
Predicting tumour content of liquid biopsies 
from cell‑free DNA
Mathias Cardner1,2†  , Francesco Marass1,2,5†, Erika Gedvilaite3, Julie L. Yang4, Dana W. Y. Tsui3,5* and 
Niko Beerenwinkel1,2* 

Introduction
For the past decade, the primary goal in the analysis of plasma cfDNA has been the 
detection of tumour material. To this end, extremely sensitive assays have been devel-
oped to classify samples as healthy or with cancer [1–6], with boundaries being pushed 
towards earlier detection and detection of minimal residual disease after treatment [7, 
8]. Beyond binary classification, another question of interest is how to monitor disease 
burden non-invasively, for example to assess a patient’s response to treatment. A cfDNA 
proxy for disease burden is plasma tumour content, i.e., the proportion of DNA originat-
ing from the tumour.

Monitoring strategies require tumour-specific features that reflect tumour bur-
den quantitatively. The main genomic approaches that have been used until now have 
focussed on mutations or copy-number alterations (CNAs). Mutation-based monitor-
ing requires sufficiently high sequencing depth to accurately determine mutations and 
their allele frequency [6]. To properly estimate tumour burden, one needs to account 
the CNAs and the clonal structure of the tumour, thus estimating tumour burden from 
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copy-number-corrected clonal mutations in the sample [9]. More affordable in terms of 
sequencing volume is the CNA-based approach, which leverages shallow whole-genome 
sequencing (sWGS) of cfDNA to identify copy-number events and estimate the propor-
tion of tumour DNA in the sample [10]. The drawback of this strategy is that the infor-
mation in coverage-based data alone is insufficient for uniquely determining tumour 
burden, and multiple equally good fits to the data are possible [11, see also our Addi-
tional file 1]. As such, there is no guarantee that these estimates will be correct. We avoid 
the drawbacks of these approaches and propose a third option.

Following observations that the distribution of cfDNA lengths differs between frag-
ments of tumour and non-tumour origin [12], we reasoned that informative features 
specific to the tumour could be derived directly from it. The fragment length distribu-
tion displays multiple modes corresponding to nucleosomes, and an oscillatory pattern 
on the short side of each of these modes, corresponding to full twists of nucleosome-
bound DNA. Compared to healthy controls, samples with higher tumour content con-
tain a greater proportion of short fragments, and may also have more pronounced 
oscillations for fragment sizes within one nucleosome [13–15]. After extracting features 
from this distribution, our fragmentomic approach to predicting systemic tumour bur-
den is framed as a regression problem. In the following, we show a proof of concept of 
our methodology and apply it to a data set of 118 cfDNA samples, followed by a valida-
tion of its predictions in a dilution series which was not used during training.

Results
We analysed data published by Tsui et al.  [16] consisting of plasma samples from 118 
patients with stage IV cancer. The cancer types, and the numbers of patients afflicted, 
were: bladder (45), prostate (35), breast (15), germ cell (11), lung (11), melanoma (1). For 
a comprehensive characterisation, please refer to Tsui et al. [16]. In addition, we analysed 
a serial dilution of a cancer patient’s plasma mixed with healthy control plasma. Sam-
ples were profiled using both sWGS and deep panel sequencing from the same library 
preparation. Because supervised learning requires labelled data, we derived mutation 
and CNA information from the panel-sequencing data and used it to manually curate 
tumour content labels.

The 118 patients were split into two cohorts based on whether the panel-sequenc-
ing data contained the information necessary for direct estimation of tumour content 
(please refer to the Methods section for details and a schematic). For 41 patients, desig-
nated cohort A, there was at least one point mutation in copy-number neutral regions, 
enabling direct estimation of tumour content from the variant allele frequencies (Addi-
tional file 1: Figure S1). We considered these estimates to be the most reliable. For the 
remaining 77 patients, designated cohort B, the panel-sequencing data did not allow for 
direct estimation of tumour content. To gauge the tumour content of these samples, we 
relied on estimates by the tool ichorCNA [10]. For comparison, in cohort A the tumour-
content estimates based on panel-sequencing data correlated well with those given by 
ichorCNA (Pearson’s r = 77% ; Additional file 1: Figure S2). In light of this correlation, we 
reasoned that cohort B could be used to shortlist informative features, even though we 
preferred to use cohort A to calibrate the final model. We therefore decided to use the 
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ichorCNA-based estimates as a surrogate during feature selection, but we used only the 
direct estimates during parameter tuning.

The cfDNA fragment length distributions exhibited characteristics previously 
described in the literature, namely an oscillatory pattern leading up to the first peak, 
centred at 166 bp, and an overabundance of short fragments in tumour-derived cfDNA 
[13, 14, 17]. In line with previous reports, we observed an enrichment of short fragments 
in samples with high tumour content (Fig.  1a). This enrichment was most evident for 
nucleosome-protected DNA, i.e., the ranges leading up to the first and second nucleoso-
mal peaks.

We consistently visualised and modelled the cfDNA fragment length distributions on 
a logarithmic scale. To extract features from the oscillatory pattern in the 81–141 bp 
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Fig. 1 Cohort A data and feature extraction. a Fragment length distributions of cfDNA from 41 patient 
samples grouped by tumour content estimated from panel-sequencing data. Per group, the median 
profile is shown banded by the interquartile range, with the y-axis on a logarithmic scale. b Residuals of 
second-degree polynomial regression models fitted in the range 81–141 bp. The discrete Fourier transform 
was applied to each set of residuals. c The Daubechies wavelet filter was used to extract features in a 
data-driven fashion across the full range of 81–336 bp. d Biplot of PCA based on the features chosen 
separately by stability selection (based on cohort B, not shown). Variable loadings are illustrated by green 
arrows with purple labels where ‘Wx_y’ denotes the wavelet coefficient on scale x at location y, and ‘Fz’ 
refers to the absolute value of the zth Fourier coefficient. e Coefficient paths of beta boosting applied to 
the selected features. The dotted vertical line indicates the optimal number of iterations, as determined by 
cross-validation
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range, we applied the discrete Fourier transform to residuals of a second-degree poly-
nomial fit to each fragment length distribution in that interval (Fig. 1b). Additionally, to 
capture transient signals at different scales and locations, we employed a discrete wave-
let transform of the entire range 81–336 bp (Fig. 1c).

Based on the 71 samples in cohort B with non-zero estimates of tumour content, we 
used beta-regression boosting [18] coupled with complementary-pairs stability selec-
tion [19, 20] to identify Fourier and wavelet coefficients informative for the prediction of 
tumour content. In a principal component analysis based on the selected features, 69% 
of the variance in cohort A was explained by the first component, for which the absolute 
value of the eleventh Fourier coefficient F11 (please see Methods for its definition) had a 
particularly high loading (Fig. 1d). Indeed, after fitting a beta-boosting model to cohort 
A and tuning it using cross-validation, only |F11| remained in the final model (Fig. 1e). 
At a granular level, it appeared to be mainly the real part of F11 which correlated with 
tumour content (Additional file 1: Figure S3).

To test the predictive performance of the model in an independent data set, we turned 
to the dilution experiment in which one patient’s plasma was mixed with control plasma 
at six distinct concentrations. Thus, the test set, albeit derived from a single patient, 
is about 15% of the size of the labelled training set ( n = 41 ). An additional benefit of 
using the dilution experiment as a test set was that the concentration of patient-derived 
plasma was known, meaning that we expected to see a linear trend between concentra-
tion levels and predicted tumour content. Implicitly, this also evaluated the method used 
to directly estimate the tumour content from panel-sequencing data. The cfDNA frag-
ment length distributions from the dilution series were consistent with the training data, 
in that increasing concentrations of patient plasma showed an enrichment of fragments 
of length 81–141 bp as well as 220–300 bp (Fig. 2a).

The predicted tumour content correlated well with the concentrations of spiked-
in cfDNA from a cancer patient, resulting in a coefficient of determination, R2 , of 0.90 
(Fig.  2b). This validated both that the model generalised to unseen data, and that our 
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Fig. 2 Assessment of model predictions in a held-out test data set. a Fragment length distributions of 
cfDNA in a serial dilution of patient plasma into control plasma. b Predicted tumour content in the dilution 
series. The solid line corresponds to simple linear regression, showing that the model’s predictions correlate 
well with the concentration of patient-derived cfDNA. The dashed line is constrained to cross the origin, 
highlighting that our trained model overestimates tumour content in the low range
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estimates of tumour content in cohort A were adequate. However, the regression line 
does not intercept the y-axis at zero, suggesting that our model overestimated tumour 
content at lower dilutions. If constraining the regression line to intercept zero, the R2 
dropped to 0.83. This may be because the model was trained on samples with relatively 
high tumour content (the lower quartile being 14%), without control samples with 
exactly zero tumour content.

Discussion
Our study should be considered a proof of concept, and longitudinal data from inter-
ventional studies in larger cohorts would be needed to develop the methodology and 
evaluate its utility in clinical practice. Before we discuss limitations and conclude with 
the potential implications of our study, a number of methodological points warrant con-
sideration. Curation of the copy number and mutation data is a crucial step as it pro-
vides the labels used for training. All somatic mutations in copy-number neutral regions 
should be analysed, regardless of their relevance in the tumour, in order to have suffi-
cient signal for mutation clustering. Alternatively, clonal reconstruction methods can be 
applied, though the only result of interest here is the tumour content of the sample [9].

A limitation of our study is the size of the data set. Having unbiased sWGS data as well 
as ground truth labels for the same samples requires an experimental design that has 
thus far not been the norm. The establishment of larger cohorts, where both deep and 
shallow sequencing are performed from the same library preparation, should be con-
sidered. As more data become available, our analysis may also be performed by tumour 
type, in case there are systematic differences in fragment length distribution between 
cancer types. Here, we did not model effects of such clinical features, since our data set 
was small. Instead, we attempted to predict tumour content as is, regardless of possible 
confounding factors. Our approach should also be evaluated on samples from patients 
with earlier stages of cancer, and in combination with methods based on point muta-
tions and CNAs. The indication that our model overestimated the tumour content at 
low dilutions could be a consequence of having trained it on samples with high tumour 
content, taken from patients with stage IV cancer. We expect the predictive performance 
to improve and become less biased as more samples become available for feature selec-
tion and training. Additionally, longitudinal data from interventional studies would be 
needed to assess the ability of our methodology to monitor systemic tumour burden 
during treatment, and how it compares with estimates derived using imaging data.

Different protocols for DNA extraction, library preparation, sequencing, and read 
processing affect the fragment size profile [21, 22]. Aggregations of data must therefore 
eliminate such effects, for example through alignment of a large number of control sam-
ples, before our predictive model can be applied.

Conclusions
We presented a proof-of-concept computational method for predicting tumour content 
in plasma samples by leveraging Fourier and wavelet transforms of the fragment length 
distribution of cfDNA. Strikingly, our analysis singled out as most informative the coef-
ficient F11 of the discrete Fourier transform applied to residuals in the range 81–141 bp. 
The trained model performed well in a small independent test set, though it appeared 
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to underestimate tumour content at low dilutions. Further studies would be needed to 
evaluate the clinical utility of the method. Our approach relied on deep as well as shal-
low sequencing from matched library preparations to train the predictive model. How-
ever, subsequent applications to predict tumour content would only require inexpensive 
sWGS data, in principle enabling accessible prediction of tumour burden during the 
course of disease.

Fragmentomics is a rich source of biological information, whose potential is only 
beginning to be discovered and exploited. Fragmentomics-only methods have been 
proposed to detect cancer and understand the biological processes underlying cfDNA 
release and its degradation [3, 7, 23, 24]. With our method, we propose another clinical 
use for this data type. As more data are collected and the model refined, we envision this 
as a promising and inexpensive strategy for non-invasive monitoring of cancer patients.

Methods
To estimate tumour content based on panel-sequencing data, we considered sin-
gle-nucleotide variants (SNVs) only in copy-number neutral regions (excluding any 
copy-number neutral loss of heterozygosity). Assuming each point mutation to be het-
erozygous, the proportion of the tumour harbouring each mutation is twice the muta-
tion allele frequency. Mutations found in all clones cluster at the largest allele frequency, 
and the tumour content of the sample can be obtained by doubling this number. We 
performed this analysis for each patient, clustering mutations by their allele frequency 
with a Chinese restaurant process from the R package cloe [25]. The maximal cluster was 
used to obtain the tumour content estimate, unless this cluster was supported only by 
non-annotated SNVs, in which case it was disregarded in favour of the second-maximal 
cluster.

We used the discrete Fourier transform to extract features from the oscillatory pat-
tern at 81–141 bp after regressing out a second-degree polynomial fit to the frag-
ment length distribution on a log scale. That is, for each sample we considered the 
proportion pj of cfDNA fragments of length j ∈ [81, 141] , and fitted the model 
log(pj) = β0 + β1j + β2j

2 + εj by ordinary least squares to yield the residuals (ε̂n)60n=0 
where n = j − 81 . Then we computed the Fourier coefficients Fk = 60

n=0 ε̂ne
−2π ikn/61 

for k ∈ [0, 60] , and used their absolute values |Fk | as features. Since the residuals are cen-
tred at zero, F0 = 0 . Note that for m = 61− k , the complex conjugate F̄m = Fk , meaning 
that |Fm| = |Fk | . Thus we considered only |Fk | where k ∈ [1, 30] for downstream analysis. 
All computations were performed using the lm and fft functions in R [26]. Motivated by 
the oscillation period of 10 bp, we chose the Daubechies wavelet of length 10 as the basis 
function for a discrete wavelet transform in the range 81–336 bp. The wavelet transform 
extracted features from the fragment length distribution by computing weighted aver-
ages at different scales and locations. Wavelet coefficients were computed with the pack-
age wavelets [27].

We used beta regression [28] to model tumour content as a response variable in (0, 1), 
with Fourier and wavelet coefficients as features (Fig.  3). Patients were split into two 
cohorts based on whether their plasma samples had sufficient panel-sequencing data 
to estimate tumour content from SNVs in copy-number neutral regions (cohort A) or 
not (cohort B). For cohort B, we relied on estimates of tumour content generated by 
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ichorCNA [10]. As the number of samples was smaller than the number of features, we 
used boosting to fit high-dimensional models via the package betaboost [18]. The pack-
age stabs [29] was used in cohort B to perform complementary-pairs stability selection 
of informative features, with at most one expected false positive. The final beta-regres-
sion boosting model based on the informative features was trained on cohort A, and the 
number of boosting iterations was tuned using cross-validation by 25-fold bootstrap. For 
each fold and boosting iteration, the cross-validated empirical risk was computed based 
on the out-of-sample observations. The risk scores were then averaged across folds, and 
the number of boosting iterations with the lowest mean risk was chosen as optimal.

Finally, we applied the trained model to an independent test set, consisting of a dilu-
tion series. The predicted tumour content was compared with the dilution, and the 
concordance was assessed using linear regression with or without an intercept term.
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