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Abstract 

Background:  Plant secondary metabolites are highly valued for their applications 
in pharmaceuticals, nutrition, flavors, and aesthetics. It is of great importance to elu-
cidate plant secondary metabolic pathways due to their crucial roles in biological 
processes during plant growth and development. However, understanding plant 
biosynthesis and degradation pathways remains a challenge due to the lack of suf-
ficient information in current databases. To address this issue, we proposed a transfer 
learning approach using a pre-trained hybrid deep learning architecture that combines 
Graph Transformer and convolutional neural network (GTC) to predict plant metabolic 
pathways.

Results:  GTC provides comprehensive molecular representation by extract-
ing both structural features from the molecular graph and textual information 
from the SMILES string. GTC is pre-trained on the KEGG datasets to acquire general 
features, followed by fine-tuning on plant-derived datasets. Four metrics were chosen 
for model performance evaluation. The results show that GTC outperforms six other 
models, including three previously reported machine learning models, on the KEGG 
dataset. GTC yields an accuracy of 96.75%, precision of 85.14%, recall of 83.03%, 
and F1_score of 84.06%. Furthermore, an ablation study confirms the indispensability 
of all the components of the hybrid GTC model. Transfer learning is then employed 
to leverage the shared knowledge acquired from the KEGG metabolic pathways. As 
a result, the transferred GTC exhibits outstanding accuracy in predicting plant second-
ary metabolic pathways with an average accuracy of 98.30% in fivefold cross-validation 
and 97.82% on the final test. In addition, GTC is employed to classify natural products. 
It achieves a perfect accuracy score of 100.00% for alkaloids, while the lowest accuracy 
score of 98.42% for shikimates and phenylpropanoids.

Conclusions:  The proposed GTC effectively captures molecular features, and achieves 
high performance in classifying KEGG metabolic pathways and predicting plant sec-
ondary metabolic pathways via transfer learning. Furthermore, GTC demonstrates its 
generalization ability by accurately classifying natural products. A user-friendly execut-
able program has been developed, which only requires the input of the SMILES string 
of the query compound in a graphical interface.
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Background
Plant secondary metabolites are metabolic intermediates and products, which are con-
sidered to be non-essential for the growth and survival of the organism. However, they 
not only participate in environmental responses like stress resistance [1, 2] and disease 
resistance [3, 4], but also are active ingredients of many herbal medicines [5]. Research 
on plant secondary metabolism can guide the cultivation of excellent crops with desir-
able traits and contribute to the discovery of novel drugs for human diseases.

Metabolomics is a powerful tool for exploring the production and functions of sec-
ondary metabolites [6]. Through differential metabolite analysis, changes in metabolic 
pathways provide valuable insights into underlying biological mechanisms, such as 
pathogenic disease [7] and crop selection [8]. Pathway enrichment analysis based on 
metabolomics data may be biased. It is primarily due to the limited current knowledge of 
plant secondary metabolic pathways [9], and certain pathways have not been included in 
existing databases due to the outdatedness and maintenance requirements [10]. Explor-
ing these pathways through biological experiments is time-consuming and resource-
intensive. Therefore, it is crucial to develop new ways of improving the understanding of 
plant secondary metabolism.

Several machine learning algorithms have been reported to predict the metabolic 
pathways of a compound, including traditional machine learning algorithms and deep 
learning models. In early research, traditional algorithms such as the Nearest Neighbor 
Algorithm [11] and Adaboost [12] were adopted to classify the compounds into a sin-
gle pathway category, ignoring the possibility that a compound might belong to multi-
ple metabolic pathways. Later, multi-target models were proposed based on chemical 
interaction [13, 14] to predict the order of predicted metabolic pathway classes of the 
query compound. A bioinformatics tool, TrackSM [15], was developed to extract scaf-
folds from compounds in the same metabolic pathways. It assumed that scaffolds (sub-
structures) are associated with corresponding metabolic pathways. Besides, the Support 
Vector Machine (SVM), a powerful algorithm, has been widely used in many fields, 
including protein structural class prediction [16]. In the context of metabolic pathway 
prediction, several studies have tackled the challenge of the multi-label classification by 
converting it into a binary classification task [17–20].

Recently, deep learning models have been applied to predict metabolic pathways. 
The first deep learning model adopted in predicting metabolic pathways was a Graph 
Convolutional Network (GCN) [21]. This prediction engine only requires the simpli-
fied molecular-input line-entry system (SMILES) [22] string of the query compound 
and outperformed traditional machine learning algorithms such as Random Forest (RF) 
model. Afterward, the Graph Attentional Network (GAT) has been reported to have bet-
ter performance [23, 24]. However, most prediction results are limited to the 11 pathway 
classes in the Kyoto Encyclopedia of Genes and Genomes (KEGG) [25], which is not 
refined enough. Although some investigation has been reported to classify compounds 
into sub-classes of metabolic pathways [26], plentiful negative samples were introduced. 
Additionally, there is no graphical user interface available for users.

Machine learning and deep learning models have demonstrated their potential in pre-
dicting metabolic pathways, which can greatly improve our understanding of plant sec-
ondary metabolism. However, these models require further refinement and expansion of 
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their applications. Ongoing developments in Graph Neural Networks (GNN) and Con-
volution Neural Networks (CNN) are expected to contribute to this progress. Moreover, 
transfer learning can effectively improve the efficiency of model construction and solve 
the problem of insufficient data. In this paper, we propose a transfer learning approach 
using a pre-trained hybrid deep learning architecture that combines graph transformer 
[27] and CNN (GTC) to predict plant metabolic pathways. Overall, the primary contri-
butions of this article are as follows:

A deep ensemble learning model The architecture of our proposed model, GTC, com-
prises two distinct blocks. A GNN-based block captures the structural features of the 
molecule by treating it as a graph, and a CNN-based block learns from the text infor-
mation of the SMILES string. By combining these two representations, GTC provides 
a more comprehensive representation of molecules, leading to outperforming state-of-
the-art methods in predicting metabolic pathways.

Transfer strategy of fine-tuning To solve the problem of insufficient data on plant sec-
ondary metabolic pathways, transfer learning is implemented. After obtaining high per-
formance of the pre-training model on the KEGG dataset, GTC is fine-tuned to perform 
the accurate prediction for plant secondary metabolic pathways.

Model generalization The modular architecture of GTC allows for easy adaptation to 
various molecular prediction tasks beyond metabolic pathway classification. The model 
can be adapted to predict other molecular properties, such as classifying natural prod-
ucts, by simply modifying the output layer accordingly.

Methods
Datasets

To implement a transfer learning process, separate datasets are required for both the 
target task and the source task, respectively. In this study, four datasets were used (Addi-
tional file 2: Table S1). Both Dataset A (Additional file 2: Table S2) and Dataset B (Addi-
tional file 2: Table S3) were created for the target task, while Dataset C (Additional file 2: 
Table S4) served as a benchmark dataset for the source task. Besides, Dataset D (Addi-
tional file 2: Table S5) was generated to evaluate the generalization ability of the GTC 
model. The detailed description is as follows:

Dataset A houses 2028 plant-derived compounds, represented by SMILES strings and 
labeled with 18 pathway labels. The information was collected from Plant Metabolic 
Network (PWN) [28] in October 2022. The 18 sub-classes are labeled as ‘0’, ‘1’, …, ‘17’ 
and encompass secondary metabolite biosynthesis and degradation pathways, includ-
ing aroma compound biosynthesis, fatty acid derivative biosynthesis, … and terpenoid 
degradation (Additional file 2: Table S6). Since a single compound may belong to sev-
eral metabolic pathways (Additional file 1: Fig. S1 and Fig. S2), it is a multi-label task. 
Besides, the unbalanced distribution of the 2028 compounds is observed in Additional 
file  2: Table  S6. In the presence of an unbalanced distribution, deep learning model 
from scratch may overly focus on learning the majority classes, leading to increased 
errors when predicting the minority classes. To address the challenge, a transfer learn-
ing approach was adopted to leverage knowledge from a related dataset through pre-
training. Our model benefits from pre-trained representations, ultimately resulting in 
improved performance on minority classes.
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Dataset B consists of 577 plant-derived compounds, which are classified into the same 18 
pathway categories as Dataset A. The dataset was extracted from the updated PWN data-
base in February 2023 and retained only the newly added compounds absent in Dataset 
A. It is noted that Dataset B is excluded from the training process and only served for the 
final testing evaluation. Dataset C comprises 5288 compounds and 11 pathway classes in 
the KEGG database, downloaded in December 2022. Similarly, the compounds are also 
represented by SMILES strings. The 11 classes of metabolic pathways include carbohydrate 
metabolism, energy metabolism, lipid metabolism, and so on. (Additional file 2: Table S7). 
Dataset C has great similarity in task and domain with Dataset A, as both datasets involve 
chemical structures as input and labels related to metabolic pathways. Additionally, Data-
set C has been carefully annotated by domain experts, which ensures data reliability. Addi-
tional file 1: Fig. S3 and Additional file 2: Table S7 show that Dataset C provides enough 
data instances. Therefore, it is reasonable to consider Dataset C as the source data for trans-
fer learning. Besides, such a dataset from the KEGG database was widely used in previ-
ous studies for the prediction of metabolic pathways. Dataset D contains 78,305 natural 
products, which are labeled by 7 Pathways. It was originally collected by the researchers 
of NPClassifier [29], which was reported for the classification of natural products by using 
counted Morgan fingerprints as input. The primary data with 78,336 compounds were 
downloaded at https://​github.​com/​mwang​87/​NP-​Class​ifier in March 2023. The deduplica-
tion was conducted and created Dataset D, which was used to test the generalization ability 
of the GTC model.

Model construction

The deep learning model, GTC, is an ensemble of a graph transformer network and a CNN. 
Figure 1 shows the overall framework of GTC as well as the pipeline of the whole transfer 
learning process, which is further explained in the section Transfer learning. The model 
comprises two separate blocks that capture molecular features from different perspectives. 
The first block focuses on extracting graph-based molecular structural features, while the 
second block learns text-based molecular structural information. By combining these two 
representations, the artificial neural network can comprehensively and effectively learn 
molecular structures. The integrated features are then passed through an output layer for 
prediction.

Block1 In this block, a molecular is seen as a graph composed of nodes and edges. Here, 
the atom is the node, while the chemical bond is the edge. Each atom i is thought to have 
connections with its neighbor j. Specifically, it is given that node features X = { x1, x2, x3, 
…, xn}. Partially drawing on existing research [24, 30], the node feature xi is initialized with 
the combination of the information of the atom symbol, the number of adjacent atoms, the 
number of adjacent hydrogens, the formal charge of the atom, the implicit valence of the 
atom, the chiral type of the atom, whether the atom is in a ring and whether the atom is 
in an aromatic structure, using RDKIT [31]. In this way, the ith node feature xi and the jth 
node feature xj are obtained. Corresponding to the self-attention mechanism in the well-
known Transformer[32], there are three important elements in graph transformer: Query, 
Key, and Value, which are calculated by:

Query = Wc,qxi,

https://github.com/mwang87/NP-Classifier
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where Wc,q, Wc,k, and Wc,v are three weighing matrices. Basically, in a Graph Trans-
former layer, the node feature is updated by aggregating the features of its neighboring 
atoms. With multi-head attention adopted, for the cth attention head, xi is updated by 
the following propagation rule:

where Wc,l is another weighing matrix and αc,i,j is the attention coefficient, which is com-
puted by:

where d is the dimension of xi. After being updated by each attention head, the node 
feature is concatenated by:

where C is the total number of attention heads and ∥ is the operator of concatenating 
the vectors. Subsequently, such two methods as global mean pooling and global max 

Key = Wc,kxj ,

Value = Wc,vxj ,

x
′
c,i = Wc,lxi +

j∈N (i)
αc,i,jWc,vxj ,

αc,i,j = Softmax

(

(

Wc,qxi

)T
(Wc,kxj)√
d

)

,

x
′
i = �Cc=1(xc,i′),

Fig. 1  Flowchart of the proposed GTC. The whole pipeline contains two processes: pre-training and 
fine-tuning. The model is initially constructed on the KEGG dataset and then leverages the learned 
knowledge to predict plant secondary metabolic pathways. Conv1D stands for one-dimensional 
convolutional layer; Pool1D stands for one-dimensional max-pooling layer; FC stands for fully connected layer
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pooling are adopted in parallel in the Global Pooling layer. Finally, through a fully-con-
nected layer, a molecule is represented by a 2000-dimensional vector.

Block2 In this block, the SMILES string of a molecule is input in text form. The neural 
network of MolecularTransformerEmbeddings [33] is used to obtain the molecular rep-
resentation vector, in which every character has its specific attention weights. Therefore, 
this vector encodes the structural characteristics of the molecule. Subsequently, the vec-
tor passes through a one-dimensional convolution layer and a one-dimensional pooling 
layer. Finally, similar to Block1, a molecule is represented by a 2000-dimensional vector 
through a fully-connected layer.

Extracted from the two blocks, the features of a molecule are concatenated as a 
4000-dimensional vector. The information is learned based on a CNN akin to Block2 
and a dropout layer is employed to prevent the model over-fitting. As the output layer, 
the last fully connected layer (Last FC) provides a set of probabilities that the compound 
belongs to each metabolic pathway. The final prediction is made by utilizing a threshold 
value of 0.5. As for a bit-string of ‘0001…1000’ given, ‘1’ at the pth position reflects that 
the metabolite belongs to the pth metabolic pathway, while ‘0’ suggests that it does not 
belong to that pathway.

To get a pre-trained model for subsequent transfer learning, several variant models 
were built for performance comparison. Different ways of message passing between 
nodes in graphs affect the performance of GNN. Therefore, three variants were cre-
ated by replacing the GNN layer in Block1 while keeping the small convolution ker-
nel in Block2 unchanged including GCN combining with CNN (GCN + CNN), GAT 
combining with CNN (GAT + CNN), SuperGAT [34] combining with CNN (Super-
GAT + CNN). It should be noted that common GCN and GAT have been previously uti-
lized in the prediction of metabolic pathways, whereas SuperGAT has not been applied 
to this task before. Additionally, a fivefold cross-validation was conducted. The model 
performance is evaluated by accuracy, precision, recall, and F1_score. Here, we choose 
micro F1_score. Additional file 1 provides an exhaustive description and discussion of 
these evaluation metrics, including implementation specifics.

Transfer learning

GTC undergoes an initial pre-training process on Dataset C to acquire knowledge, which 
is subsequently transferred to predict plant secondary metabolic pathways (Fig. 1). Dur-
ing the fivefold cross-validation, the model with the highest accuracy is chosen. As 
described in Fig. 2, there are three common strategies for transfer learning. In the first 
pattern, all the pre-trained weights are frozen and only the last fully connected layer 
(output layer) is changed. The other two patterns use fine-tuning, which involves updat-
ing a deployed learning model with a smaller learning rate. In the second one, some lay-
ers are fine-tuned and the others are frozen. In the third strategy, the entire model is 
fine-tuned with the pre-trained weights. Based on these three patterns, five concrete 
transfer strategies have been implemented as follows:

•	 Entire model frozen: the pre-trained weights were frozen in the entire model.
•	 Block1 frozen: the pre-trained weights were frozen in Block1.
•	 Block2 frozen: the pre-trained weights were frozen in Block2.
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•	 Block1 + Block2 frozen: the pre-trained weights were frozen in both Block1 and 
Block2.

•	 No module frozen: fine-tune the entire model with the pre-trained weights.

The learning rate decreases from ‘0.0003’ (default) to ‘0.0001’ in the five transfer 
strategies. In addition, as for the three methods of Block1 frozen, Block2 frozen and 
Block1 + Block2 frozen, the pre-trained weights in the fully connected layer are not 
frozen.

Results and discussion
Performance comparison of several machine learning models on the benchmark dataset

Four deep learning models are constructed, including GTC and its three variant models: 
GCN + CNN, GAT + CNN, and SuperGAT + CNN. Their performances are compared 
with previously reported methods. Among the related research, only two studies have 
made their codes publicly available. One study [21] proposed RF-based and GCN-based 
models for metabolic pathway prediction. The other study developed MLGL-MP [24], 
which utilized both GAT and GCN for the compound encoder and GCN for the path-
way encoder. We use their source codes to retrain the three aforementioned models. 
Five-fold cross-validation experiments are conducted for all seven models.

As seen in Table  1, GTC outperforms the other models, yielding an accuracy of 
96.75%, precision of 85.14%, recall of 83.03%, and F1_score of 84.06%. A two-tailed 
student t-test is performed to compare GTC with each of the other six models. The 
results show that the four scores of GTC are statistically significantly better than the 
three previously published methods, except for precision with MLGL-MP. As for 
our models, significant differences exist between GTC and GCN + CNN. However, 
no significant differences are observed between GTC and GAT + CNN or between 

Fig. 2  Three common strategies utilized in transfer learning. a All the pre-trained weights are frozen and 
only the last fully connected layer (output layer) is changed. b Some layers are fine-tuned and the others are 
frozen. c The entire model is fine-tuned with the pre-trained weights
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GTC and SuperGAT + CNN, respectively. It should be noted that both GAT + CNN 
and SuperGAT + CNN use the attention mechanism in their graph neural network. 
It implies that the attention mechanism plays a crucial role in feature extraction and 
aggregation in the graph. The attention coefficient in graph transformer is calculated 
more effectively, particularly for our task.

Ablation studies

For an ensemble learning model, ablation studies are significant to study the contri-
bution of each component to the whole system. To evaluate the effectiveness of the 
components of GTC, ablation studies were conducted on three variants of the model 
proposed as follows. The first variant removed CNN layers after concatenation of the 
vectors learned by Block1 and Block2. The second and the third were in lack of Block2 
and Block1, respectively.

As seen in Fig.  3, the intact GTC model achieves the best performance over all 
four evaluation metrics. Each of the three components contributed differently to the 
learning model. The removal of CNN layers after the concatenation of the two vec-
tors doesn’t have a significant impact. Since features are extracted through Block1 and 
Block2, a fully connected layer could complete a decent output result. A similar per-
formance is produced for the removal of Block2. However, removing Block1 results in 

Table 1  Performance of GTC and other machine learning models

The values represent the mean ± standard deviation obtained through fivefold cross-validation. The best value on the 
metric is highlighted in bold; The symbols *, **, and *** mean that the performance of GTC is significantly better in the t-test 
at the p-values less than 0.05, 0.01, and 0.001, respectively.

Methods Accuracy (%) Precision (%) Recall (%) F1_score (%)

RF-based 95.66 ± 0.16*** 70.95 ± 0.89*** 69.38 ± 0.84*** 70.16 ± 0.86***

GCN-based 95.94 ± 0.14*** 80.81 ± 0.36*** 79.47 ± 1.20** 80.14 ± 0.71***

MLGL-MP 96.45 ± 0.15* 84.67 ± 1.36 80.10 ± 0.78** 82.32 ± 0.60*

GCN + CNN 96.05 ± 0.14*** 82.26 ± 0.66** 78.67 ± 1.53** 80.41 ± 0.75***

GAT + CNN 96.51 ± 0.27 83.99 ± 1.73 81.74 ± 0.73 82.84 ± 1.10

SuperGAT + CNN 96.63 ± 0.24 84.30 ± 1.46 82.75 ± 0.81 83.52 ± 1.06

GTC​ 96.75 ± 0.21 85.14 ± 1.42 83.03 ± 0.92 84.06 ± 0.85

Fig. 3  The effects of Block1, Block2, and CNN layers on performance efficacy after the concatenation of 
vectors learned by Block1 and Block2, respectively
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a drastic underperformance. Such results indicate that the graph transformer network 
plays a crucial role in our model. In general, all components contribute to the predic-
tion task in varying degrees, so none of them should be eliminated.

Performance of transfer learning

To evaluate the effectiveness of transfer learning, we perform the fivefold cross-valida-
tion experiments on Dataset A, using the five strategies described in the section Trans-
fer learning, Methods. It can be seen that freezing the pre-trained weights in Block2 
(referred to as “Block2 frozen”) yields an accuracy of 98.30%, precision of 88.44%, recall 
of 84.36%, and F1_score of 86.34% (Table  2). All four metrics of accuracy, precision, 
recall, and F1_score achieve the best, suggesting that “Block2 frozen” represents the 
most effective model for our task. Among the five transfer training strategies, fine-tun-
ing the entire model and fine-tuning the model with Block2 frozen performed extremely 
close in terms of the four evaluation metrics. The input of Block2 is the embedding 
results through the neural network named MolecularTransformerEmbeddings [33]. 
After pre-training on Dataset C, Block2 was adjusted to the task of multi-label predic-
tion. Retraining Block2 is unnecessary due to the increase of additional computational 
costs and time consumption without substantial gains in performance. A similar con-
clusion is also drawn from comparing the freezing of Block1 and the freezing of both 
Block1 and Block2. However, freezing Block1 adversely affects model performance, 
which is consistent with the results of the ablation study. Due to the core role of Block1, 
fine-tuning Block1 is recommended to adapt it to the new prediction task. It should also 
be noted that freezing the entire model degraded model performance abruptly, possibly 
because the chemical structures and label distribution differ drastically between Dataset 
A and Dataset B. Therefore, the strategy of fine-tuning is a better option. In summary, it 
is an appropriate strategy to fine-tune the transfer model with the pre-trained weights in 
Block2 frozen, in terms of predicting plant secondary metabolic pathways.

Then, the same strategy is implemented to conduct the final test on Dataset B, which 
is not involved in model training. All the 2028 molecules in Dataset A are used as the 
training set. After 300 epochs, the prediction model is saved, through which the predic-
tion results are obtained. Moreover, we investigate the influences of data augmentation, 
an alternative method often used to address data insufficiency and imbalance. Here, it is 
hypothesized that the two molecules with high structural similarity would be involved 
in the same metabolic pathway. Data augmentation methods α and β involve the 

Table 2  Performance of different transfer strategies for plant secondary metabolic pathway 
prediction

The values represent the mean ± standard deviation obtained through fivefold cross-validation. The best value on the 
metric is highlighted in bold

Strategy Accuracy (%) Precision (%) Recall (%) F1_score (%)

Entire model frozen 97.04 ± 0.18 80.23 ± 0.99 70.90 ± 2.17 75.26 ± 1.44

Block1 frozen 98.16 ± 0.20 86.99 ± 2.29 83.49 ± 1.10 85.20 ± 1.53

Block2 frozen 98.30 ± 0.15 88.44 ± 1.59 84.36 ± 1.17 86.34 ± 1.07
Block1 + Block2 frozen 98.15 ± 0.19 86.99 ± 2.26 83.45 ± 0.94 85.17 ± 1.40

No module frozen 98.29 ± 0.15 88.23 ± 1.55 84.32 ± 1.31 86.22 ± 1.11
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replacement of methoxy groups with hydroxy groups and the replacement of hydroxy 
groups with methoxy groups [29]. α is augmentation once and β is applied three times. 
Data augmentation methods γ and θ leverage molecular fingerprint similarity, calculat-
ing the Tanimoto coefficient between the 2028 molecules in Dataset A and the mole-
cules in the COCONUT database [35]. γ and θ choose fingerprint similarity between 
0.99–1 and 0.96–1, respectively. The value of 0.96 represents the average Tanimoto coef-
ficient in the datasets created by α and β. As described in Table 3, the transfer learning 
approach exhibits decent performance. The accuracy is 97.82%, while precision, recall, 
and F1_score are all at 83.74%. In contrast, the impact of four data augmentation is neg-
ligible. However, it is noteworthy that the recall value of 84.32% indicates a decrease in 
the number of false negatives when the number of training data pieces reached 52,530. 
Thus, considering both model performance and computational cost, transfer learning 
outperformed data augmentation in predicting plant secondary metabolic pathways.

Application in natural product classification

GTC has been demonstrated to be effective in extracting molecular features. We also 
apply it to other prediction tasks to assess its generalization ability. Here, GTC is 
employed to classify natural products, utilizing Dataset D in the fivefold cross-valida-
tion experiments. Since the data size is sufficient, transfer learning is not employed. The 
entire model is trained from scratch.

The metrics in Table  4 demonstrate that GTC could effectively classify the natu-
ral products into their related pathways in NPClassifier. The highest accuracy score 
was 100.00% for alkaloids and the lowest score was 98.42% for shikimates and phenyl-
propanoids. The results imply that GTC could extract molecular features for various 

Table 3  Performance comparison between transfer learning and several data augmentation 
methods for plant secondary metabolic pathway prediction

Methods Compounds Accuracy (%) Precision (%) Recall (%) F1_score (%)

Transfer Learning 2028 97.82 83.74 83.74 83.74
Data augmentation α 7666 97.80 83.10 84.17 83.63

Data augmentation β 52,530 97.70 81.84 84.32 83.06

Data augmentation γ 9846 97.50 81.02 81.73 81.37

Data augmentation θ 17,927 97.54 81.13 82.30 81.71

Table 4  Performance of GTC in natural product classification

The values represent the mean ± standard deviation on fivefold cross-validation. The best value on the metric is highlighted 
in bold, while the lowest value on the metric is underlined

Category Accuracy (%) Precision (%) Recall (%) F1_score (%)

Alkaloids 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
Amino acids and Peptides 98.91 ± 0.22 98.98 ± 0.32 99.80 ± 0.17 99.39 ± 0.12

Carbohydrates 99.06 ± 0.17 99.24 ± 0.25 99.64 ± 0.26 99.44 ± 0.11

Fatty acids 98.85 ± 0.28 98.97 ± 0.42 99.63 ± 0.16 99.30 ± 0.18

Polyketides 98.85 ± 0.28 98.34 ± 0.62 99.48 ± 0.21 98.90 ± 0.26

Shikimates and Phenylpropanoids 98.42 ± 0.55 97.98 ± 1.33 98.38 ± 1.01 98.17 ± 0.62

Terpenoids 99.09 ± 0.16 98.41 ± 0.95 98.55 ± 1.13 98.47 ± 0.29
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applications, such as the creation of novel molecular descriptors and molecular property 
prediction.

The EXE program of plant secondary metabolic pathway prediction.

To make the model more accessible, an executable (EXE) program with a graphical user 
interface (GUI) has been developed as shown in Additional file  1: Fig. S4. Users can 
input the SMILES string of a query compound, and the program executes the prediction 
task, displaying the results in the interface and saving it to a text file. The detailed pro-
cess is demonstrated in Additional file 1: Fig. S5.

Conclusions
In this study, we propose GTC, a deep transfer learning model that employs a pre-
trained hybrid deep learning architecture and transfer learning for the prediction of 
plant secondary metabolic pathways. GTC mainly consists of two blocks, which lever-
age a graph transformer-based graph neural network and a convolution neural network 
to comprehensively learn molecular features. By combining these two representations, 
GTC provides a more comprehensive representation of molecules, leading to superior 
performance compared to state-of-the-art methods in predicting metabolic pathways. 
GTC is pre-trained on the KEGG dataset and then fine-tuned to complete the accurate 
prediction of plant secondary metabolic pathways. The modular architecture of GTC 
allows for easy adaptation to other molecular prediction tasks beyond metabolic path-
way classification, such as classifying natural products, by modifying the output layer 
accordingly. This study highlights the potential of deep learning in pathway prediction 
and offers an accessible tool for predicting plant secondary metabolic pathways.
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