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Abstract 

In this paper, a fuzzy hierarchical optimization framework is proposed for identifying 
potential antiviral targets for treating severe acute respiratory syndrome coronavi‑
rus 2 (SARS‑CoV‑2) infection in the heart. The proposed framework comprises four 
objectives for evaluating the elimination of viral biomass growth and the minimiza‑
tion of side effects during treatment. In the application of the framework, Dulbecco’s 
modified eagle medium (DMEM) and Ham’s medium were used as uptake nutrients 
on an antiviral target discovery platform. The prediction results from the framework 
reveal that most of the antiviral enzymes in the aforementioned media are involved 
in fatty acid metabolism and amino acid metabolism. However, six enzymes involved 
in cholesterol biosynthesis in Ham’s medium and three enzymes involved in glyco‑
lysis in DMEM are unable to eliminate the growth of the SARS‑CoV‑2 biomass. Three 
enzymes involved in glycolysis, namely BPGM, GAPDH, and ENO1, in DMEM combine 
with the supplemental uptake of L‑cysteine to increase the cell viability grade and met‑
abolic deviation grade. Moreover, six enzymes involved in cholesterol biosynthesis 
reduce and fail to reduce viral biomass growth in a culture medium if a cholesterol 
uptake reaction does not occur and occurs in this medium, respectively.

Keywords: Flux balance analysis, Genome‑scale metabolic model, Constraint‑based 
modeling, Drug discovery, Hybrid differential evolution, Multi‑level optimization

Introduction
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of COVID-
19. At the beginning of the COVID-19 pandemic, COVID-19 was considered a respira-
tory disease that primarily affects human airways and lungs; however, later, COVID-19 
was found to affect not only the respiratory system but also heart tissue, thereby caus-
ing serious heart problems [1–4]. According to the WHO dashboard (https:// covid 19. 
who. int/), COVID-19 has resulted in over 769 million infections and over 6.955 million 
deaths worldwide as of August 12, 2023. Respiratory failure is the primary cause of death 
among patients with COVID-19; however, cardiac problems might contribute to the 
overall mortality and even be the primary cause of death for these patients [4–8].
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Originally classified as a respiratory syndrome, COVID-19 has been shown to have 
a significant impact on cardiac and cardiovascular function [4–8]. In patients receiving 
acute hospital care, cardiac complications from COVID-19 occur in 20–44% of cases 
and are an independent risk factor for mortality. Viral RNA has been detected in the 
heart tissue of people who died from COVID-19, and viral particles have been identi-
fied in heart cells [4–8]. This strongly suggests that the virus can directly infect the heart 
and cause damage. While it is known that COVID-19 can cause cardiac dysfunction, the 
precise mechanisms by which this occurs are not fully understood. This makes it difficult 
to develop treatments that can prevent or manage myocardial injury. More research is 
needed to better understand the way that SARS-CoV-2 damages the heart so that effec-
tive treatments can be developed.

A few antiviral drugs have been approved by the US Food and Drug Administration 
(FDA) for the treatment of COVID-19. Remdesivir was the first drug approved by the 
FDA for treating COVID-19. Subsequently, ritonavir-boosted nirmatrelvir (Paxlovid), 
molnupiravir, and certain anti-SARS-CoV-2 monoclonal antibodies received emer-
gency-use authorizations from the FDA for the treatment of COVID-19 [9–11]. Many 
emerging methods [12–22] are being developed for drug screening and repurposing to 
identify antiviral targets for the treatment of COVID-19. However, limited knowledge is 
available regarding the exact pathological and metabolic mechanisms of this disease. A 
better understanding of COVID-19 from a metabolic viewpoint is required to develop 
suitable therapies for combating COVID-19.

Viruses infect host cells and seize control of the metabolism of these cells to enable 
viral replication [23–27]. Constraint-based models have been used to discover antiviral 
targets for the treatment of lungs infected with SARS-CoV-2 [28–38]. The viral biomass 
reaction (VBR) of SARS-CoV-2 is incorporated into a constraint-based metabolic model 
of lung cells to analyze the metabolic mechanism of host-virus cells. The alpha variant 
of SARS-CoV-2 has been incorporated into the iAB-AMØ-1410 human alveolar mac-
rophage model [28–33] for analyzing the metabolic behaviors of host cells infected with 
this variant. Moreover, VBRs have been integrated into generic human genome-scale 
metabolic networks Recon2.2 [39] and Recon3D [40] to identify inhibitors for treating 
SARS-CoV-2, respectively [33–37]. Whole-body metabolic modeling was conducted in a 
previous study to investigate host-virus (HV) co-metabolism during SARS-CoV-2 infec-
tion in the lungs [38]. However, most studies have not considered stoichiometric find-
ings on viral lipids in the VBR because dynamic experimental data on viral envelopes are 
scarce. Moreover, few studies have investigated the metabolic behaviors of heart cells 
infected with SARS-CoV-2.

In the present study, the protein and gene sequences of SARS-CoV-2 were retrieved 
from the National Center for Biotechnology Information (NCBI) database (https:// www. 
ncbi. nlm. nih. gov/ nucco re/) and used to design protein and RNA nucleotide polymeriza-
tion reactions for the VBR. Subsequently, the ratio of the mass of lipids in the viral bio-
mass to that in its host cell was used to estimate the stoichiometric coefficients of viral 
lipids for establishing a generic VBR. The generic VBR was integrated with a generic 
human Recon3D model to create an HV model for analysis. However, this HV model is 
tissue-unspecific; that is, the model was unable to identify infected tissue. The RNA-seq 
expression of heart cells infected with SARS-CoV-2 was used to reconstruct cell-specific 
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genome-scale metabolic models (GSMMs) of infected and healthy host cells (HV and 
HT cells, respectively). These models were then used in an antiviral target discovery 
(AVTD) platform [35] to identify antiviral targets for combating COVID-19.

Materials and methods
A computer-aided platform was developed in this study for screening potential thera-
peutic antiviral targets for treating heart cells infected with SARS-CoV2. This platform 
(refer to Fig.  1) comprises two frameworks: one for cell-specific metabolic network 
reconstruction and another for AVTD. The initial framework involves employing recon-
struction methods like CORDA [41] or iMAT [42] to reconstruct cell-specific GSMMs 
for HV and HT cells, as depicted in Fig. 1A–D. The steps for reconstruction are detailed 
as follows: Step A uses gene and protein sequences of the SARS-CoV-2 alpha variant 
accessed from the NCBI database (https:// www. ncbi. nlm. nih. gov/ nucco re/) to estab-
lish a generic VBR. In Step B, integration of this VBR with the generic human genome-
scale metabolic network Recon3D [39] results in a universal network comprising 2248 
enzyme-encoding genes, 5835 metabolite species, and 10,601 reactions. Moving to Step 
C, RNA-seq expressions of heart cells infected with SARS-CoV-2 are retrieved from 
the NCBI database (https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE16 9241) 
to reconstruct models for HV and HT cells. These expression data have been collected 
from both non-COVID-19 donors and three patients infected with COVID-19 in the 
heart. Lastly, Step D uses statistical methods to analyze RNA-seq expressions of healthy 
and infected samples, facilitating the reconstruction of cell-specific GSMMs and gene–
protein reaction models for HV cells and HT cells, respectively.

The second framework comprises a series of iterative procedures within the AVTD 
algorithm. These procedures aim to identify potential antiviral targets, as depicted in 
Fig. 1E–N. The steps are outlined as follows: In Steps E and F, cell-specific models are 

Fig. 1 Flowchart of the computer‑aided platform developed in this study for identifying potential 
therapeutic antiviral targets for combating SARS‑CoV‑2
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used to establish constraint-based models for the HV treatment (referred to as the TR 
model) and the perturbed HT model (referred to as the PH model), respectively. Mov-
ing to Steps G and H, the distributions of fluxes and metabolite-flow rates (referred to as 
metabolic patterns) are obtained for each antiviral candidate. This is achieved through 
the corresponding FBA and UFD problems conducted for the TR model and PH model. 
In Steps I and J, the distributions of fluxes and metabolite-flow rates (referred to as 
metabolic templates) for the HV model and HT model are obtained. These templates 
are derived from clinical data if available; otherwise, they are computed by performing 
FBA and solving UFD problems without considering antiviral target regulation. Step 
K involves the use of metabolic patterns and templates to assess multiobjective fuzzy 
membership functions. These functions are then transformed into a decision-making 
problem aimed at maximizing decision fitness (ηD). In Step L, the fitness value for each 
antiviral candidate is used to determine which candidates have achieved a satisfactory 
level. Proceeding to Step M, if the decision criterion is unsatisfactory, a subsequent set of 
antiviral candidates is generated using a nested hybrid differential evolution algorithm.

Viral biomass reaction

A viral biomass reaction (VBR) is a pseudo-reaction that mimics the growth rate of virus 
particles by utilizing nucleotides, amino acids, and lipids. However, due to incomplete 
understanding, the stoichiometric details of lipids are often omitted in VBRs [28, 34–
36]. The determination of stoichiometric coefficients for protein and nucleotide polym-
erization in a VBR involves a seven-step process that includes protein and nucleotide 
condensation polymerization, as well as the energy requirements of these reactions. 
These steps were thoroughly outlined by [28, 34–36]. This study introduced the mass 
ratio of lipids in the viral biomass to that in its host cell to estimate the stoichiometric 
coefficients of viral lipids. Furthermore, we have also refined the stoichiometric calcula-
tion to accommodate the water produced during nucleotide and protein condensation 
polymerization.

The protein sequence of the SARS-CoV-2 alpha (NC_045512) variant, which can be 
downloaded from the NCBI database (https:// www. ncbi. nlm. nih. gov/ nucco re/), can be 
used to generate the stoichiometric coefficients of protein and nucleotide polymeriza-
tion in the VBR of this variant. Following procedures discussed in [28, 34–36], the gene 
and protein sequences of the SARS-CoV-2 are used to build the stoichiometric coeffi-
cients of RNA nucleotide and protein polymerization in the VBR. In this study, the ratio 
of the mass of lipids in the viral biomass to that in its host cell was used to estimate the 
stoichiometric coefficients of viral lipids in the VBR. The biomass reactions for HV and 
HT cells (cells infected with SARS-CoV-2 and healthy cells, respectively) are respectively 
expression as follows:

where α is a mass ratio of lipids in the VBR relative to that of the host cells as follows:
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where SHV /HT
Ni

, S
HV /HT
Aj

, ..., S
HV /HT
PPi and S

HV /HT
H+  are the stoichiometric coefficients of 

nucleotides (Ni), amino acids (Aj), water  (H2O), adenosine triphosphate (ATP), adeno-
sine diphosphate (ADP), orthophosphate (Pi), diphosphate (PPi) and proton  (H+) in the 
VBR of HV cells and the biomass reaction of a generic human GSMM of HT cells, 
respectively. The stoichiometric coefficients for each metabolite in the VBR can be cal-
culated as follows:

The total numbers of moles of the ith nucleotide, the jth amino acid, and PPi ( MTot
Ni

 , 
MTot

Aj
 and MTot

PPi  , respectively) are calculated from the corresponding molecule counts in 

the gene and protein sequences as follows:

where the frequency FG
Ni

 in the viral genome and the frequency FR
Ni

 in the replication 
intermediate of each nucleotide Ni are calculated using the viral gene sequence retrieved 
from the NCBI database (https:// www. ncbi. nlm. nih. gov/ nucco re/); CG, CSPk and CNPk are 
the copy numbers of the gene sequence, the kth structural protein and the kth nonstruc-
tural protein, respectively. The frequency FSPk

Aj
 of amino acid Aj in the kth structural pro-

tein and the frequency FNPk
Aj

 of amino acid Aj in the kth non-structural protein are 

calculated using the viral protein sequence obtained from the NCBI database. The stoi-
chiometric coefficient of water molecules is considered in protein polymerization [28, 
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33] is to account from the hydrolysis of ATP. However, water produces in the formation 
of the peptide bond during protein polymerization and dehydration during nucleotide 
polymerization. Wang et  al. [35] revised the stoichiometric calculation to address the 
water produced during the formation of this dehydration. Therefore, when Eq.  (3) is 
used to obtain the stoichiometric coefficient of water, 1  M is deducted from the total 
number of moles of water produced during ATP hydrolysis and dehydration of nucleo-
tide polymerization.

The biomass reaction of HT cells (Eq. (2)) is used to calculate the mass ratio between the 
lipids and the biomass of HT cells as follows:

Here, Ni, Aj,…, and H+ denote as their corresponding molecular weights. Similarly, the 
mass ratio between the lipids and the viral biomass of HV cells is computed, and this ratio is 
assumed to be identical for HT and HV cells. Therefore, α is calculated as follows:

In this study, the generic VBR in Eq. (1) was integrated with the generic human metabolic 
network Recon3D to reconstruct cell-specific GSMMs for HV cells and HT cells, respec-
tively. The reconstructed models were then used for iteratively identifying antiviral targets 
on the developed AVTD platform.

AVTD framework

We extended the AVTD framework developed in [35] to consider fuzzy dissimilarity objec-
tives for evaluating the metabolic patterns of treated HV cells (denoted as TR cells) and 
perturbed HT cells (denoted as PH cells) with respect to those of HV cells. The AVTD 
framework described in Table 1 is aimed at mimicking a wet-lab experiment to identify tar-
gets for treatment. The four goals in the outer optimization problem are explained in the 
following part of this section. The first goal is to achieve the fuzzy minimization ( ̃min ) of 
the VBGR for TR cells, and this goal is expressed as follows:
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The second goal is to achieve the fuzzy maximization ( ̃max ) of the ATP production rate 
for TR and PH cells, and this goal is expressed as follows:

The third goal is to evaluate the fuzzy similarity ( s̃imilar ) between the fluxes (vj) and 
metabolite flow rates (rm) of TR and PH cells and those of the HT template; this goal is 
expressed as follows:

The fourth goal is to evaluate fuzzy dissimilarity ( ˜dissimilar ) between the fluxes 
and metabolite flow rates of TR and PH cells and those of the HV template; this goal is 
expressed as follows  

In Eqs. (8)–(10), the decision variable z represents the gene-encoding enzyme 
determined by a nested hybrid differential evolution (NHDE) algorithm (Additional 
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Table 1 Hierarchical optimization framework based on four objectives for AVTD

The source code for the AVTD algorithm and the cell-specific GSMMs is implemented using the General Algebraic Modeling 
System (GAMS, https:// www. gams. com/) and can be found at http:// doi. org/ 10. 5281/ zenodo. 81035 59

The objectives of the outer optimization problem are as follows:

1 To eliminate the viral biomass growth rate (VBGR) of HV 
cells as much as possible under the target treatment

2 To maximize the ATP production rate for treated HV cells 
and perturbed HT cells during treatment

3 To evaluate the fuzzy similarity between the metabolic 
patterns of treated HV cells and perturbed HT cells and 
those of HT cells

4 To evaluate the fuzzy dissimilarity between the meta‑
bolic patterns of treated HV cells and perturbed HT cells 
and those of HV cells

The objectives of the inner optimization problem, which is subject to a constraint‑based model, are as follows:

1 To conduct FBA and solve UFD problems for the treated 
HV cells

2 To conduct FBA and solve UFD problems for the per‑
turbed HT cells

https://www.gams.com/
http://doi.org/10.5281/zenodo.8103559
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file  1). The fluxes ( vTR/PHj  ) and metabolite flow rates ( rTR/PHm  ) are to form the met-
abolic patterns of the TR and PH cells, and to obtain from the inner optimization 
problem by using each antiviral enzyme determined by the NHDE algorithm. The 
fluxes ( vHT/HV

j  ) and metabolite flow rates ( rHT/HV
m  ) of the HT and HV cell templates 

can be obtained from clinical experimental data (if available); however, genome-scale 
clinical data are currently unavailable. These templates can be obtained from HV and 
HT models, respectively, as standards for computing the inner optimization problems 
without regulation of an enzyme.

The flow rate of the mth metabolite of the TR and PH cells (Eqs. (9) and (10)) is 
computed as follows:

where Ωc represents the set of metabolite species located in various compartments of 
HT and HV cells and Nij is the stoichiometric coefficient of the ith metabolite in the 
jth reaction of a GSMM. The forward flux vf,j and backward flux vb,j of the jth reaction 
are calculated by applying FBA and UFD models in the inner optimization problem as 
follows:

where NHV and NHT are the stoichiometric matrices for the HV and HT model, respec-
tively. These matrices and the corresponding gene-protein-reaction (GPR) association 
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are reconstructed from Step A to Step D in Fig. 1. Moreover, vLBf /b,j and  vUBf /b,j are the posi-
tive lower bound (LB) and positive upper bound (UB), respectively, of the jth forward 
flux and jth backward flux, respectively. The regulated LB and UB, namely, vLB,TRf /b,i  and 
vUB,TRf /b,i  , respectively, depended on gene activation identified from the antiviral candidates 
generated by the NHDE algorithm [35, 43]. The regulation bounds based on GPR asso-
ciation can be expressed as follows:

where vbasalf ,i  and vbasalb,i  are the basal value of the ith forward and backward fluxes, respec-
tively, obtained from the HV and HT templates; ΩIZ denotes the set of reactions regu-
lated by isozymes identified using the GPR associations, and δ is the modulation 
parameter determined by the NHDE algorithm [35, 43]. The flux of a reaction catalyzed 
by isozymes remains around the basal level; thus, we set the flux ratio (ε) to 0.03 in the 
present study to restrict the flux value. The flux distributions and metabolite flow rates 
for the HV and HT cells can be used as HV and HT templates, respectively. These tem-
plates can be obtained by solving Eq. (12) without considering regulation of an enzyme.

In our previous study [35, 43], identical weighting factors (i.e., cHVk = cHTk = 1 ) 
were used for solving UFD problems. In the present study, the RNA-seq expressions 
for HV and HT cells were used to not only reconstruct cell-specific GSMMs but also 
to set the weighting factors cHVk  and cHTk  for UFD problems to obtain uniform flux 
distributions. The weighting factors depended on quartile confidence classification 
using the RNA-seq expression of each cell. The four types of confidence reactions 
are as follows:

(13)

Regulated bounds for zi − th active gene in the GPR association :

Up - regulation:
{
(1− δ)vbasalf ,i + δvUBf ,i ≤ vf ,i ≤ vUBf ,i

vLBb,i ≤ vb,i ≤ (1− δ)vbasalb,i + δvLBb,i ; zi ∈ �TR

Down - regulation:
{
vLBf ,i ≤ vf ,i ≤ (1− δ)vbasalf ,i + δvLBf ,i

(1− δ)vbasalb,i + δvUBb,i ≤ vb,i ≤ vUBb,i ; zi ∈ �TR\�IZ

{
(1− ε)vbasalf ,i ≤ vf ,i ≤ (1+ ε)vbasalf ,i

(1− ε)vbasalb,i ≤ vb,i ≤ (1+ ε)vbasalb,i ; zi ∈ �TR ∩�IZ

Knockout:
{
vf ,i = 0

vb,i = 0; zi ∈ �TR\�IZ

{
(1− ε)vbasalf ,i ≤ vf ,i ≤ (1+ ε)vbasalf ,i

(1− ε)vbasalb,i ≤ vb,i ≤ (1+ ε)vbasalb,i ; zi ∈ �TR ∩�IZ
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For a high confidence reaction, the smallest weighting factor is set to obtain a higher 
flux value in the UFD problem.

Maximizing decision‑making problem

The AVTD problem expressed in Eqs. (7)–(12) is a fuzzy multiobjective hierarchical 
optimization (FMHO) problem that can be transformed into a maximizing decision-
making (MDM) problem by using fuzzy set theory to derive Pareto solutions (Fig. 2). 
One-side linear membership functions (blue dashed lines in Fig.  2) are defined to 
attribute fuzzy minimization and maximization and these functions are expressed as 
follows:

(14)c
HV /HT
k =





1

4
, k ∈ high confidence

1

2
, k ∈ medium confidence

3

4
, k ∈ negativec confidence

1, k ∈ other confidence or non - gene - expression

Fig. 2 Transformation of an FMHO problem into an MDM problem by using fuzzy membership functions. 
The LB, UB and standard value (ST) are provide by a user. These values can be obtained from clinical data (if 
available) or can be estimated from HT and HV templates. One‑side linear membership functions are used 
to evaluate fuzzy minimization and maximization (dashed and dot‑dashed lines, respectively). Moreover, 
two‑side linear membership functions are used to evaluate fuzzy similarity and fuzzy dissimilarity (red and 
green lines, respectively)
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where FV represents the fluxes or metabolite flow rates computed using the TR or PH 
model. The LB and UB are obtained using the corresponding HV or HT template; that 
is, LB = ST/4 and UB = 4ST. The term ST denotes the standard value for the HV or HT 
template used in the present study.

Two-sided linear membership functions are used to attribute fuzzy similarity (red 
line in Fig. 2) and fuzzy dissimilarity (green line in Fig. 2). The fuzzy similarity grade is 
derived using the equation as follows:

The fuzzy similarity grade ηTR/PH ,HT
MD  is obtained by combining the left-hand-side and 

right-hand-side membership functions as follows:

The fuzzy dissimilarity grade is derived from the left-hand-side and right-hand side 
membership functions as follows:

(15)

ηmin =





1, if FV < LB

UB− FV

UB− LB
, if LB ≤ FV ≤ UB

0, if FV > UB

ηmax =





0, if FV < LB

FV − LB

UB− LB
, if LB ≤ FV ≤ UB

1, if FV > UB

(16)

Left - hand side membership function:

η
TR/PH ,HT
L =





0, if FV < LB

FV − LB

ST − LB
, if LB ≤ FV ≤ ST

1, if FV = ST

Right - hand side membership function:

η
TR/PH ,HT
R =





1, if FV = ST

UB− FV

UB− ST
, if ST ≤ FV ≤ UB

0, if FV > UB

(17)η
TR/PH ,HT
MD = max

{
min

{
η
TR/PH ,HT
L , η

TR/PH ,HT
R , 1

}
, 0
}

(18)

Left - hand side membership function:

η
TR/PH ,HV
L =





1, if FV < LB

ST − FV

ST − LB
, if LB ≤ FV ≤ ST

0, if FV = ST

Right - hand side membership function:

η
TR/PH ,HV
R =





0, if FV = ST

FV − ST

UB− ST
, if ST ≤ FV ≤ UB

1, if FV > UB
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The fuzzy dissimilarity grade ηTR/PH ,HV
MD  is obtained as follows:

Equations  (17) and (19) indicate that fuzzy dissimilarity is a complement of fuzzy 
similarity.

The AVTD problem is therefore transformed into an MDM problem by applying the 
membership functions as follows:

where the decision objective ηD is a hierarchical criterion that the cell viability grade ηTRCV  
of the TR model is used to achieve the first priority in the MDM problem. The cell viabil-
ity grade ηPHCV  of the PH model and metabolic deviation grade ηTPMD of the TR and PH 
models relative to their corresponding templates are considered the second priority of 
the decision objective. Membership grades for the MDM problem are defined as follows:

The membership grades ηTRVBR,η
TR
ATP and ηPHCV  in Eqs. (21) and (22) are obtained by using 

the one-side linear membership functions expressed in Eq. (15). The membership grades 
ηTRHTMD  and ηPHHTMD  are used to evaluate fuzzy similarity between the metabolic devia-
tion for the metabolic patterns of TR and PH models and the HT template. The fluxes 
and metabolite flow rates of TR and PH models are used to compute the corresponding 
metabolic deviation grades according to the two-sided membership functions (Fig.  2) 
expressed in Eqs. (16) and (17). These grades are then used to compute overall metabolic 
deviation grades of the fuzzy similarity grades ( ηTRHTMD and ηPHHTMD  ). Similarly, the fuzzy 
dissimilarity grades ( ηTRHVMD and ηPHHVMD  ) between the metabolic deviation for the meta-
bolic patterns of TR and PH models and the HV template are computed according to the 
two-sided membership functions (Fig. 2) in Eqs. (18) and (19), respectively.

The optimality and limitation of the transformation between the FMHO and MDM 
problems in Fig. 2 have been proved in a previous study [43]. According to the optimality 
theory, a Pareto solution of the FMHO problem can be obtained from the transformed 
MDM problem. The decision objective ηD (Eq.  (20)) of the MDM problem is a hierar-
chical criterion. This criterion states that the cell viability grade ηTRCV  in Eq.  (20) is the 
first priority in the MDM problem. Moreover, if the cell viability grade ηPHCV  or metabolic 

(19)η
TR/PH ,HV
MD = min

{
max

{
η
TR/PH ,HV
L , η

TR/PH ,HV
R , 0

}
, 1
}

(20)





max
z

ηD = max
z

�
ηTRCV +min

�
ηTRCV , η

PH
CV , η

TP
MD

���
2

subject to inner optimization problems

1. FBA and UFD problems for treated HV cells

2. FBA and UFD problems for perturbed HT cells

(21)ηTRCV =

((
ηTRVBGR + ηTRATP

)/
2+min

{
ηTRVBGR, η

TR
ATP

})/
2

(22)ηPHCV = ηPHATP

(23)

ηTPMD =
1

2

((
ηTRHTMD + ηPHHTMD + ηTRHVMD + ηPHHVMD

)

4
+min

{
ηTRHTMD , ηPHHTMD , ηTRHVMD , ηPHHVMD

})
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deviation grade ηTPMD is less than ηTRCV  , then one of the lowest grades in the set { ηTRCV  , ηPHCV  , 
ηTPMD } becomes the second priority for decision-making. The MDM problem is a bilevel 
mixed-integer linear optimization problem and a high-dimensional NP-hard problem 
that cannot be solved using available commercial programs [44, 45]. We used the NHDE 
algorithm to solve the aforementioned problem in this study. The NHDE algorithm is a 
parallel direct search algorithm that is an extended version of the hybrid differential evo-
lution [46]. The implementation of the framework in this study are detailed in Additional 
file 1.

Results and discussions
Reconstructed cell‑specific models

The human metabolic network Recon3D was downloaded from the Virtual Metabolic 
Human (http:// www. vmh. life) and integrated with the established VBR to form a uni-
versal network. The integrated network consisted of 5835 metabolites, 10,601 reactions, 
2248 genes and 2426 gene-encoding enzymes. Some of the enzymes in the network reg-
ulated the same reactions. The pruning procedures discussed in our previous study [47] 
were used to delete the duplicate enzymes in the network to avoid the use of excessive 
computational steps when solving the MDM problem. The number of feasible enzymes 
after the deletion of duplicate enzymes was 1093. Figure 3 illustrates the numbers of spe-
cies, reactions, genes and encoded enzymes in the reconstructed cell-specific GSMMs 
for HT and HV cells. The models are described in Additional files 2 and 3. As indicated 
by the overlapping regions in Fig. 3, the aforementioned models shared numerous simi-
larities in terms of species, reactions, genes and enzymes.

Single antiviral targets

We used Dulbecco’s modified eagle medium (DMEM) (Additional file  4) and set 50 
uptake reactions in DMEM as reversible exchangeable reactions in our computations. 
Moreover, secretion reactions were set as irreversible reactions. The NHDE algorithm 
[35, 43] was used to solve the MDM problem expressed in Eq. (20) to discover a set of 

Fig. 3 Comparison of metabolic network data of the HV and HT models reconstructed using the CORDA 
algorithm. The numbers listed in the overlapping regions denote the number of identical species, reactions, 
genes, enzymes, and feasible enzymes in the HV and HT models

http://www.vmh.life
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optimal antiviral enzymes. The algorithm was run several times to identify 24 one-tar-
get enzymes (Table 2) for downregulation from 1092 candidate enzymes. According to 
GPR association of the Recon3D model, the identified enzymes, GMPR2, MGLL and 
PCYT1A in Table 2 are the reprehensive of duplicate enzymes in the Recon3D model. 
The complex enzymes HADH* and ECHS1* comprise three genes each; HADH* con-
sists of the genes HADHA, EHHADH, and HADH, and ECHS1* consists of HADHA, 
ECHS1, and EHHADH. Consequently, these identified enzymes were encoded using 26 
genes. The STRING (https:// string- db. org/) and GeneCards (https:// www. genec ards. 
org/) databases were used to classify the protein–protein interaction (PPI) networks 
encoded by these 26 genes into six classes (Fig. 4A). The first class comprised five genes 
involved in fatty acid metabolism, and five genes involved in amino acid metabolism. 
The genes, HADH, MUT and EHHADH overlapped in both pathways. The second class 
comprised six genes involved in cholesterol biosynthesis; the third class comprised 
five genes involved in glycerophospholipid biosynthesis; the fourth class comprised 
four genes involved in metabolism of nucleotides; the fifth class comprised two genes 
involved in triglyceride metabolism; and the sixth class contained one gene involved in 
the synthesis of UDP-N-acetyl-glucosamine. We additionally examined DrugBank [48] 
to assess the number of drugs that have been approved for the treatment of human 

Fig. 4 PPIs of the identified antiviral genes in various uptake media. A DMEM, B Ham’s medium, C the 
DMEM + cholesterol medium, and D the Ham − cholesterol medium

https://string-db.org/
https://www.genecards.org/
https://www.genecards.org/
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diseases using the enzymes identified in Table 2. These drugs represent potential can-
didates for drug repurposing to treat SARS-CoV-2 infection in the heart. Additionally, 
some of the identified enzymes are not available from DrugBank. These enzymes could 
be potential candidates for the development of new drugs for treatment.

Six target enzymes, namely NME4, MMUT, PLD2, GOT2, HADH, and CRLS1, among 
the identified 24 targets formed a Pareto front on the basis of cell viability grades and 
metabolic deviation grades (Table 2). NME4 encoded for nucleoside diphosphate kinase 
D was one of identified targets in the Pareto front (Table  2) in the computation. The 
downregulation of NME4 can reduce the viral biomass growth rate by 98.5% and pro-
duce a maximum ATP production rate of 38  mmol/gDW/h for TR cells. Therefore, 
the cell viability grade of 0.989 was obtained through Eq.  (21) for the treatment with 
NME4. NME4 catalyzes the transfer of phosphate groups between nucleoside diphos-
phates, such as ADP and GDP, and nucleoside triphosphates, such as ATP and GTP. 
Studies have reported that the dysregulation of NME4 expression enables the treatment 
of various diseases, including apoptosis, inflammatory reactions, cardiolipin signaling, 
and mitophagy. Understanding regarding the regulation of NME4 might provide new 
insights into the development of targeted therapies for different diseases [49, 50]. Fur-
thermore, MMUT encoded for methylmalonyl-CoA mutase achieved identical cell via-
bility to NME4. MMUT is involved in the metabolism of branched-chain amino acids 
and odd-chain fatty acids. The loss of MMUT function results in the accumulation of 
toxic metabolites, such as methylmalonic acid, propionic acid, and 2-methylcitric acid 
[51], which can lead to serious side effects. We used the metabolic patterns of TR and 
PH cells treated using NME4 and MMUT to evaluate the metabolic deviation grades 
of NME4 and MMUT, and the same metabolic deviation grade of 0.289 was achieved 
for these targets. This value was less than those obtained for the other identified targets 
(Table 2) and is consistent with observations from the literature [49–51]. The metabolic 
deviation grade increased to > 0.622 when using the targets from CRLS1 to PCYT1A in 
Table 2; however, the corresponding cell viability grade decreased to 0.25.

Nutrient effects

We also used Ham’s medium as a nutrient, and the 65 uptake reactions (Additional file 4) 
in this medium to identify antiviral targets for treating heart cells infected with SARS-
CoV-2. The cell viability and metabolic deviation grades obtained using Ham’s medium 
were relatively similar to those obtained using DMEM (Table 2). The PPI network of the 
identified genes were illustrated in Fig. 4B. A comparison of Fig. 4A, B indicates that four 
enzymes involved in glycolysis reduced the viral biomass growth rate in Ham’ medium; 
however, the enzymes involved in cholesterol biosynthesis were unable to reduce this 
rate (Table 2) and thus did not connect with the identified genes (Fig. 4B).

A comparison of the uptake reactions for DMEM and Ham’s medium revealed that no 
cholesterol uptake reaction occurred when DMEM was used. We used two additional 
media for examining the nutrient uptake: DMEM in which a cholesterol uptake reac-
tion occurred (denoted as DMEM + cholesterol) and Ham’s medium in which a choles-
terol uptake reaction did not occur (denoted as Ham − cholesterol). These media were 
used in the AVTD platform to identify antiviral targets to investigate the relationships 
between viral biomass growth and different nutrient components. The computational 



Page 18 of 25Chu and Wang  BMC Bioinformatics          (2023) 24:364 

Ta
bl

e 
3 

D
ow

nr
eg

ul
at

io
n 

of
 i

de
nt

ifi
ed

 o
ne

‑t
ar

ge
t 

en
zy

m
es

 f
or

 r
ed

uc
in

g 
th

e 
vi

ra
l 

bi
om

as
s 

gr
ow

th
 r

at
e 

in
 D

M
EM

 +
 c

ho
le

st
er

ol
, 

w
hi

ch
 r

ef
er

s 
to

 D
M

EM
 w

ith
 a

n 
ad

di
tio

na
l 

ch
ol

es
te

ro
l u

pt
ak

e 
re

ac
tio

n,
 a

nd
 H

am
 −

 c
ho

le
st

er
ol

, w
hi

ch
 re

fe
rs

 to
 H

am
’s 

m
ed

iu
m

 w
ith

ou
t a

 c
ho

le
st

er
ol

 u
pt

ak
e 

re
ac

tio
n

En
zy

m
e

D
M

EM
 +

 ch
ol

es
te

ro
l

H
A

M
—

ch
ol

es
te

ro
l

M
et

ab
ol

ic
 p

at
hw

ay
N

o.
 d

ru
gs

η
T
R

C
V

η
T
P

M
D

VB
G

R
v A

TP
η
T
R

C
V

η
T
P

M
D

VB
G

R
v A

TP

N
M

E4
0.

99
4

0.
29

9
0.

01
3

38
0.

90
5

0.
30

4
0.

19
0

38
Bi

os
yn

th
es

is
 o

f p
yr

im
id

in
e 

de
ox

yr
ib

on
uc

le
ot

id
es

 fr
om

 C
TP

23

M
M

U
T

0.
81

9
0.

28
7

0.
36

3
38

0.
94

2
0.

27
8

0.
11

7
38

D
is

ea
se

s 
re

su
lti

ng
 fr

om
 m

ito
ch

on
dr

ia
l b

et
a 

ox
id

at
io

n
2

PL
D

2
0.

99
3

0.
31

6
0.

01
3

38
0.

90
2

0.
33

3
0.

19
5

38
Ro

le
 o

f p
ho

sp
ho

lip
id

s 
in

 p
ha

go
cy

to
si

s
2

PT
D

SS
1

0.
97

5
0.

29
7

0.
05

0
38

0.
95

3
0.

29
1

0.
09

4
38

G
ly

ce
ro

ph
os

ph
ol

ip
id

 b
io

sy
nt

he
si

s
1

G
O

T2
0.

99
5

0.
27

8
0.

01
1

38
0.

92
6

0.
28

1
0.

17
4

38
A

la
ni

ne
 a

nd
 a

sp
ar

ta
te

 m
et

ab
ol

is
m

N
A

G
U

K1
0.

93
5

0.
28

7
0.

13
0

38
0.

81
2

0.
29

8
0.

37
6

38
A

ba
ca

vi
r p

at
hw

ay
3

G
M

PR
2♣

0.
99

8
0.

31
1

0.
00

3
38

1.
0

0.
38

6
0

38
N

uc
le

ot
id

e 
sa

lv
ag

e
1

H
IB

A
D

H
0.

84
9

0.
29

8
0.

30
1

38
0.

97
3

0.
28

2
0.

05
4

38
Le

uc
in

e,
 is

ol
eu

ci
ne

 a
nd

 v
al

in
e 

m
et

ab
ol

is
m

1

RE
N

BP
0.

96
9

0.
32

1
0.

06
2

38
0.

93
4

0.
30

3
0.

13
2

38
Sy

nt
he

si
s 

of
 s

ub
st

ra
te

s 
in

 N
‑g

ly
ca

n 
bi

os
yn

th
es

is
1

D
C

K
0.

74
7

0.
30

4
0.

50
7

38
0.

92
1

0.
31

6
0.

15
8

38
G

em
ci

ta
bi

ne
 p

at
hw

ay
10

FH
0.

79
6

0.
27

5
0.

40
9

38
0.

93
4

0.
26

7
0.

13
2

38
TC

A
 c

yc
le

 in
 s

en
es

ce
nc

e
4

H
A

D
H

*
0.

98
4

0.
39

5
0.

03
3

38
0.

25
0.

35
7

1.
5

38
Be

ta
 o

xi
da

tio
n 

of
 fa

tt
y 

ac
id

s
4

EC
H

S1
*

0.
91

7
0.

39
2

0.
16

5
38

0.
92

9
0.

37
3

0.
14

3
38

Be
ta

 o
xi

da
tio

n 
of

 fa
tt

y 
ac

id
s

5

C
RL

S1
0.

25
0.

65
5

0
0.

00
1

0.
25

0.
68

6
0

0.
00

1
M

et
ab

ol
is

m
 o

f g
ly

ce
ro

lip
id

s 
an

d 
gl

yc
er

op
ho

sp
ho

lip
id

s
N

A

M
G

LL
♣

0.
25

0.
63

5
0

0.
00

1
0.

25
0.

68
1

0
0.

00
1

Tr
ig

ly
ce

rid
e 

m
et

ab
ol

is
m

N
A

LS
S

0.
02

3
0.

29
8

1.
5

3.
45

8
0.

25
0.

64
5

0
0.

00
1

C
ho

le
st

er
ol

 b
io

sy
nt

he
si

s
2

SQ
LE

0.
02

3
0.

29
8

1.
5

3.
45

8
0.

25
0.

64
5

0
0.

00
1

C
ho

le
st

er
ol

 b
io

sy
nt

he
si

s
4

G
K

0.
25

0.
65

0
3.

45
8

0.
25

0.
65

8
0

0.
00

1
G

ly
ce

ro
l d

eg
ra

da
tio

n
N

A

M
VK

0.
02

3
0.

30
2

1.
5

3.
45

8
0.

25
0.

66
0

0
0.

00
1

C
ho

le
st

er
ol

 b
io

sy
nt

he
si

s
1

M
VD

0.
02

3
0.

30
2

1.
5

3.
45

8
0.

25
0.

66
0

0
0.

00
1

C
ho

le
st

er
ol

 b
io

sy
nt

he
si

s
N

A

PM
VK

0.
02

3
0.

30
2

1.
5

3.
45

8
0.

25
0.

66
0

0
0.

00
1

C
ho

le
st

er
ol

 b
io

sy
nt

he
si

s
N

A

PG
S1

0.
00

2
0.

26
9

1.
5

0.
33

4
0.

25
0.

64
3

0
0.

00
1

G
ly

ce
ro

ph
os

ph
ol

ip
id

 b
io

sy
nt

he
tic

 p
at

hw
ay

N
A

SC
5D

0.
02

3
0.

29
7

1.
5

3.
45

8
0.

25
0.

63
9

0
0.

00
1

C
ho

le
st

er
ol

 b
io

sy
nt

he
si

s
N

A



Page 19 of 25Chu and Wang  BMC Bioinformatics          (2023) 24:364  

Th
e 

sy
m

bo
l ♣

 in
di

ca
te

s 
a 

du
pl

ic
at

e 
en

zy
m

e.
 T

he
 te

rm
s η

T
R

C
V

 is
 th

e 
ce

ll 
vi

ab
ili

ty
 g

ra
de

 fo
r t

re
at

ed
 H

V 
ce

lls
 a

nd
 η
T
P

M
D

 is
 th

e 
m

et
ab

ol
ic

 d
ev

ia
tio

n 
gr

ad
e 

to
 e

va
lu

at
e 

fu
zz

y 
si

m
ila

rit
y 

an
d 

fu
zz

y 
di

ss
im

ila
rit

y 
of

 T
R 

an
d 

PH
 c

el
ls

 
re

la
tiv

e 
to

 th
ei

r H
V 

an
d 

H
T 

te
m

pl
at

es
, r

es
pe

ct
iv

el
y.

 V
BG

R 
an

d 
v AT

P r
ep

re
se

nt
 v

ira
l b

io
m

as
s 

gr
ow

th
 ra

te
 a

nd
 A

TP
 p

ro
du

ct
io

n 
ra

te
 o

f t
re

at
ed

 H
V 

ce
lls

. N
o.

 D
ru

gs
 d

en
ot

es
 th

e 
nu

m
be

r o
f d

ru
gs

 re
tr

ie
ve

d 
fr

om
 D

ru
gB

an
k 

(h
tt

ps
://

 
go

. d
ru

gb
 an

k.
 co

m
/)

 th
at

 m
od

ul
at

e 
ea

ch
 g

en
e,

 a
nd

 N
A

 in
di

ca
te

s 
as

 n
ot

 a
va

ila
bl

e 
fr

om
 D

ru
gB

an
k.

En
zy

m
e

D
M

EM
 +

 ch
ol

es
te

ro
l

H
A

M
—

ch
ol

es
te

ro
l

M
et

ab
ol

ic
 p

at
hw

ay
N

o.
 d

ru
gs

η
T
R

C
V

η
T
P

M
D

VB
G

R
v A

TP
η
T
R

C
V

η
T
P

M
D

VB
G

R
v A

TP

PC
YT

1A
♣

0.
25

0.
61

3
0

0.
00

1
0.

25
0.

61
8

0
0.

00
1

A
ce

ty
lc

ho
lin

e 
sy

nt
he

si
s

3

PG
K1

♣
0.

00
2

0.
26

9
1.

5
0.

33
4

0.
90

5
0.

38
7

0.
19

0
38

G
ly

co
ly

si
s 

in
 s

en
es

ce
nc

e
5

BP
G

M
♣

–
–

–
–

0.
90

5
0.

37
8

0.
19

0
38

G
ly

co
ly

si
s

N
A

G
A

PD
H
♣

–
–

–
–

0.
90

5
0.

40
5

0.
19

0
38

G
ly

co
ly

si
s

9

EN
O

1♣
–

–
–

–
0.

90
5

0.
37

9
0.

19
0

38
G

ly
co

ly
si

s
6

Ta
bl

e 
3 

(c
on

tin
ud

)

https://go.drugbank.com/
https://go.drugbank.com/


Page 20 of 25Chu and Wang  BMC Bioinformatics          (2023) 24:364 

results are presented in Table 3 and displayed in Fig. 4C, D. When the DMEM + cho-
lesterol medium was used, the antiviral enzymes involved in cholesterol biosynthesis 
did not reduce the viral biomass growth rate (Table 3 and Fig. 4C). However, when the 
Ham − cholesterol medium was used, the antiviral enzymes involved in cholesterol bio-
synthesis reduced the viral biomass growth rate. This finding reveals that the antiviral 
enzymes involved in cholesterol biosynthesis reduce the aforementioned rate if a choles-
terol uptake reaction is not induced in the adopted medium (Fig. 4A, C). However, these 
enzymes do not reduce the aforementioned rate when a cholesterol uptake reaction is 
induced in the medium (Fig. 4B, D).

The data in Tables 2 and 3 clearly show that enzymes such as LSS, MVK, MVD, and 
others, which play a role in cholesterol biosynthesis, can be strategically targeted to 
suppress VBGR. The extent of this suppression depends on whether the medium used 
involves cholesterol uptake. We extended our analysis by introducing RPMI and human 
plasma-like medium (HPLM) to further investigate this phenomenon. HPLM is a more 
modern cell culture medium that is formulated for enhanced physiological relevance 
compared to DMEM. Both RPMI and HPLM are cholesterol-free. The computational 
results are summarized in Additional files 5 and 6, which show that enzymes involved 
in cholesterol biosynthesis can be used to eliminate viral biomass growth (Additional 
file 5). In contrast, these enzymes are not effective when used with a medium that allows 
cholesterol uptake (Additional file 6).

Combination of antiviral targets

Drug target combinations can be used to increase therapeutic efficacy and reduce toxic-
ity [52]. However, the wet-lab approach for screening effective combinations is limited 
by the excessive number of potential target combinations. We developed a two-group 
strategy for selecting candidates in the NHDE algorithm implemented on the AVTD 
platform to identify two-target combinations. Such two-group candidate selection can 
reduce the computational burden of evolutionary optimization algorithms. The use 
of the selected candidate groups substantially reduced the computational time and 
decreased the search space size to approximately half a million possible two-target 
combinations. The first candidate group comprised the 24 one-target enzymes listed in 
Table 2, and the second group comprised the other candidate enzymes excluded from 
the first group. We identified many combinations using DMEM and Ham’s medium, as 
listed in Additional file 7. Table 4 presents some combinations with high cell viability and 
metabolic deviation grades from Additional file 7. Our computational results revealed 
that the cell viability and metabolic deviation grades for most two-target combinations 
were higher than those for their corresponding one-target enzymes and that each com-
bination contained at least one target in the first group.

In the aforementioned results, the enzymes in the GSMM used as the decision varia-
bles of the MDM problem and then identified antiviral enzymes according to the NHDE 
algorithm. We extended this algorithm to combine exchange reactions in the GSMM 
with candidate enzymes as decision variables to investigate whether the occurrence of 
an additional uptake reaction in DMEM and Ham’s medium can enhance treatment. The 
computational results (Additional file 7) revealed that some of the one-target enzymes 
participated in the additional uptake reaction to cause an increase in the cell viability 



Page 21 of 25Chu and Wang  BMC Bioinformatics          (2023) 24:364  

grade but a marginal decrease in the metabolic deviation grade. For example, CRLS1 
combined with the supplement of N (2)-Acetyl-L-Ornithine, that indicates the uptake 
reaction EX_acorn[e], could achieve the cell viability grade of one and metabolic devi-
ation grade of 0.641 (Table 4). The treatment using this two-target combination could 
improve the cell viability grade significantly compared with that of CRLS1 treatment 
only (Tables  2 and 3). Three enzymes involved in glycolysis, namely BPGM, GAPDH, 
and ENO1, were not identified as antiviral targets in DMEM with or without cholesterol 
uptake (Tables 2 and 3). However, when these three enzymes were combined with the 
supplement of L-cysteine (denoted as EX_cyc_L[e]), they achieved a cell viability grade 
of 0.873 and a metabolic deviation grade of < 0.415 (Table 4).

Conclusions
COVID-19 is an infectious disease resulting from the SARS-CoV-2 virus, with a com-
mon tendency to affect the lung. Nonetheless, limited research has delved into the meta-
bolic effects triggered by SARS-CoV-2 infection in the heart. There are no reports for 
utilizing constraint-based modeling approaches to identify potential antiviral targets for 
treating this ailment. In this study, we developed an antiviral target discovery platform 
to identify potential antiviral targets for treating heart cells infected with SARS-CoV-2. 
This platform involves the reconstruction of cell-specific genome-scale metabolic mod-
els within both the infected host-virus cells and their uninfected counterparts. These 
models are then seamlessly integrated into a fuzzy multi-objective hierarchical optimi-
zation framework.

Table 4 Combination of two targets identified by the developed AVTD platform

The combinations in blue were identified using candidates from the one-target enzymes listed in Table 2. The combinations 
in green were identified from the first and second groups of candidates listed in Table 2. The combinations in yellow were 
identified from the first group of candidates listed in Table 2 and the candidates for which additional uptake reactions 
occurred in DMEM. The complex enzymes HADH* and ECHS1* comprise three genes each; HADH* consists of HADHA, 
EHHADH, and HADH, and ECHS1* consists of HADHA, ECHS1, and EHHADH. The terms ηTR

CV
 is the cell viability grade for 

treated HV cells and ηTP
MD

 is the metabolic deviation grade to evaluate fuzzy similarity and fuzzy dissimilarity of TR and 
PH cells relative to their HV and HT templates, respectively. VBGR and vATP represent viral biomass growth rate and ATP 
production rate of treated HV cells.
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The gene and protein sequences of the SARS-CoV-2 alpha variant were used 
to build the protein and nucleotide polymerization in the VBR. Due to the lack of 
dynamic experimental data on viral envelopes, we introduced the ratio of lipid mass 
within a viral biomass compared to that within its host cell to estimate the stoichio-
metric coefficients of viral lipids. We incorporated the resulting VBR into Recon3D 
to form a universal network for reconstructing constraint-based models that estab-
lish the AVTD framework. We proposed fuzzy minimization and maximization to 
evaluate a treating metric for suppressing virus biomass growth and maintaining cell 
viability, and fuzzy similarity and fuzzy dissimilarity as assessment indices to evaluate 
metabolic perturbations for predicting side effects of each identified target. We pro-
posed the use of fuzzy minimization and maximization to evaluate a treating metric 
for suppressing virus biomass growth and maintaining cell viability. Additionally, we 
also proposed the use of fuzzy similarity and fuzzy dissimilarity as assessment indi-
ces to evaluate metabolic perturbations for predicting side effects of each identified 
target.

We identified a set of antiviral target enzymes using DMEM and Ham’s medium as 
nutrimental substrates, respectively. We found that six antiviral enzymes involved in 
cholesterol biosynthesis were unable to eliminate the VBGR for SARS-CoV-2 by using 
Ham’s medium, and three enzymes involved in glycolysis were not identified as antiviral 
targets by using DMEM. The AVTD algorithm was extended to combine nutrient uptake 
reactions and candidate encoding enzymes as decision variables to identify combinations 
of antiviral targets. The computational findings suggested that the enzymes involved in 
cholesterol biosynthesis were identifiable if a cell culture medium was cholesterol-free. 
In addition, the three glycolytic enzymes BPGM, GAPDH, and ENO1, combined with 
L-cysteine uptake in DMEM and DMEM + cholesterol, could suppress viral biomass 
growth and achieve an acceptable metabolic deviation grade. The findings reveal that 
the identifiability of an enzyme may depend on whether it is used in conjunction with 
a suitable uptake medium. Similarly, CRLS1 in combination with the supplement N(2)-
Acetyl-L-Ornithine could achieve a cell viability grade of 1 and a metabolic deviation 
grade of 0.641. Notably, the cell viability and metabolic deviation grades for most of the 
identified two-target combinations were higher than those for the corresponding one-
target enzymes, and each combination contained at least one identified target.
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