correlated with the average single-nuclei RNA expression (Additional file 1: Fig. 
S1b), which is dramatically different from the real data (Additional file 1: Fig. S1a). By 
contrast, simulations 1, 2 and 3, which were biased by gamma distributions (Additional 
file  1: Fig. S1c-e), and simulation 4, which was biased using FHS bulk-seq expression 
(Additional file 1: Fig. S1f ), show scatter similar to that observed in real bulk data (Addi-
tional file  1: Fig. S1a). These results show that the biased simulated data, particularly 
simulation 2 (Additional file 1: Fig. S1d), are sufficiently similar to actual human brain 
bulk RNA-seq data for assessing deconvolution performance. The results of simulation 
4, with a bias distribution calculated by dividing the normalized average gene expression 
of snRNA-seq by that derived bulk RNA-seq data, is similar to simulations 1–3.

DeTREM improves accuracy of deconvoluted simulated data

Deconvolution of simulated data using DeTREM was more accurate (i.e., greater con-
cordance between true and simulated data) for the majority of the cell-types using 
MuSiC with default parameter settings compared to the same software with varied 
parameter settings (MuSiC_C, MuSiC_N, MuSiC_CN) especially for comparisons of 

Fig. 1 Study design. Bulk RNA-seq data were simulated using real snRNA-seq data. Cell fraction estimates 
of the simulated and real bulk RNA-seq data were calculated using several MuSiC software variations, 
SCDC, CIBERSORTx, and a DeTREM. Next, the accuracy of the cell fraction proportions obtained using each 
deconvolution method for each dataset was determined by comparisons with experimentally derived data 
as follows: (1) simulated bulk RNA-seq data were compared to true cell fractions, (2) ROSMAP brain data were 
compared to matched IHC measurements, and (3) FHS/BUADRC brain data were compared to matched 
Iba1 + density measurements
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GABAergic neurons (GAB), glutamatergic neurons (GLU) and oligodendrocyte pre-
cursor (OPC) cell-types (Fig. 2). In contrast, DeTREM, showed increased concordance 
between simulated and estimated cell-type proportions compared to MuSiC (Two-sided 

Fig. 2 Deconvolution accuracy assessed for four scenarios of simulated data. Heatmap color shows the 
concordance correlation coefficient (CCC) between true and estimated cell-type percentages. Each column 
shows the deconvolution method with versions of MuSiC, SCDC, and CIBERSORTx separated from DeTREM 
by a dashed line. Rows delineate the seven cell-types assayed as indicated according to the color coding in 
the key. Results for the method with the highest CCC in each condition are bolded. One set of estimates with 
zero variance is marked as NA. Box plots indicate the aggregated CCC values for each method
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paired t-test p = 0.014). In particular, the deconvolution accuracy was higher using 
DeTREM compared to MuSiC for microglia (MIC), astrocytes (AST), and oligodendro-
cyte precursors across all four simulations. DeTREM also performed better than MuSiC 
for both neuron types. For the rarer endothelial cell-type (END), the performance of 
DeTREM compared to MuSiC was better in simulation 1 (CCC = 0.95 versus 0.31), less 
well in simulations 2 (CCC = 0.43 versus 0.67) and 4 (CCC = 0.28 versus 0.92), and about 
the same in simulation 3 (CCC = 0.47 versus 0.57). Although the accuracy of MuSiC with 
or without variable settings was higher in some simulations or cell-types, DeTREM was 
more consistently accurate across simulations and different cell-types. This improve-
ment is especially pronounced for both types of neurons tested. Generally, SCDC 
(mean CCC = 0.48) performed better than MuSiC (mean CCC = 0.38) and worse than 
DeTREM (mean CCC = 0.54). SCDC performed particularly well estimating endothe-
lial cell-type fraction and outperformed DeTREM in each simulation. CIBERSORTx 
performed better in all cell types (mean CCC = 0.70) than DeTREM and MuSiC. We 
performed the same accuracy assessment with Pearson’s r and root mean square error 
(RMSE) and again find DeTREM’s cell-type abundance estimates more accurate than 
MuSiC or its variants: average r = 0.96 for DeTREM, 0.88 for MuSiC, 0.95 for SCDC, 
and 0.96 for CIBERSORTx; average RMSE = 0.061 for DeTREM, 0.096 for MuSiC, 0.079 
for SCDC, and 0.033 for CIBERSORTx (Additional file 1: Fig. S2).

Comparison of cell fractions estimated by deconvolution with cell fractions measured 

by IHC

To assess deconvolution accuracy in human brain data, we compared the cell-type per-
centages estimated by each method to IHC values in the same bulk samples (Fig. 3). IHC 
measurements are more highly correlated with DeTREM’s cell type percentage estimates 
than MuSiC for all cell types except oligodendrocytes. When applied using optional 

Fig. 3 Deconvolution accuracy assessment using 69 matched IHC and ROSMAP bulk RNA-seq samples of 
the ROSMAP. ell-type fraction estimates from seven bulk RNA-seq deconvolution runs are plotted against 
cell marker IHC measurements from matched samples in the left panel. Each column shows a different 
deconvolution method: MuSiC, MuSiC its “C” and “N” parameters, SCDC, CIBERSORTx, and DeTREM. IHC 
measurements are scaled linearly from zero to one. Neuron (NEU) estimates are obtained by adding 
glutamatergic and GABAergic neuron percentages. A linear model trend line is shown for each plot. The 
right panel shows Pearson’s correlations between cell type percentage estimates and IHC measurements for 
non-zero estimates. The proportion of non-zero estimates are indicated in parentheses. These values were 
averaged for each method and shown in the bottom row
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parameters, MuSiC’s estimates correlate more highly with IHC measurements but calls 
more cell-types as absent than DeTREM. Specifically, DeTREM dramatically reduced 
the quantity of zeroes called in glutamatergic neurons (1 vs. 69), microglia (18 vs. 271), 
and oligodendrocytes (ODC) (0 vs. 47) in the ROSMAP bulk dataset tested when com-
pared with MuSiC (Additional file 1: Fig. S3). MuSiC_C and MuSiC_CN have low zero 
counts for microglia (0 and 2), but a particularly high quantity of zeroes for glutamater-
gic neurons (321 and 375). Although MuSiC_N’s estimates show the highest correlation 
with IHC measurements and it called the fewest zeroes of any MuSiC derivative, it called 
124 more cell-types as absent than DeTREM in the dataset. SCDC and CIBERSORTx 
performed similarly to DeTREM in this comparison, however, IHC measurements are 
more highly correlated with the oligodendrocyte cell type percentage estimated by CIB-
ERSORTx (r = 0.35) than DeTREM (r = 0.19). Also, the zero counts of microglia esti-
mated by SCDC (577) and CIBERSORTx (633) are much higher than those estimated by 
DeTREM or any MuSiC variant (Additional file 1: Fig. S3).

To validate DeTREM’s lower missingness rate (i.e., zero count estimates) compared 
to other deconvolution algorithms, we deconvoluted bulk RNA-seq data for four brain 
regions that were obtained from 300 individuals in the Mount Sinai Brain Bank (MSBB). 
We observed that DeTREM yielded the smallest percentage of cell-types predicted to 
have an abundance of zero over all samples in each brain region compared to the other 
methods (Additional file 1: Fig. S4).

Comparison of the scaled RNA expression of the cell-type marker genes to the esti-
mated cell fractions of the same samples showed that the average performance across 
all five cell-types was much higher for DeTREM (average r = 0.52) compared to MuSiC 
(average r = 0.25), MuSiC_C (r = 0.054) and MuSiC_CN (r = 0.19), MuSiC_N (r = 0.38), 
SCDC (r = 0.28), and CIBERSORTx (r = 0.28) (Fig.  4). Notably, MuSiC tested with 

Fig. 4 Accuracy assessment with marker gene expression. econvoluted cell-type fractions compared with 
their marker gene expression from 634 samples of the ROSMAP bulk RNA-seq data. In the left panel, cell-type 
fraction estimates from seven bulk RNA-seq deconvolution runs are plotted against cell marker expression 
from the same samples. The cell-type markers are GFAP for astrocytes (AST), PECAM-1 for endothelial cells 
(END), IBA1 for microglia (MIC), NeuN for neurons (NEU), and Olig2 for oligodendrocytes (ODC). Each column 
shows a different deconvolution method: MuSiC, MuSiC with its “C” and “N” parameters, SCDC, CIBERSORTx, 
and DeTREM. Cell-type marker expression is scaled linearly from zero to one. NEU estimates were obtained 
by summing glutamatergic and GABAergic neuron percentages. A linear model trend line is shown for each 
plot. The right panel shows Pearson correlations between cell type percentage estimates and marker gene 
expression for non-zero estimates. The proportion of non-zero estimates are indicated in parentheses. These 
values were averaged for each method and shown in the bottom row
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any of the optional parameters yielded a negative correlation for at least one cell-type. 
DeTREM estimated the fewest absent cell-types in these trials. Additionally, DeTREM 
performed better in each cell type than SCDC and CIBERSORTx with the exception of 
endothelial cells using CIBERSORTx. Overall, deconvoluted cell fraction estimates were 
more strongly correlated with RNA expression of cell marker genes than with cell frac-
tions estimated by IHC. This finding is consistent with the relatively low correlation 
between protein and mRNA level expression observed in this and other studies [16] 
(Additional file 1: Fig. S5).

Because microglia play an important role in the pathogenesis of multiple neurodegen-
erative diseases, we compared microglia cell fraction estimates and Iba1 + cell density 
measurements from matched individuals and regions in the FHS/BUADC bulk RNA-
seq dataset (Fig. 5). These variables were uncorrelated using MuSiC (r = 0.12, p = 0.11), 
SCDC (r = 0.08, p = 0.31), and CIBERSORTx (r = 0.0034, p = 0.97) and significantly 
inversely correlated using MuSiC_C (r = -0.45, p = 1.2 ×  10–9) or MuSiC_CN (r = -0.39, 
p = 2.8 ×  10–7). In contrast, estimated microglia cell fraction and cell density were sig-
nificantly positively correlated using DeTREM (r = 0.33, p = 1.5 ×  10–5) and MuSiC_N 
(r = 0.41, p = 5.8 ×  10–8).

Discussion
Cell-type deconvolution or in silico tissue dissection has become a common strategy to 
estimate cell-type composition in bulk genomics data, particularly bulk RNA-seq data, 
without the tremendous expense of single-cell or single-nuclei RNA sequencing. Dis-
crimination of cell-types in bulk tissue can improve understanding of the underlying 
molecular mechanisms of complex diseases and their subgroups. For example, Li et al. 
deconvoluted bulk RNA-seq data from 18 different types of cancer with CIBERSORTx 
[16] and identified myofibroblast subtypes as a poor prognostic factor in nine cancer 
types [17]. A study by Pantano et al. used MuSiC to characterize cell proportion in dif-
ferent stages of non-alcoholic fatty liver disease [18] and found gene expression differ-
ences largely explained by cell proportion changes.

The emergence of the MuSiC algorithm and software greatly increased the ability to 
deconvolute bulk RNA-seq data obtained from a large number of samples. Our modi-
fication to MuSiC increases the algorithm’s accuracy when applied using a snRNA-seq 
reference dataset by decreasing its reliance on genes which we show to be differentially 
captured between snRNA-seq and bulk RNA-seq. This improvement was evident in 

Fig. 5 Concordance of microglia density measurements with deconvoluted cell fraction. Correlation of 
microglia cell fractions estimated by deconvolution with microglia cell density were determined using the 
Iba1 microglia cell marker in the same individual and region of the FHS/BU-ADRC brains. The trend line was 
fitted using a linear model and the corresponding 95% confidence interval is indicated with gray shading
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both simulated and real human brain bulk RNA-seq data in each cell-type tested, noting 
that the largest improvement was observed in microglia and neurons. As a result, decon-
volution of ROSMAP bulk RNA-seq data yielded fewer cell-types called as absent using 
DeTREM compared to MuSiC, SCDC, and CIBERSORTx. In addition, we identified a 
worrying negative correlation between Iba1 + measurements and the microglia cell frac-
tion estimates when MuSiC was applied with its centralization parameter, and decon-
volution conducted using MuSiC with its normalization parameter yielded a negative 
correlation between the endothelial cell fraction estimates and marker gene expression. 
Enhancements to the algorithm in DeTREM corrected both problems. SCDC and, in 
particular, CIBERSORTx performed well in our analysis of simulated data and the cor-
relations of cell fraction proportions estimated using these programs with those deter-
mined by IHC were similar to those obtained using DeTREM. However, both algorithms 
predicted that very few samples have microglia and performed worse than DeTREM 
when correlating estimated cell fraction with marker gene expression.

Findings in this study suggest that DeTREM is better optimized than MuSiC, SCDC, 
or CIBERSORTx for deconvoluting snRNA-seq data. This conclusion is consistent with 
a recent study showing that the deconvolution accuracy of human cortex bulk RNA-
seq data using a snRNA-seq reference and MuSiC was less than an approach using 
pre-selected marker gene expression as a proxy for cell fraction [19]. The improved 
accuracy of DeTREM for deconvolution with snRNA-seq data also incentivizes the use 
of snRNA-seq rather than scRNA-seq data because some rare cell-types may be bet-
ter captured and characterized by snRNA-seq [20]. Compared to scRNA sequencing, 
snRNA sequencing enables analysis of cell-types, states, and functions in challenging tis-
sue sources, for example, archived frozen clinical and post-mortem specimens. In addi-
tion, snRNA sequencing has better cellular coverage particularly for complex tissues that 
cannot be easily dissociated, such as brain. Despite apparent advantages of snRNA-seq 
compared to scRNA-seq data for biological investigation, discrepancies arising from 
cell-type deconvolution using each type of RNA-seq data obtained from the same source 
have not been well characterized, perhaps because of the paucity of data for enough sub-
jects required to make such comparisons. Thrupp et  al. found significant capture rate 
differences for microglia activation genes from analyses of snRNA-seq and scRNA-seq 
data derived from four individuals [21] suggesting that the accuracy of deconvolution 
using these two types of RNA-seq data will vary by cell type.

This study has several notable strengths. Our simulation of a large bulk RNA-seq 
dataset allowed a standardized and robust evaluation of the performance of MuSiC and 
DeTREM in a variety of realistic scenarios of bias in the RNA-seq data. We demon-
strated an improvement in deconvolution accuracy using DeTREM by comparing cell 
fraction estimates with cell-type proportions measured at a protein level by IHC, not-
ing that other implementations of MuSiC, in particular MuSiC_N, showed improved 
accuracy compared to the base MuSiC software. Furthermore, we showed that cell pro-
portion estimates based on deconvolution using DeTREM were more accurate to those 
obtained using cell-type-specific marker gene expression levels than all other versions of 
MuSiC, as well as SCDC and CIBERSORTx.

Several caveats should also be considered. First, marker gene expression, IHC abun-
dance, and directly measured cell density are not necessarily highly correlated. For 
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example, DeTREM’s endothelial cell estimates were poorly correlated with PECAM-1 
IHC measurements but showed the strongest correlation with PECAM-1 expression. 
Similarly, CIBERSORTx’s estimate of oligodendrocyte proportion was highly correlated 
with Olig2 IHC measurements, but among the algorithms tested was the least corre-
lated with oligodendrocyte marker gene expression. In addition, correlations between 
estimated cell fractions and both marker gene expression and IHC abundance were 
greater than those between the IHC and expression measurements. Because these meth-
ods do not necessarily measure the same value, even perfectly accurate deconvolution 
would not reach a correlation or CCC of one. This type of inconsistency highlights the 
importance of using as many benchmarking methods as possible in deconvolution stud-
ies. Second, currently available reference snRNA-seq and scRNA-seq datasets appropri-
ate for this study are relatively small and derived from few subjects and brain regions, 
however this situation will likely ameliorate in the near future. Finally, this study focused 
entirely on human brain datasets and thus deconvolution of other tissue types using 
DeTREM should be investigated further.

Conclusion
We demonstrated that a modified version of MuSiC, DeTREM, outperforms SCDC, 
CIBERSORTx, and previous versions of MuSiC for deconvoluting real bulk human brain 
RNA-seq data. The DeTREM algorithm is ideal for situations where scRNA-seq data 
are not commonly available, such studies of post-mortem brain tissue. Future studies 
should examine the performance of DeTREM in other brain regions and tissues, as well 
as under various sequencing platforms and other conditions.

Methods
Overview

To compare the deconvolution performance of MuSiC and two other deconvolution 
algorithms, SCDC [15] and CIBERSORTx [16], with our modified method (DeTREM), 
we simulated four bulk RNA-seq datasets of 1,000 samples from a snRNA-seq reference 
data and introduced bias in different ways. We compared deconvoluted cell fraction esti-
mates from these data with the simulated cell fractions. Next, we compared the deconvo-
luted cell fraction estimates of bulk RNA-seq samples with immunohistochemical (IHC) 
measurements of cell abundance from 69 matched samples from the Religious Order 
Project / Memory and Aging Project (ROSMAP) Study that were obtained from publicly 
accessible web sites (https:// www. synap se. org/# !Synap se: syn41 64376 and https:// github. 
com/ ellis patri ck/ Corte xCell Deconv). Next, we evaluated the correlation of microglia cell 
fractions in bulk RNA-seq data with matched Iba1 + cell density measurements derived 
from 168 participants of the Framingham Heart Study and Boston University Alzheimer 
Disease Research Center (FHS/BUADRC). We also deconvoluted bulk RNA-seq data for 
four brain regions obtained from 300 brains in the Mount Sinai Brain Bank (MSBB). The 
study design is illustrated in Fig. 1.

Preprocessing human brain snRNA‑seq data

Human prefrontal cortex (PFC) snRNA-seq data derived from 12 AD patients and 9 
cognitively normal controls created by S. Lau et al. was obtained from GEO (accession 

https://www.synapse.org/#!Synapse:syn4164376
https://github.com/ellispatrick/CortexCellDeconv
https://github.com/ellispatrick/CortexCellDeconv
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number GSE157827) [5]. This dataset has a stronger representation of glial cells with 
73,303 non-neuronal nuclei sequenced after filtering compared to an earlier human 
PFC snRNA-seq dataset comprising 20,205 non-neuronal nuclei [6]. The raw matrix 
and metadata of the snRNA-seq dataset were analyzed with Seurat toolkit version 3.1.2 
[22]. Following the Seurat guided clustering tutorial workflow [23], data were normal-
ized, scaled, and dimensionally reduced using principal component (PC) analysis. Next, 
data were clustered using the first 10 PCs in a k-nearest neighbor (KNN) approach with 
a resolution of 0.8. Marker genes for seven cell-types (astrocytes, microglia, oligoden-
drocytes, oligodendrocyte precursor cells, endothelial cells, and GABAergic and gluta-
matergic neurons) were linked to these clusters using a heatmap (Additional file 1: Fig. 
S6a). Clusters expressing markers of a single cell-type were marked and other clusters 
were re-evaluated by PCA and KNN and re-visualized (Additional file 1: Fig. S6b). Cell-
types expressing the markers of a single cell-type were marked and the cells of other 
clusters were excluded from further analysis.

Preprocessing human brain bulk RNA‑seq data

Bulk RNA-seq data derived from dorsolateral prefrontal cortex (DLPFC) samples col-
lected from 639 participants (266 AD cases, 167 subjects with mild cognitive impair-
ment, and 201 cognitively normal controls) of the Religious Orders Study and the Rush 
Memory and Aging Project (ROSMAP) were obtained from the Accelerating Medi-
cines Partnership Program for Alzheimer’s Disease (AMP-AD) portal (Synapse ID: 
syn4164376) [24]. Aligned bam files were converted to fastq files using the FastqTosam 
function in Picard tools (http:// picard. sourc eforge. net). Bulk RNA-seq data derived from 
DLPFC extracted from brains donated by 207 FHS/BUADRC participants (64 autopsy 
confirmed AD, 129 controls, 14 unidentified) as previously described [25]. Bulk RNA-
seq data generated from brain tissue obtained from 300 subjects with a median age of 
85 years (79 AD cases, 202 controls, and 19 cognitive status not specified) and character-
ized by the Mount Sinai Brain Bank (MSBB) were obtained from the AMP-AD portal 
(Synapse ID: syn3157743) [26]. The data were derived from four brain regions: fron-
tal pole (n = 260, BM10), superior temporal gyrus (n = 239, BM22), parahippocampal 
gyrus (n = 215, BM36), inferior frontal gyrus (n = 222, BM44). Quality control (QC) of 
the fastq files from each study was performed using FastQC version 0.11.9 [27] to check 
over-abundance of adaptors and over-represented sequences. Fastq files that passed QC 
were aligned to the human reference genome (GRCh38.95) using STAR (version 2.6.1c) 
which implements 2-pass mapping to increase mapping of splice reads from novel junc-
tions [28]. Gene- and isoform-level measurements were quantified using RSEM ver-
sion 1.3.1 [29], Bowtie2 version 2.3.4.1 [30], and GRCh38.95 annotation files. RSEM’s 
expected read count was used for subsequent analyses.

FHS cortex cell density data generation

Iba1 + cell count in the FHS samples was quantified using histological staining, digital 
microscopy and analysis with the Aperio ScanScope (Leica) as previously described [31]. 
Using this system for digital neuropathological quantitation has been validated in previ-
ous studies [31, 32].

http://picard.sourceforge.net
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Simulated biased and unbiased bulk RNA‑seq data

We simulated bulk RNA-seq data with known cell-type percentages to compare the 
accuracy of each deconvolution method. First, we calculated the average expression 
Xkg of each gene g for each cell-type k in the snRNA-seq dataset (E1) described above 
and normalized the total expression for each cell-type (E2). For each simulation, 
percentages for six of the seven cell-types Pk were randomly selected from uniform 
distributions with maxima and minima selected to reflect reasonable brain cell-type 
abundances (E3) (Additional file 1: Table S1).

For the seventh cell-type, GLU neurons, the abundance was set to one minus the 
sum of other cell-type proportions (E4). These ranges are then multiplied by normal-
ized average expression per gene per cell-type to calculate the relative abundance Rg 
of each gene g in a simulation (E5) and normalized to the sum of all genes (E6).

The number of reads for each was selected from a uniform distribution with a mini-
mum of eight million and a maximum of twelve million. Each read is assigned to a 
single gene by sampling from the relative abundance of each gene Rg . This process is 
repeated for each of 1,000 simulated samples, leading to a simulated bulk RNA-seq 
dataset with variability from differing cell-type proportions and read sampling.

Because the simulated bulk sequencing dataset represents an unbiased reflection 
of the snRNA-seq data, we generated bias terms to simulate sequencing differences. 
Three bias distributions were generated by taking the log2 of one plus a gamma dis-
tribution. The gamma distributions have shape parameters of 0.25, 0.75, and 1.0, and 
rate parameters of 0.025, 0.25, and 0.5 respectively (i.e., simulations 1, 2, 3) (E7).

A fourth bias distribution was generated to represent the difference between bulk 
RNA-seq and snRNA-seq in real human data (i.e., simulation 4). The overall expres-
sion of genes in the single cell, Xcg , and bulk, Yjg , datasets are calculated (E8), normal-
ized (E9), and the quotient per gene,Qg , is calculated (E10).

These values, which represent the range of differential capture of genes, are used as 
a bias distribution (E11). In each simulation, bias values for each gene were generated 
from the corresponding distribution and multiplied by the cell-type signature matrix 
Xkg before normalization (E12).

(E1)Xkg =

cǫCk

Xcg (E2)X ′kg =
Xkg

G
g=1 Xkg

(E3)Pk ∼ U(ak , bk), k = 1, 2, . . . , 6

(E4)P7 = 1−

6
∑

k=1

Pk (E5)Rg = PkX ′kg (E6)R′g =
Rg

∑G
g=1 Rg

(E7)Bg = log2(Ŵ(a, x)+ 1)

(E8)Yg =

J
∑

j=1

Yjg Xg =

C
∑

c=1

Xcg (E9)X ′g =
Xg

∑G
g=1 Xg

Y ′g =
Yg

∑G
g=1 Yg
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These bias distributions skew the expression of genes to simulate sequencing differ-
ences. Expression of approximately equal numbers of genes is increased or decreased 
by these distributions, but expression of most genes is relatively unchanged (Additional 
file 1: Fig. S7). In total, we generated five simulated bulk RNA-seq datasets of 1000 sam-
ples each, one unbiased, three biased by gamma distribution, and one biased using a 
quotient between snRNA-seq and bulk RNA-seq.

Deconvolution procedures

Deconvolution was performed using default settings with MuSiC and our modi-
fied method (DeTREM) on the simulated and human brain bulk-seq samples. Addi-
tional comparisons were made using MuSiC’s ’centered’ (MuSiC_C) and ’normalize’ 
(MuSiC_N) parameters alone and in combination (MuSiC_CN). MuSiC iterates non-
negative least squares regression (NNLS), changing weight values for each gene, until 
the change in precited cell-type proportion falls below an absolute limit or the maxi-
mum number of iterations is reached. Each iteration begins with NNLS predicting pkj , 
the proportion of cell-type k for subject j, given the signature matrix θkg , the average 
expression of gene g in cell-type k, and Yjg , the average bulk expression of gene g in sub-
ject j. It generates residuals per subject and gene rjg , (E13) and tries to minimize the 
residual per gene (E14).

MuSiC implements a gene weighing schema in order to reduce the impact of poorly 
matched genes or genes otherwise predicted to be less reliable. It calculates a measure of 
cross-subject variance per gene in each cell-type, σkg , and uses it in the weighing schema 
to reduce the weight of genes that are highly variable between subjects within a cell-type. 
This reduces the algorithm’s dependence on genes which are demonstrably less reliable 
as cell-type markers. The value is adjusted by MuSiC’s size factor of each cell type Sk and 
signature matrix θkg to get a measure of cross-subject variability per gene in cell-types in 
which it is expressed (E15). This focuses the cross-subject variability of a gene on cell-
types in which it is most expressed while adjusting for the predicted average expression 
of each cell-type with Sk.

Finally, the weight for each gene is calculated using σg , rg , and a regulation parameter 
ν , set at 0.0001 (E16). For subsequent iterations the expression values of genes in the 
original Yjg and θkg are multiplied by the square root of wg , reducing the importance of 
genes with high residuals or subject variability in NNLS. DeTREM extends this weighing 
schema to reduce the importance of genes with high variability between the reference 
and target datasets.

(E10)Qg =
Y ′g

X ′g
(E11)Bg = Qg (E12)Xkg = XkgBg

(E13)Y jg = rjg +

K
∑

k=1

pkjθkg (E14)rg =

J
∑

j=1

rgj

(E15)σg =

K
∑

k=1

(Skθkg )
2σkg (E16)wg =

1

σg + r2g + ν
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The quotient between snRNA-seq and bulk RNA-seq capture (E10) was log-trans-
formed to log scale. The absolute value of the result was used as an indicator of the 
strength of difference between the datasets and multiplied by ten (E17). The objective 
of these steps is to reduce gene weights that vary between conditions, and any values 
greater than 1 are reduced to one so that no gene weights are increased (E18). Each iter-
ation’s gene weight is divided by this value (E19) and the iterations are continued. This 
reduces the weight of genes that vary widely between reference and target datasets while 
maintaining or only slightly reducing the weights of genes that do not vary considerably.

Deconvolution of the same data was also performed using the default settings in 
SCDC version 0.0.0.9000 [15] and Singularity version 3.8.5–2.el7 of the CIBERSORTx 
version 1.0 [16] Docker image. Cell fraction estimates from each method and each data-
set were aggregated for performance assessment.

Deconvolution performance in each region of the MSBB dataset was assessed by cal-
culating the percent of zero estimates for each cell-type and sample.

Assessment of DeTREM performance: application to human brain bulk RNA‑seq data

The accuracy of the cell fraction estimates of each deconvolution method in each simu-
lation was assessed by calculating the concordance correlation coefficient (CCC) [33], 
Pearson’s correlation coefficient (r), and root mean square error between true and esti-
mated cell-type percentages. The CCC was the primary metric for assessing simulated 
comparisons because two measurements of the same value (i.e., cell-type percentages) 
were compared directly. The Pearson’s r was calculated for comparisons between differ-
ent measurements of cell-type abundance in the real bulk RNA-seq dataset. Because we 
assume that each cell-type will be present to some degree in any DLPFC sample, we also 
quantified the abundance of zero values resulting from each method’s deconvolution 
of the ROSMAP DLPFC bulk RNA-seq data. Deconvolution accuracy of DeTREM was 
evaluated by comparing cell fraction estimations derived from brain DLPFC bulk RNA-
seq samples [24] with cell abundance measured by immunohistochemistry (IHC) in the 
same region in 69 matched individuals using publicly available data [19]. The cell-type 
markers measured by IHC are commonly used as an ad-hoc measure of cell-type abun-
dance in bulk-seq [19].

The IHC dataset included levels of cell-type-specific proteins that mark neurons (NeuN, 
n = 57), astrocytes (GFAP, n = 65), microglia (Iba1, n = 68), oligodendrocytes (Olig2, 
n = 65), and endothelial cells (PECAM-1, n = 65). GABAergic and glutamatergic neuron 
percentage estimates were combined for analysis of NeuN. The IHC proportion estimates 
were correlated with the equivalent cell-type fraction estimates, scaled from a minimum of 
0 to a maximum of 1. Similarly, the correlation was calculated between the scaled cell-type 
fraction estimates and scaled marker gene expression for each cell-type. Samples for which 
a cell-type was estimated to be zero were excluded from each correlation determination 
and separately quantified. We also tested the accuracy of DeTREM using the FHS/BUADC 

(E17)Q′g = 10|log2Q′g | (E18)Q′g =

{

Q′g if Q′g < 1
1 if Q′g ≥ 1

(E19)w′g =
wg

Q′g
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bulk RNA-seq data and Iba1 + cell density measurements from matched samples. Micro-
glia cell fraction was estimated using each deconvolution method, then these estimated cell 
fractions were correlated with the Iba1 + density measurements from the same individuals 
and brain regions.
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