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Introduction
Loss-of-function (LOF) mutations, including stop-gain, splice-site, and frameshift muta-
tions, play a key role in the etiology of genetic disorders (Fig. 1a). While it is relatively 
straightforward to identify LOF mutations in protein-coding genes, it is challenging to 
infer their effects on evolutionary fitness and disease risk. Several computational meth-
ods [1–7] have recently been developed to predict human essential genes based on the 
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premise that LOF mutations causing early-onset disorders may be subject to negative 
selection in human populations [8, 9]. Based on large-scale population genomic data, 
such as gnomAD [5], these methods seek to identify LOF-intolerant genes where the 
observed number of LOF variants is significantly smaller than the expected number 
under a neutral mutation model. The rationale behind these prediction methods is that 
essential genes, with minimal inter-individual variation, are subject to purifying selec-
tion in order to maintain their sequence in the population, as alterations would lead to 
reduced fitness. It has been shown that LOF-intolerant genes predicted by these meth-
ods are enriched with haploinsufficient genes associated with Mendelian disorders [1–
7]. Furthermore, de novo LOF mutations in probands with autism [10, 11], schizophrenia 
[12, 13], and severe developmental disorders [14] are significantly overrepresented in 
LOF-intolerant genes. Therefore, population genetics-based prediction of LOF-intol-
erant genes is a powerful strategy to discover haploinsufficient genes associated with 
human disease.

However, despite the recent success of population genetics-based gene essentiality 
prediction, the statistical power of existing methods may heavily depend on the length 
of a gene [5, 9, 15]. Specifically, a long gene typically has a large expected number of LOF 
variants under a neutral mutation model. Thus, when we compare the observed num-
ber of LOF variants with the expected one, it is relatively easy to reject the null hypoth-
esis of neutral evolution in a long gene. In contrast, a short gene is expected to have 
only a handful of LOF variants. Therefore, in a short gene it is difficult to distinguish 
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Fig. 1 Overview of the background information, motivation and methods behind DeepLOF. a Background: 
Introduction to loss of function (LOF) mutations, essential genes versus nonessential genes as well as LOF 
intolerance versus LOF tolerance. Motivation: Determining which genes are LOF intolerant can aid with 
discovery of human disease genes. b Motivation: The limitation of current population genomics‑based 
methods for determining LOF intolerance is they are underpowered when predicting genes that are short 
in length. c Simple overview of the concept behind DeepLOF. Methods: Our method integrates a population 
genomics‑based approach with a functional genomics approach, providing unparalleled ability to predict 
LOF intolerance, particularly in short genes. DeepLOF does not require human‑labeled training data and thus, 
may not suffer from label leakage
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the depletion of LOF mutations caused by negative selection from that by chance alone, 
which may hinder the discovery of many essential genes of short length in the human 
genome (Fig. 1b).

Complementary to population genomic data that manifest natural selection at the 
organism level, functional genomic assays, such as RNA-seq and ChIP-seq, provide 
rich information on the molecular functions of protein-coding genes. Thus, functional 
genomic data may also be utilized to predict gene essentiality. Based on this idea, sev-
eral supervised methods have been developed to predict essential genes from functional 
genomic features [15–20]. One such method, DEEPLYESSENTIAL for example, utilizes 
functional features that include gene length, codon frequency and codon adaptation 
index to determine essentiality [19]. Other models use features such as CpG density [15], 
gene ontology terms [17], and epigenomic features [20] among other functional data to 
predict intolerance. Unlike population genetics-based methods, the predictive power 
of genomic feature-based methods may not heavily depend on the length of a gene. 
However, because functional genomic data are often from cell lines, gene scores solely 
derived from functional genomic features may not always be indicative of gene essential-
ity at the whole organism level.

We propose that integrating population and functional genomic data may improve 
gene essentiality prediction. To this end, we introduce DeepLOF, an evolution-based 
deep learning model for predicting human genes intolerant to LOF mutations. By com-
bining a deep neural network and a population genetics-based likelihood function, 
DeepLOF can integrate genomic features and population genomic data to predict LOF-
intolerant genes without human-labeled training data (Fig. 1c). Thus, DeepLOF may not 
suffer from label leakage and other pitfalls of supervised machine learning [21]. Com-
pared to previous methods, DeepLOF shows unmatched performance in predicting 
ClinGen haploinsufficient genes [22], human orthologs of mouse essential genes [23], 
and genes essential to the survival of cell lines [24]. Furthermore, using DeepLOF we 
identify 109 LOF-intolerant genes of short length missed by previous methods. The 109 
novel LOF-intolerant genes are enriched with essential genes and are depleted in benign 
genomic deletions. Taken together, DeepLOF is a powerful deep learning framework to 
predict essential genes in the human genome.

Methods
Details of the DeepLOF model

We denote ηi as the relative rate of observed LOF variants in gene i with respect to the 
expected number of LOF variants under a neutral mutation model. In DeepLOF, we seek 
to estimate the distribution of ηi from both genomic features and population genomic 
data. To this end, the DeepLOF model combines a feedforward neural network trans-
forming genomic features and a likelihood function modeling the generation of LOF 
variants in human populations (Fig.  2). Denoting xi as the column vector of genomic 
features associated with gene i, the feedforward neural network describes the relation-
ship between xi and the prior distribution of ηi . Denoting yi and ni as the observed and 
expected numbers of LOF variants in gene i, respectively, the likelihood function is 
defined as the probability of observing yi given ni and ηi.



Page 4 of 21LaPolice and Huang  BMC Bioinformatics          (2023) 24:347 

Specifically, we treat ηi as a random variable ranging from 0 to 1 and utilize a beta distri-
bution to describe its prior distribution,

where f (ηi|xi) is the probability density function of ηi given feature vector xi ; B is the 
beta function; µi and κi are the mean and concentration parameters of the beta distribu-
tion in gene i. It is worth noting that we employ an alternative parameterization of the 
beta distribution here [25]. The two shape parameters in the canonical parametrization 
of the beta distribution are equal to µiκi and (1− µi)κi , respectively. Under the alterna-
tive parameterization, the mean of ηi is equal to µi , and the variance of ηi decreases with 
increasing κi . The alternative parametrization has been used in other Bayesian models 
due to the better interpretability of the mean and concentration parameters [25].

In the feedforward neural network, we seek to model the relationship between xi and the 
parameters of the beta prior distribution ( µi and κi ). There are two versions of feedforward 
neural network in DeepLOF: a nonlinear version with hidden layer and a linear version 
without hidden layer. Specifically, in the nonlinear version of DeepLOF, the hidden layers 
can be represented by the following equation,

where zi is the vector of hidden units; ReLU and Dropout are the the rectified linear 
layer [26] and the dropout layer [27]; Wh and bh are the weight matrix and the bias vec-
tor of the rectified linear layer. After the hidden layers, we add an additional layer to 
transform zi into µi and κi,

(1)f (ηi|xi) =
η
µiκi−1
i (1− ηi)

(1−µi)κi−1

B(µiκi, (1− µi)κi)

(2)zi = Dropout(ReLU(W⊤
h xi + bh)),

Fig. 2 Overview of the DeepLOF model. DeepLOF combines a feedforward neural network and a population 
genetics‑based likelihood function to infer the relative rate of LOF variants in a gene ( η ) with respect to the 
expected number under a neutral mutation model (n). The feedforward neural network transforms genomic 
features into a beta prior distribution of η , which represents our belief about η based on genomic features. 
The population genetics‑based likelihood function describes the probability of observing y LOF variants in a 
gene conditional on η and n, which represents our belief about η based on population genomic data. Finally, 
DeepLOF combines the prior distribution and the likelihood function to compute the posterior distribution 
of η . The DeepLOF score is defined as 1− E[η] , where E[η] is the mean of η under the posterior distribution



Page 5 of 21LaPolice and Huang  BMC Bioinformatics          (2023) 24:347  

where wm and bm are the weight vector and the bias term associated with µi ; wk and bk 
are the weight vector and the bias term associated with κi ; the logistic function ensures 
that µi ranges from 0 to 1; the exponential function ensures that κi is positive.

In the alternative linear version of DeepLOF, the feedforward neural network does 
not include any hidden layer. Instead, we directly transform feature vector xi into µi 
and κi,

which is similar to Eq.  3 expect that zi is replaced by xi . The linear DeepLOF model 
allows us to directly infer the associations of genomic features with LOF intolerance 
based on the negative values of weights in wm.

In the likelihood function, we seek to model the generation of LOF variants in 
human populations. Specifically, we assume that the observed number of LOF vari-
ants in gene i follows a Poisson distribution,

where yi and ni are the observed and expected numbers of LOF variants, respectively, 
and the mean of the Poisson distribution is equal to ηini.

In the training step, the DeepLOF model combines the prior distribution (Eq.  1) 
and the likelihood function (Eq. 5) to obtain the marginal likelihood of the model,

which represents the probability of observing yi LOF variants in gene i conditional on 
xi and ni . It is worth noting that we omit the parameters of the feedforward neural net-
work in this equation for the sake of notation simplicity. Because there is no analytical 
solution for the integral in this equation, we use the midpoint Riemann sum to approxi-
mately compute P(yi|xi, ni) . To estimate the parameters of the feedforward neural net-
work, we perform stochastic gradient descent on the following loss function,

where � and |�| are the gene set and the number of genes in a mini-batch of data. We 
use the Adam algorithm [28] for the mini-batch gradient descent and utilize early stop-
ping and L2 regularization to avoid overfitting.

In the prediction step, we fix the parameters of the feedforward neural network to 
the optimal values from the training step. Then, we obtain the density function of the 
posterior distribution of ηi using Bayes’ rule,

(3)
µi = logistic(w⊤

mzi + bm)

κi = exp(w⊤
k zi + bk),

(4)
µi = logistic(w⊤

mxi + bm)

κi = exp(w⊤
k xi + bk),

(5)P(yi|ηi, ni) =
(ηini)

yi exp(−ηini)

(ηini)!
,

(6)P(yi|xi, ni) =
1

0
f (ηi|xi)P(yi|ηi, ni)dηi,

(7)−
1

|�|

∑

i∈�

log(P(yi|xi, ni)),
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which represents our belief about ηi after integrating genomic features and population 
genomic data. The mean of ηi under the posterior distribution is equal to

which we compute numerically using the midpoint Riemann sum. Finally, we define the 
DeepLOF score as 1− E[ηi] . A higher DeepLOF score indicates that LOF mutations in 
the corresponding gene are subject to stronger negative selection.

Genomic features

The training data of DeepLOF included 18 genomic features. First, we obtained five sets 
of epigenomic data from various cell types [20]. These data included ChIP-seq peaks 
of H3K9ac, H3K27me3, H3K4me3, and H2A.Z in promoter regions and promoter-
enhancer interactions predicted by EpiTensor [29]. We defined H3K9ac, H3K27me3, 
H3K4me3, and H2A.Z signals as the average length of the corresponding ChIP-seq peak 
in a gene’s promoter across all cell types. We defined the enhancer number in a gene as 
the average number of promoter-enhancer interactions across all cell types. Second, we 
downloaded four development-related gene categories from MSigDB (version 7.1) [30]. 
These gene categories included 1029, 995, 508, and 1131 genes from two GO catego-
ries [31], i.e., embryo development and central nervous system development, and two 
Reactome pathways [32], i.e., nervous system development and developmental biology. 
We converted each development-related gene category into a binary feature indicat-
ing whether each gene was included in the category. Third, we obtained a list of 1254 
transcription factor genes [33] and a list of 3431 genes encoding subunits of protein 
complexes [34]. We converted each gene list into a binary feature indicating whether 
each gene was included in the list. Fourth, we obtained promoter CpG density, pro-
moter phastCons score, and exonic phastCons score from a previous study [15]. Fifth, 
we downloaded mean gene expression level, tissue specificity (tau) [35], PPI degree [36] 
from a recent study [37]. Finally, we obtained the UNEECON-G score from its original 
publication [38].

We observed that several genomic features were nonnegative and had right-
skewed distributions. Following a common practice in machine learning and statis-
tics, we applied a log transformation to these features (Additional file  1: Table  S1), 
x′ij = log(xij + δj), where xij is the raw value of feature j in gene i, x′ij is the transformed 
feature, and δj is the minimum observed positive value of feature j. Then, we standard-
ized each continuous feature by subtracting its mean and dividing by its standard devia-
tion. We imputed missing values of each feature with the mean of the non-missing 
values.

Model training

We downloaded the observed number of LOF variants in each protein-coding gene and 
the expected number under a neutral mutation model from gnomAD (version 2.1.1) [5]. 

(8)f (ηi|yi, xi, ni) =
f (ηi|xi)P(yi|ηi, ni)

P(yi|xi, ni)
,

(9)E[ηi] =

∫ 1

0
ηif (ηi|yi, xi, ni)dηi,
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We combined the expected and observed numbers of LOF variants with the 18 genomic 
features to build a dataset of 19,197 genes for model training. We randomly split these 
genes into a training set (80% genes) and a validation set (20% genes). We trained the 
DeepLOF model on the training set and used a grid search to tune hyperparameters in 
the validation set. In the training of the linear DeepLOF model, these hyperparameters 
included the L2 penalty (0, 10−2 , 10−3 , 10−4 , 10−5 , 10−6 ) and the learning rate of the 
Adam algorithm ( 10−3 , 10−4 , 10−5 ). In the training of the nonlinear DeepLOF model, we 
added an additional hyperparameter, i.e., the number of hidden units in the feedforward 
neural network (64, 128, 256, 512, 1024). We fixed the dropout rate to 0.5. We computed 
the contribution scores of genomic features using the optimal linear DeepLOF model 
with the lowest loss in the validation set. We computed the DeepLOF score using the 
nonlinear model with the lowest loss in the validation set. The optimal nonlinear model 
had a lower loss than the optimal linear model.

Comparison with other methods in predicting disease genes

For this evaluation, we evaluated the performance of DeepLOF and eight alternative 
methods, including LOEUF [5], pLI [2], mis-z [1], RVIS [39], GeVIR [6], CoNeS [7], VIR-
LOF [6], and UNEECON-G [38], in predicting essential genes and dominant-negative 
genes. We obtained LOEUF, pLI, and mis-z scores from the gnomAD database (ver-
sion 2.1.1) [5]. We downloaded the RVIS score trained on the ExAC dataset [2] from 
dbNSFP (version 4.0) [40]. We obtained the other gene scores from the corresponding 
publications.

We downloaded 311 ClinGen haploinsufficient genes and 404 mouse genes where 
heterozygous knockouts resulted in lethality from the GitHub repository for gnomAD 
(https:// github. com/ macar thur- lab/ gnomad_ lof/). Then, we obtained 18,797 human-
mouse orthologs from the Mouse Genome Database [23, 41] and used these data to map 
the mouse essential genes to the human genome, resulting in 397 human orthologs of 
mouse essential genes. We downloaded 683 human genes deemed essential in cell lines 
and 913 genes without significant fitness effects in cell lines from the GitHub reposi-
tory for the MacArthur Lab (https:// github. com/ macar thur- lab/ gene_ lists). Finally, we 
obtained 364 OMIM dominant-negative genes from a previous study [39].

By using known LOF-intolerant genes from these sources, we sought to evaluate the 
performance of our model in comparison to previous methods. We used these data to 
provide matched gene sets of known essential genes with nonessential genes, allowing us 
to determine the true and false positive rates of the different predictive models. Essential 
genes in this data set are considered to be genes determined to be LOF-intolerant and 
conversely, nonessential genes are those which are considered LOF-tolerant.

To create receiver operating characteristic curves (ROCs) that would show this com-
parison, we first needed to match each essential gene with a nonessential gene con-
taining a similar expected number of LOF variants. To this end, we first constructed a 
nonessential gene set for each of the essential gene sets that were of matching size. We 
matched each essential gene with a nonessential gene of similar expected number of 
LOF variants using MatchIt [42]. For the 311 ClinGen haploinsufficient genes, the 397 
human orthologs of mouse essential genes, and the 364 dominant-negative genes, we 
considered all other human genes to be nonessential. For the 683 human genes deemed 

https://github.com/macarthur-lab/gnomad_lof/
https://github.com/macarthur-lab/gene_lists
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essential in cell lines, we considered the 913 human genes without significant fitness 
effects in cell lines to be nonessential. Finally, we used ROCR to plot the receiver operat-
ing characteristic curves and calculate the AUCs for all computational methods in the 
matched gene sets [43]. We evaluated the statistical significance of the difference in AUC 
using the DeLong test [44].

Evaluation of the 109 LOF‑intolerant genes uniquely predicted by DeepLOF

We obtained comparable numbers of LOF-intolerant genes from DeepLOF, LOEUF, 
VIRLOP, and CoNeS. First, we obtained 2835 LOF-intolerant genes from LOEUF using 
an established cutoff of 0.35 [5]. To obtain similar numbers of LOF-intolerant genes from 
the other methods, we used cutoffs of 0.835, and −1.11, and 15 for DeepLOF, CoNeS, 
and VIRLOF percentile scores, respectively. Given these cutoffs, DeepLOF, CoNeS, and 
VIRLOF predicted 2817, 2847, and 2817 LOF-intolerant genes, respectively. To evaluate 
the power of these methods in predicting short essential genes, we retained LOF-intol-
erant genes with ≤ 10 expected LOF variants for downstream analysis.

We evaluated the enrichment of ClinGen haploinsufficient genes, human orthologs of 
mouse essential genes, and human genes essential for the survival of cell lines in the 109 
LOF-intolerant genes uniquely predicted by DeepLOF. For each essential gene set, we 
defined the other genes as nonessential genes. Also, we defined LOF-tolerant genes as 
those genes with ≤ 10 expected LOF variants and not predicted to be LOF-intolerant by 
any method. We evaluated the enrichment of each essential gene set in the 109 LOF-
intolerant genes using the log odds ratio, log(OR) = log(n11/n12n21/n22

) , where n11 , n12 , n21 , and 
n22 are the numbers of essential genes predicted to be LOF-intolerant, nonessential 
genes predicted to be LOF-intolerant, essential genes predicted to be LOF-tolerant, and 
nonessential genes predicted to be LOF-tolerant, respectively. We defined the confi-
dence interval of the log odds ratio as log(OR)± 1.96× SE , where SE is the standard 
error of the log odds ratio and is equal to 

√

1
n11

+ 1
n12

+ 1
n21

+ 1
n22

.

We evaluated the depletion of the 109 LOF-intolerant genes uniquely predicted by 
DeepLOF in benign genomic deletions. To this end, we obtained clinical structural vari-
ants from the nstd102 study in dbVar [45] and retrained 5649 benign deletions overlap-
ping coding regions of genes from GENCODE (version 19) [46]. Then, we computed the 
proportion of benign deletions overlapping at least one of the 109 LOF-intolerant genes. 
To examine whether the proportion of overlapping deletions was smaller than the expec-
tation under a null model that the 109 LOF-intolerant genes are nonessential. We per-
formed a permutation test with 10,000 permutations. In each permutation, we randomly 
selected 109 genes with ≤ 10 LOF variants and computed the proportion of deletions 
overlapping with the random genes. The one-tailed P-value of the permutation test was 
defined as the fraction of permutations where the proportion of deletions overlapping 
random genes was equal to or smaller than the observed proportion in empirical data.

Results
Overview of the DeepLOF model

DeepLOF is an evolution-based deep learning model for inferring protein-coding genes 
intolerant to LOF mutations. The key variable of interest in DeepLOF is η , i.e., the rela-
tive rate of LOF variants in a gene with respect to the expected number of LOF variants 
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under a neutral mutation model. A smaller η indicates that a gene has a lower rate of 
LOF variants after adjusting for neutral evolutionary factors, such as mutation rate and 
genetic drift. Thus, a smaller η indicates stronger negative selection against LOF vari-
ants. To take into account the uncertainty of η , DeepLOF treats η as a random variable at 
the gene level. To integrate genomic features and population genomic data in a Bayesian 
manner, DeepLOF combines a feedforward neural network and a population genetics-
based likelihood function (Fig. 2).

In this hybrid framework, the feedforward neural network consists of a sequence of 
neural network layers, which together transform genomic features into the beta prior 
distribution of η (Fig. 2). The genomic features include gene ontology (GO) terms [31], 
epigenomic data, gene expression patterns, and several other gene-level features poten-
tially predictive of LOF intolerance. The outputs of the feedforward neural network are 
the mean and concentration parameters of the beta distribution, which represents our 
belief about η based on genomic features. In addition, the population genetics-based 
likelihood function describes the probability of observing y LOF variants in a gene given 
η and n, where n is the expected number of LOF variants in the same gene under a neu-
tral mutation model (Fig. 2). Thus, the likelihood function represents evidence for LOF 
intolerance based on population genomic data.

Using Bayes’ rule, DeepLOF combines the neural network-based beta prior distribu-
tion with the population genetics-based likelihood function to obtain a posterior distri-
bution of η , which represents our belief about LOF intolerance after integrating genomic 
features and population genomic data. Denoting E[η] as the expectation of η under the 
posterior distribution, we define the DeepLOF score as 1− E[η] , which can be inter-
preted as the proportion of LOF mutations purged by negative selection in a gene. Thus, 
a higher DeepLOF score indicates a higher level of LOF intolerance. We estimate model 
parameters, including the weights and biases of the feedforward neural network, using 
stochastic gradient descent on a loss function that integrates the feedforward neural net-
work and the likelihood function.

DeepLOF elucidates genomic features predictive of LOF‑intolerant genes

We trained the DeepLOF model on 18 genomic features (Additional file  2: Data 1) 
and the observed and expected numbers of LOF variants in 19,197 human genes. The 
observed number of LOF variants in each gene was from the exomes of 125,748 healthy 
individuals in the gnomAD database [5]. The expected number of LOF variants in each 
gene was from a neutral mutation model developed by gnomAD [5], which took into 
account the impact of trinucleotide sequence context, CpG methylation level, local 
mutation rate, and site-wise sequencing coverage on the occurrence of variants. The 
18 genomic features included five epigenomic features [20], four gene categories asso-
ciated with developmental processes [30], three protein annotations [33, 34, 36], two 
phastCons conservation scores [15, 47], two gene expression features [48, 49], the pro-
moter CpG density [15], and the UNEECON-G score [38]. A detailed description of 
these genomic features is available in Additional file 1: Table S1. We used 80% randomly 
selected genes as a training set and used the remaining 20% genes as a validation set for 
hyperparameter tuning.
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To obtain insights into which genomic features may be predictive of gene-level intoler-
ance to LOF mutations, we trained a linear DeepLOF model without hidden layer in the 
feedforward neural network. While the linear DeepLOF model may not provide most 
accurate predictions of LOF intolerance, it allows us to estimate the association of each 
genomic feature with LOF intolerance. Specifically, in the linear DeepLOF model, we 
defined the contribution score of a genomic feature as the negative value of its weight 
with respective to the mean of the beta prior distribution of η . The absolute value of a 
contribution score indicates the strength of association between a feature and LOF intol-
erance, whereas the sign of the contribution score indicates the direction of association.

Among the 18 genomic features, the UNEECON-G score had the strongest positive 
association with LOF intolerance (Fig. 3a). Because the UNEECON-G score is a meas-
ure of a gene’s intolerance to missense mutations, it corroborates a previous finding that 
missense intolerance is strongly correlated with LOF intolerance at the gene level [38]. 
Two GO categories [31], i.e., central nervous system development and embryo develop-
ment, and the Reactome category of nervous system development [32] had strong posi-
tive associations with LOF intolerance, suggesting that developmental genes are highly 
intolerant to LOF mutations. Two protein annotations, i.e., transcription factor [33] and 
protein complex [34], also had strong positive associations with LOF intolerance, sug-
gesting that genes encoding transcription factors or subunits of protein complexes may 
be more intolerant to LOF mutations than other protein-coding genes. In agreement 
with previous studies [15, 20], epigenomic features in a gene’s promoter, including the 
signals of H3K9ac, H3K27me3, and H3K4me3 histone modifications [20], and the pro-
moter CpG density [15], had positive associations with LOF intolerance. Furthermore, 
the phastCons score [47] in a gene’s promoter had a positive association with LOF intol-
erance, suggesting that genes with conserved promoter sequences may be intolerant to 
LOF mutations.
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H2A.Z signal had a negative association with LOF intolerance. The H2A.Z histone 
variant plays a vital role in gene regulation during mammalian development, specifically 
at promoter regions. In embryonic stem cells, bivalent domains, characterized by both 
activating and repressive histone modifications, are common and frequently feature 
H2A.Z. As lineage specification progresses, bivalent domains of crucial developmental 
genes often resolve. Genes unexpressed within the relevant lineage maintain repressive 
H3K27me3 domains and lose H2A.Z [50]. Consequently, our model may detect these 
genes and their post-developmental H2A.Z depletion, leading to a negative correlation 
between LOF intolerance and H2A.Z signal. Finally, tissue specificity [35] also had a 
negative association with LOF intolerance, suggesting that housekeeping genes may be 
more intolerant to LOF mutations than tissue-specific genes.

DeepLOF automatically adjusts the relative importance of genomic features 

and population genomic data in a gene length‑dependent manner

Because DeepLOF uses Bayes’ rule to infer the distribution of η , we hypothesized that, 
similar to other Bayesian models, DeepLOF may automatically adjust the relative impor-
tance of the beta prior distribution in a data-dependent manner. Specifically, in a long 
gene where a large number of LOF variants is expected under a neutral mutation model, 
the posterior distribution of η may be dominated by the the population genetics-based 
likelihood function. Thus, DeepLOF may primarily leverage population genomic data 
to predict long LOF-intolerant genes. Because population genomic data are indicative 
of negative selection at the organism level, this may allow DeepLOF to unbiasedly infer 
LOF intolerance at the organism level in long genes. Conversely, in a short gene where a 
small number of LOF variants is expected under a neutral mutation model, the posterior 
distribution of η may be dominated by the beta prior distribution of η . Thus, DeepLOF 
may automatically upweight genomic features to improve the inference of LOF intoler-
ance in short genes.

To test this hypothesis, we retrained the linear DeepLOF model without using any 
genomic features. This model effectively assumed an identical prior distribution of 
η across genes and solely used population genomic data to infer LOF intolerance. We 
computed the absolute difference in DeepLOF score between the linear DeepLOF 
model with genomic features and the model without genomic features, which indicates 
the relative importance of genomic features in the inference of LOF intolerance. We 
observed that the absolute difference in DeepLOF score was negatively correlated with 
the expected number of LOF variants in a gene (Fig. 3b), supporting our hypothesis that 
DeepLOF automatically upweights genomic features in short genes to improve the pre-
diction of LOF intolerance.

DeepLOF shows unmatched performance in predicting essential genes intolerant to LOF 

mutations

We hypothesized that, by integrating a large number of genomic features and population 
genomic data, DeepLOF may show improved performance in predicting essential genes. 
To test this hypothesis, we obtained three sets of essential genes, including 311 Clin-
Gen haploinsufficient genes [22], 397 human orthologs of mouse essential genes where 
heterozygous knockouts resulted in lethality [23], and 683 human genes essential to the 
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survival of cell lines [24]. For each essential gene set, we constructed a nonessential gene 
set of matching size. To this end, we used MatchIt [42] to match each essential gene with 
a putatively nonessential gene of similar number of LOF variants.

We trained a nonlinear DeepLOF model with hidden layer and observed that the 
nonlinear DeepLOF model had a lower loss than the linear DeepLOF model in the vali-
dation set. Thus, we used scores from the nonlinear DeepLOF model in downstream 
analysis (Additional file  3: Data 2). We compared the performance of DeepLOF with 
eight alternative methods in distinguishing essential genes from matched nonessential 
genes. The eight alternative methods included two measures of gene-level intolerance 
to LOF mutations (LOEUF [5] and pLI [2]), three measures of gene-level intolerance to 
missense mutations (mis-z [1], GeVIR [6], and UNEECON-G [38]), and three metrics 
that considered both LOF intolerance and missense intolerance (RVIS [39], VIRLOF [6], 
and CoNeS [7]). In the prediction of ClinGen haploinsufficient genes, DeepLOF showed 
substantially better performance than the other methods as evidenced by its significantly 
higher area under the receiver operating characteristic curve (AUC) (Fig. 4a; Additional 
file 1: Table S2). In particular, DeepLOF showed unmatched performance when the false 
positive rate was low. For instance, the true positive rate of DeepLOF was approximately 
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0.5 at a false positive rate of 0.05 (Fig. 4b), which was about 50% higher than that of the 
second best method (LOEUF; true positive rate = 0.33). DeepLOF also outperformed 
the other methods in predicting human orthologs of mouse essential genes and human 
genes essential for the survival of cell lines (Fig. 4c, d; Additional file 1: Table S2). In sum, 
DeepLOF had superior performance in predicting essential genes.

Because the DeepLOF score is a measure of LOF intolerance, we hypothesized that 
it might not be the best method in predicting disease genes via a mechanism different 
from haploinsufficiency. To test this hypothesis, we obtained 364 OMIM dominant-neg-
ative genes where a heterozygous mutation may adversely affect the function of the wild-
type allele in the same individual through interlocus or intralocus interactions [39, 51, 
52]. In agreement with our hypothesis, UNEECON-G instead of DeepLOF showed the 
best performance in predicting dominant-negative genes (Additional file 1: Fig. S1), sug-
gesting that missense intolerance scores, such as UNEECON-G, might be better predic-
tors of dominant-negative genes than LOF intolerance scores.

DeepLOF predicts 109 novel LOF‑intolerant genes of short length

Previous predictions of LOF intolerance are often biased towards longer genes because 
it is easier to reject neutral evolution when the expected number of LOF variants is high 
[6, 15]. In contrast, by leveraging a genomic feature-based prior distribution, DeepLOF 
may have higher power to predict LOF-intolerant genes of short length. To test this 
hypothesis, we examined LOF-intolerant genes predicted by four methods, including 
DeepLOF, CoNeS, LOEUF, and VIRLOP, which showed better performance than other 
methods in predicting ClinGen haploinsufficient genes (Fig. 4a).

To ensure that the number of predicted LOF-intolerant genes is comparable between 
the four methods, we obtained ∼ 2800 LOF-intolerant genes from each method. Specifi-
cally, using a previously established cutoff of 0.35 [5], we obtained 2835 LOF-intolerant 
genes from LOEUF. Using comparable cutoffs, we obtained 2817, 2847, and 2817 LOF-
intolerant genes from DeepLOF, CoNeS, and VIRLOP, respectively. Because previous 
studies suggested that the difficulty of LOF intolerance prediction mainly occurred in 
genes with ≤ 10 expected LOF variants [5, 15], we focused on predicted LOF-intolerant 
genes with ≤ 10 expected LOF variants in downstream analysis.

In total, 452 genes with ≤ 10 expected LOF variants were predicted to be LOF-intoler-
ant by at least one method (Additional file 4: Data 3). DeepLOF predicted that 364 genes 
with ≤ 10 expected LOF variants were LOF-intolerant, which was the largest number 
among all the four methods (Fig. 5a). Also, 109 LOF-intolerant genes, or 24.1% of the 
total number (109/452), were uniquely predicted by DeepLOF (Fig. 5a) (Additional file 5: 
Data 4). Because we used comparable cutoffs for the four methods, these results suggest 
that DeepLOF may have much higher power to pinpoint LOF-intolerant genes of short 
length.

We examined the enrichment of ClinGen haploinsufficient genes, human orthologs 
of mouse essential genes, and human genes essential for the survival of cell lines in the 
109 novel LOF-intolerant genes predicted by DeepLOF, using genes with ≤ 10 expected 
LOF variants but not predicted to be LOF-intolerant by any method as a background set. 
We observed that the 109 novel LOF-intolerant genes were significantly enriched with 
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essential genes (Fig. 5b), highlighting that the novel LOF-intolerant genes predicted by 
DeepLOF may play key roles in important biological processes.

We hypothesized that the 109 novel LOF-intolerant genes predicted by DeepLOF 
might be depleted in benign genomic deletions due to the detrimental effects of deletions 
overlapping LOF-intolerant genes. To test this hypothesis, we obtained 5,649 benign 
genomic deletions overlapping protein-coding genes from dbVar [45]. We observed that 
0.27% of benign deletions overlapped the 109 novel LOF-intolerant genes (Fig. 5c). To 
evaluate whether the proportion of overlapping was smaller than the expectation under 
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a null model that postulated the 109 genes to be nonessential, we performed a permu-
tation test with 10,000 permutations. In each permutation, we randomly selected 109 
genes with ≤ 10 LOF variants and computed the proportion of benign genomic deletions 
overlapping the random genes. The mean proportion of benign deletions overlapping 
random genes was 1.46% (Fig. 5c), which was 5.4 fold higher than the observed propor-
tion in empirical data ( 1.46% vs. 0.27% ; P = 0; one-tailed permutation test). Thus, benign 
genomic deletions were depleted with the 109 novel LOF-intolerant genes predicted by 
DeepLOF.

Finally, we further investigated the 109 short genes uniquely predicted by DeepLOF 
by conducting a GO enrichment analyses on the 109 genes. We used The Database for 
Annotation, Visualization and Integrated Discovery (DAVID) [53, 54] and the PAN-
THER Classification System (Protein Analysis Through Evolutionary Relationships) [55] 
for our analysis. We found many overrepresented essential biological functions in our 
dataset, including many found in the development of organs and morphogenesis.

An example of a critical developmental gene determined by DeepLOF to be LOF-intol-
erant was HAND2. HAND2 is involved during cardiac development. HAND proteins 
are involved in the development of ventricular chambers and aortic arch arteries [56]. As 
such, dysfunction of these important proteins has been associated with congenital heart 
defects. Specifically, a heterozygous deletion in HAND1 and HAND2 has been shown to 
be associated with heart defects. Therefore, HAND2 (predicted by DeepLOF) is thought 
to be haploinsufficient [57] and the cause of certain congenital heart issues [56, 57].

In the 109 DeepLOF uniquely predicted genes, we also found significant enrichment 
for several genes associated with various ribosomal proteins. Ribosomal proteins are 
responsible for many important functions and dysfunction can lead to serious com-
plications. Diamond-Blackfan anemia (DBA) is a rare disease in which patients’ bone 
marrow fails to produce enough red blood cells. The disease also is responsible for mal-
formations in the hands, face, or heart in approximately 50% of DBA patients. Haploin-
sufficient mutations in various ribosomal proteins have been implicated in causing this 
serious disease [58]. TSR2 was a gene uniquely deemed by DeepLOF to be LOF-intoler-
ant. Dysfunction of this gene has been associated with DBA [56, 58, 59]. DeepLOF also 
uniquely predicted several other ribosomal proteins where mutation has been associated 
with DBA. This list of ribosomal proteins novelly predicted by our model and validated 
in association with DBA [58] included proteins RPL27, RPL35, RPS27, RPS28.

Full names, symbols and Ensembl ID of all other genes uniquely predicted by Deep-
LOF can be found in Additional file 5: Data 4.

Discussion
We present an evolution-based machine learning framework, DeepLOF, for pre-
dicting human genes intolerant to LOF mutations. Unlike previous LOF intolerance 
scores, such as pLI and LOEUF, the DeepLOF model leverages both population and 
functional genomic data to predict LOF intolerance. Therefore, DeepLOF may be 
particularly powerful in predicting short essential genes without sufficient polymor-
phisms for selection inference. Furthermore, unlike supervised methods, DeepLOF 
does not use known essential genes as training data. Thus, it may not suffer from the 
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pitfalls of supervised machine learning, such as the potential leakage of information 
from training data to test data and the ascertainment bias in human-annotated essen-
tial genes.

The linear DeepLOF model without hidden layer allows us to directly estimate 
the association of a genomic feature with LOF intolerance after adjusting for other 
genomic features (Fig. 3a). Using this approach, we show that the UNEECON-G score 
has the strongest positive association with LOF intolerance, which suggests that mis-
sense intolerance scores may also be informative of gene-level intolerance to LOF 
mutations. Because there are typically more missense variants than LOF variants in a 
gene under a neutral mutation model, the sample size for missense intolerance infer-
ence is larger than that for LOF intolerance inference. Therefore, it may be easier to 
reliably estimate missense intolerance than LOF intolerance, and in turn it may be 
beneficial to incorporate missense intolerance scores, such as UNEECON-G, into 
computational pipelines for LOF variant interpretation.

We also show that genes encoding transcription factors or protein complex subu-
nits and genes associated with developmental processes may be highly intolerant to 
LOF mutations (Fig. 3a). Previous studies have shown that many transcription factors 
are haploinsufficient and are associated with dominant genetic disorders [60]. Tran-
scription factors often cooperatively bind to regulatory sequences, which may result 
in a sigmoid-shaped dose-response curve [61, 62]. Therefore, transcription factors 
may be particularly susceptible to heterozygous knockouts. Also, in agreement with 
our observation, it has been shown that many protein complex subunits are haploin-
sufficient [63] because the reduced expression of a subunit may lead to a stoichiomet-
ric imbalance between different subunits of the same protein complex [62]. Finally, in 
agreement with our observation, it has been found that many developmental genes 
are haploinsufficient [64], highlighting that developmental processes may be particu-
larly sensitive to reduced gene dosage.

While both genomic features and population genomic data are predictive of LOF 
intolerance, their relative importance may depend on the length of a gene. In short 
genes where population genomic data provide limited information on negative selec-
tion, it is critical to incorporate genomic features to improve the inference of LOF 
intolerance. In contrast, in long genes where polymorphisms are abundant, popula-
tion genomic data may be more informative than genomic features because they 
directly reflect LOF intolerance at the organism level. Because DeepLOF infers the 
relative rate of LOF variants, η , in a Bayesian manner, it can automatically adjust the 
relative importance of genomic features and population genomic data to optimize 
LOF intolerance inference in a data-dependent manner (Fig. 3b).

By integrating genomic features and population genomic data, DeepLOF outper-
forms alternative methods in predicting essential genes (Fig. 4). Because most vari-
ants in the gnomAD database are of low allele frequency [5], the DeepLOF score may 
be indicative of negative selection against LOF variants in their heterozygous state. 
Thus, it shows unmatched performance in predicting ClinGen haploinsufficient genes 
(Fig. 4a). In particular, at a false positive rate of 0.05, the true positive rate of Deep-
LOF is more than 50% higher than other methods (Fig. 4b). Because the true positive 
rate is the proportion of haploinsufficient genes correctly discovered by a method, our 
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result suggests that DeepLOF can detect 50% more ClinGen haploinsufficient genes 
than other methods at a false positive rate of 5%.

We observe that the predictive power of DeepLOF and other methods in disease 
gene prediction depends on the genetic mechanism of a disease. Notably, DeepLOF 
is outperformed by a missense intolerance score, UEECON-G, in the prioritization 
of dominant-negative disease genes (Additional file 1: Fig. S1), possibly because many 
dominant-negative mutations are missense mutations. Therefore, it is critical to take 
into account the genetic mechanism of a disease in gene prioritization [65].

Because DeepLOF leverages genomic features to improve the inference of LOF 
intolerance in short genes, DeepLOF has predicted the largest number of short LOF-
intolerant genes compared to other methods (Fig.  5a). Furthermore, DeepLOF has 
predicted 109 novel LOF-intolerant genes of short length. These novel LOF-intolerant 
genes are enriched with essential genes and are depleted in benign genomic deletions 
(Fig. 5b, c), implicating that they may play an underappreciated role in human disease.
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