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Abstract 

Background:  Protein methylation, a post-translational modification, is crucial in regu-
lating various cellular functions. Arginine methylation is required to understand crucial 
biochemical activities and biological functions, like gene regulation, signal transduc-
tion, etc. However, some experimental methods, including Chip–Chip, mass spec-
trometry, and methylation-specific antibodies, exist for the prediction of methylated 
proteins. These experimental methods are expensive and tedious. As a result, computa-
tional methods based on machine learning play an efficient role in predicting arginine 
methylation sites.

Results:  In this research, a novel method called PRMxAI has been proposed to predict 
arginine methylation sites. The proposed PRMxAI extract sequence-based features, 
such as dipeptide composition, physicochemical properties, amino acid composition, 
and information theory-based features (Arimoto, Havrda-Charvat, Renyi, and Shannon 
entropy), to represent the protein sequences into numerical format. Various machine 
learning algorithms are implemented to select the better classifier, such as Decision 
trees, Naive Bayes, Random Forest, Support vector machines, and K-nearest neighbors. 
The random forest algorithm is selected as the underlying classifier for the PRMxAI 
model. The performance of PRMxAI is evaluated by employing 10-fold cross-validation, 
and it yields 87.17% and 90.40% accuracy on mono-methylarginine and di-methylargi-
nine data sets, respectively. This research also examines the impact of various features 
on both data sets using explainable artificial intelligence.

Conclusions:  The proposed PRMxAI shows the effectiveness of the features for pre-
dicting arginine methylation sites. Additionally, the SHapley Additive exPlanation 
method is used to interpret the predictive mechanism of the proposed model. The 
results indicate that the proposed PRMxAI model outperforms other state-of-the-art 
predictors.
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Background
Protein methylation is a reversible procedure of post-translational modifications (PTMs) 
of proteins, and it may happen on arginine, proline, lysine, histidine, and carboxyl 
groups. Proteins play a significant role in an organism’s life and cellular processes. After 
the protein synthesis, further modifications can be needed to acquire functional and 
structural variation in the proteome. These modifications are known as PTMs. Protein 
methylation received less attention than other PTMs due to insufficient data [1, 2]. In 
protein methylation, proteins are enzymatically altered by adding methyl groups. Protein 
arginine methyltransferases (PRMT) carried out these additions by transferring a methyl 
group from S-adenosylmethionine. The other types of PTMs are phosphorylation [3], 
ubiquitination [4], sumoylation [5], acetylation [6], and N6-methyladenosine (m6 A) [7]. 
PTMs are necessary for driving various cellular processes, including gene transcription, 
RNA processing, signal transduction, regulation, and signaling pathways [8–10].

Recent research on methylation suggests that regulative enzymes are responsible 
for various human disorders, including multiple sclerosis, rheumatoid arthritis, coro-
nary heart disease, neurodegenerative disorders, SARS virus, and cancer [11–14], due 
to their involvement in the regulation of gene expression. So, methylation sites should 
be recognized to comprehend the chemical structure of proteins better. Understanding 
the molecular mechanisms underlying protein methylation requires the capacity to rec-
ognize methylation sites. However, experimental techniques, including Chip–chip and 
mass spectrometry, are time-consuming and expensive [15–17]. As a result, computa-
tional methods based on artificial intelligence (AI) are needed to predict arginine meth-
ylation sites efficiently.

Protein methylation happens typically at the N-terminal side chain of arginine (R), 
which is the subject of this study due to their physicochemical and biological proper-
ties [18–20]. One or two methyl groups are attached to the nitrogen atom of arginine 
in the protein sequences during arginine methylation, as shown in Fig.  1 [21]. Three 
methylation forms are found in arginine: mono-methylarginine, asymmetric di-methy-
larginine, and symmetric di-methylarginine. It happens in glycine (G) and arginine (R) 
areas, impacting the interaction between proteins and structure. Arginine methylation 
is required in different cellular processes, such as cellular proliferation, genome stability, 
RNA processing, DNA repair, transcription regulation, signal transduction, and cancer 
[8, 22, 23].

Various artificial intelligence-based computational methods have been developed to 
recognize methylated sites in protein sequence data. These techniques deliver accurate, 
reliable, and faster calculations. Numerous other problems, such as protein classifica-
tion, protein-protein interaction, etc. involve using machine learning methods [24–28]. 
Daily et al. [29] devised a strategy using the supervised learning method-support vec-
tor machines (SVM) to identify methylation sites based upon specific characteristics 
that gather disorder information from protein sequences. Subsequently, Chen et al. [30] 
devised MeMo to predict methylation sites based on SVM and orthogonal binary feature 
descriptors. The disadvantage of previous predictors was that they used an orthogonal 
binary encoding scheme to represent the primary sequence information and needed to 
consider structural information around the methylated sites. To overcome this, Shien 
et al. [31] devised a model named MASA that combines structural characteristics, i.e., 
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secondary structure and accessible surface area, with sequence information. To further 
enhance the prediction quality, Qiu et al. [32] devised a model named iMethyl-PseAAC 
by integrating features, including sequential evolution, physicochemical, structural dis-
order knowledge, and amino acid composition, with SVM.

Furthermore, some researchers suggested extracting the primary sequence data 
using physicochemical properties, position weight amino acid composition, or sequen-
tial information [33, 34]. A sequence-based model called MePred-RF was proposed by 
Wei et  al. [35] using a random forest (RF) algorithm. However, their benchmark data 
set consists of only 185 arginine sites and 226 lysine sites. Kumar et al. [36] proposed a 
prediction model named PRmePRed for arginine methylation based on structural and 
physicochemical properties using SVM. An arginine methylation prediction method, 
CTD-RF, developed by Hou et al. [37] that integrates RF with distribution, composition, 
and transition features. Some of the researchers also used convolutional neural network 
(CNN) and long short-term memory (LSTM) deep learning algorithms for the predic-
tion of arginine methylation sites [38, 39].

Although the methods mentioned above have their own merits and have con-
tributed to the growth of this field, they also possess some limitations and need 
enhancement in one or more of the below aspects: (1) most existing methods need 

Fig. 1  Three different types of arginine methylation: mono-methylarginine, asymmetric di-methylarginine, 
and symmetric di-methylarginine [21]
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evolutionary, disorder, and structural information for extracting features, which is not 
always available. Producing this kind of information depends on third-party comput-
ing software; the output of different software may vary. (2) The data set used to train 
existing methods is less than the current methylation sites. The existing methods’ 
data set must be updated by including new experimentally verified data. (3) Further, 
improving the predictive power using more informative features. By focusing on the 
above issues, we proposed a model named PRMxAI to identify arginine methylation 
sites using sequence information and the RF classifier. The main contributions of this 
research are as follows:

•	 The proposed model PRMxAI exploits sequence-based features, including physico-
chemical properties (PP), dipeptide composition (DPC), information theory-based 
characteristics (ITB), and amino acid composition (AAC).

•	 The performance of different classifiers (RF, decision tree (DT), k-nearest neighbors 
(KNN), Naive Bayes (NB), and SVM) are shown to select the better classifier to pre-
dict protein methylation sites.

•	 This research finds the effect of various features, i.e., PP, DPC, AAC, and ITB, on the 
arginine methylation data set.

•	 The proposed model interpretation is also shown using explainable AI (XAI).

The complete architecture of the proposed model is shown in Fig. 2.

Fig. 2  Architecture of the proposed model to predict arginine methylated sites. a Data collection, removal 
of redundant sequences, and data balancing using under-sampling. b Feature extraction including the 
dipeptide composition, physicochemical properties, amino acid composition, and information theory-based 
features. c Build a model for different machine learning algorithms. d Model evaluation using various 
evaluation parameters based on 10-fold cross-validation. e Model interpretation of model outputs using 
SHAP algorithm
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Results
This section found the performance of various classifiers to select the better-perform-
ing classifier to predict mono-methylarginine and di-methylarginine sites in protein 
sequences.

Performance of various classifiers

The feature representation includes ITB, DPC, PP, and AAC to find the performance 
of various classifiers. These features are essential in various ways when extracting 
information from peptide sequences. The problem is utilizing supervised machine 
learning algorithms to find meaningful patterns from the training data due to the var-
ied significance of the extracted information. The widely used supervised machine 
learning algorithms are RF, NB, SVM, KNN, and DT. The various evaluation param-
eters, such as sensitivity (SEN), Matthew’s correlation coefficient (MCC), specificity 
(SP), and accuracy, are used to estimate the performance of various classifiers. The 
comparison of various classifiers for mono-methylarginine and di-methylarginine 
data sets are reported in Tables 1 and 2, respectively. Figure 3 demonstrates the pre-
dictive results of different algorithms to predict mono-methylarginine and di-methy-
larginine sites.

From Fig. 3, we notice that the RF outperforms other classifiers in accuracy, speci-
ficity, and sensitivity for predicting mono-methylarginine and di-methylarginine 
sites. Tables  1 and 2 show that the MCC is higher for the RF for predicting mono-
methylarginine and di-methylarginine sites. The receiver operating characteris-
tic (ROC) curve was shown to examine how well different classifiers performed. A 
ROC curve is plotted by drawing the actual positive rate versus the false positive rate.  
Figure 4a, b show the area under the ROC curve (AUC) for mono-methylarginine and 
di-methylarginine sites, respectively. The AUC for predicting mono-methylarginine 

Table 1  Performance comparison of the various classifiers for mono-methylarginine data set

Classifiers ACC (%) SP (%) SEN (%) MCC F1-score (%) AUC​

DT 79.73 79.77 79.69 0.59 79.84 0.78

SVM 84.51 87.69 81.81 0.69 85.10 0.93

KNN 74.78 75.82 73.82 0.49 75.27 0.82

NB 83.68 81.73 85.89 0.67 83.13 0.92

RF 87.17 87.58 86.76 0.74 87.14 0.95

Table 2  Performance comparison of the various classifiers for di-methylarginine data set

Classifiers ACC (%) SP (%) SEN (%) MCC F1-score (%) AUC​

DT 80.69 80.24 81.15 0.61 80.57 0.80

SVM 83.86 89.05 79.88 0.68 84.85 0.89

KNN 73.20 77.22 70.22 0.46 75.06 0.76

NB 85.02 85.16 84.87 0.70 84.40 0.93

RF 90.40 91.72 89.16 0.80 90.54 0.96
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and di-methylarginine sites is more significant when using the RF algorithm. There-
fore, the RF is the underlying classifier for predicting arginine methylated sites from 
primary sequences.

Proposed model performance

The performance of the PRMxAI has been evaluated for mono-methylarginine and di-
methylarginine data sets. The supervised learning algorithm RF is utilized to train the 
model after finding the features from amino acid sequences, and the learned model 
is then applied to generate predictions. The features used include DPC, PP, AAC, and 
ITB. A 434-dimensional vector characterizes each peptide sequence. We analyze the 

Fig. 3  Performance of the KNN, SVM, RF, NB, and DT classifiers on the mono-methylarginine and 
di-methylarginine data sets

Fig. 4  Area under ROC curve (AUC) for various classifiers a to predict mono-methylarginine sites. b to predict 
di-methylarginine sites
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performance of the PRMxAI employing 10-fold cross-validation. For the mono-methyl-
arginine data set, the proposed model yields 87.17% accuracy, 87.58% specificity, 86.76% 
sensitivity, and 0.74 MCC (see Table  3). However, for the di-methylarginine data set, 
the proposed model yields an accuracy of 90.40%, a specificity of 91.72%, a sensitivity 
of 89.16%, and an MCC of 0.80 (see Table 3). The other evaluation parameters, such as 
precision, f1-score, and AUC for both data sets, are shown in Fig. 5.

Furthermore, we also used a stratified loop repeating 10-fold cross-validation 50 times 
[40, 41] and then average performance is calculated. The average performance of the 
proposed model is shown in Table 4.

We also evaluated our proposed model on the imbalanced data set. The imbalanced 
data set consists of 1465 mono-methylarginine, 474 di-methylarginine, and 39980 nega-
tive samples. The number of negative samples is 27 times the number of mono-methylar-
ginine positive samples and 84 times the number of di-methylarginine positive samples. 
We used 70% of the data for training the model and 30% of the data for testing the pro-
posed model. The under-sampling technique is used to balance the training data. The 
testing results of the proposed model for imbalanced data are shown in Table 5. The pro-
posed model provides 85.84% accuracy, 85.94% specificity, 83.01% sensitivity, and 0.35 
MCC for the mono-methylarginine data set. However, for the di-methylarginine data 

Table 3  The performance of PRMxAI on the arginine data set

Data sets ACC (%) SP (%) SEN (%) MCC

Mono-methylarginine 87.17 87.58 86.76 0.74

Di-methylarginine 90.40 91.72 89.16 0.80

Fig. 5  Performance of the proposed model for the mono-methylarginine and di-methylarginine data sets

Table 4  The performance of PRMxAI on the arginine data set by repeating the 10-fold cross-
validation for 50 times

Data sets ACC (%) SP (%) SEN (%) MCC

Mono-methylarginine 84.27 84.81 83.74 0.69

Di-methylarginine 88.08 90.29 85.32 0.76
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set, the proposed model provides an accuracy of 88.75%, a sensitivity of 86.71%, a speci-
ficity of 88.78%, and an MCC of 0.26 (see Table 5). The MCC score is low because there 
is a vast imbalance in the data set, so the model becomes biased towards the majority 
class. For the imbalanced data set, the precision-recall curve is an important measure. 
Figure 6 shows the area under the precision-recall curve for the imbalanced data set.

Discussion
This section discusses the effect of multiple features on the arginine data set and com-
pares the performance of the PRMxAI against previous state-of-the-art models. This 
section also interprets the model outputs using the SHapley Additive exPlanation 
(SHAP) technique.

Impact of various features for arginine methylated data set

The impact of various factors on the arginine methylated sites has been analyzed in this 
subsection. The corresponding features are taken from each protein sequence under the 
experiment using the same training–testing procedures. To extract feature vectors for 
DPC, AAC, ITB, and PP, we used 400-dimensional, 20-dimensional, 4-dimensional, and 
10-dimensional feature vectors, respectively. In this research, eleven prediction models 
using DPC, PP, AAC, and ITB features are developed to analyze the impacts of different 
features. Tables 6 and 7 display the effects of the various features, i.e., DPC, PP, ITB, and 
AAC, on mono-methylarginine and di-methylarginine data sets, respectively.

Tables 6 and 7 show that the model trained using the feature AAC outperformed other 
models using ITB, DPC, and PP for both problems, i.e., mono-methylarginine and di-
methylarginine sites. However, the models proposed using a single feature will not be 
able to distinguish between methylation and non-methylated sites effectively. When the 

Table 5  The performance of PRMxAI on the imbalanced data set

Data sets ACC (%) SP (%) SEN (%) MCC

Mono-methylarginine 85.84 85.94 83.01 0.35

Di-methylarginine 88.75 88.78 86.71 0.26

Fig. 6  Area under the precision-recall curve for the proposed model on the imbalanced data set a to predict 
mono-methylarginine sites. b to predict di-methylarginine sites
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prediction model was trained with the combination of DPC and AAC (DPC+AAC) fea-
tures, it performed better, as shown in Tables 6 and 7. The experimental results show 
that the combined features AAC+DPC+PP+ITB significantly improved the perfor-
mance. This demonstrated that all four features helped differentiate between arginine 
methylated and non-methylated sites.

The comparison of PRMxAI against previous predictors

This section finds the effectiveness of the proposed model PRMxAI by comparing it 
with the previous state-of-the-art predictors. The state-of-the-art predictors and the 
PRMxAI were assessed on the same data sets for an unbiased comparison. The result 

Table 6  Effect of various features (DPC, PP, AAC, and ITB) for mono-methylarginine data set

Training feature ACC (%) SP (%) SEN (%) MCC

AAC​ 80.98 78.41 84.08 0.62

PP 73.31 77.21 70.38 0.47

DPC 73.00 66.12 90.11 0.50

ITB 50.17 55.08 55.81 0.01

AAC+PP 73.31 77.21 70.38 0.47

AAC+DPC 81.84 79.73 84.27 0.63

DPC+ITB 73.34 70.18 77.66 0.47

AAC+PP+DPC 73.31 77.21 70.38 0.47

PP+DPC+ITB 73.65 77.74 70.61 0.47

AAC+DPC+TTB 77.67 76.45 79.02 0.55

AAC+PP+DPC+ITB 87.17 87.58 86.76 0.74

Table 7  Effect of various features (DPC, PP, AAC, and ITB) for di-methylarginine data set

Training feature ACC (%) SP (%) SEN (%) MCC

AAC​ 82.27 80.72 84.00 0.64

PP 72.25 76.44 69.21 0.45

DPC 74.68 68.45 87.26 0.52

ITB 52.32 51.27 63.09 0.08

AAC+PP 72.25 76.44 69.21 0.45

AAC+DPC 83.86 83.22 84.51 0.67

DPC+ITB 69.19 68.49 69.95 0.38

AAC+PP+DPC 72.25 76.44 69.21 0.45

PP+DPC+ITB 72.89 77.74 69.47 0.46

AAC+DPC+ITB 74.57 75.60 73.63 0.49

AAC+PP+DPC+ITB 90.40 91.72 89.16 0.80

Table 8  Comparison of the PRMxAI with CTD-RF on the data set used in CTD-RF [37] method

Prediction methods Arginine type ACC (%) SEN (%) SP (%) MCC

CTD-RF [37] Mono-methyl 82.1 81.9 82.4 –

Di-methyl 82.5 82.3 82.7 –

PRMxAI (Proposed model) Mono-methyl 87.17 86.76 87.58 0.74

Di-methyl 90.40 89.16 91.72 0.80
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of the PRMxAI on the data sets utilized in [37, 39] was estimated as shown in Tables 8 
and 9, respectively. For mono-methylarginine, the PRMxAI presented 87.17% accuracy, 
5.07% higher than CTD-RF [37]. The accuracy of the PRMxAI for di-methylarginine was 
90.40%, 7.9% higher than CTD-RF [37] (see Table 8).

To compare the performance of PRMxAI with existing models, we assessed the per-
formance of the proposed model on the same data set used in the SSMFN method [39]. 
The proposed model was retrained using their training and validation data set and then 
tested using the independent test set to assess the proposed model. The PRMxAI was 
compared with BPB-PPMS [33], PMeS [42], iMethyl-PseAAC [32], MASA [31], MeMo 
[30], PSSMe [43], MePred-RF [35], DeepRMethylSite [38], and SSMFN [39] (see Table 9). 
The performances of PMeS, BPB-PPMS, MASA, MeMo, PSSMe, iMethyl-PseAAC, 
MePred-RF, DeepRMethylSite, and SSMFN were reported by Lumbanraja et al. [39] on 
the same data set. For the arginine methylation data set, the PRMxAI achieved 83.84% 
accuracy, 87.61% specificity, 80.76% sensitivity, and 0.68 MCC. Except for the specific-
ity, the other three measures, i.e., accuracy, sensitivity, and MCC of the PRMxAI, were 
2.69% to 27.84%, 0.76% to 68.76%, and 0.06 to 0.52 higher than the existing predictors, 
respectively. In conclusion, the proposed model PRMxAI performed superior to state-
of-the-art classifiers, which supported the significance of AAC+PP+DPC+ITB as fea-
tures for identifying arginine methylation sites.

Model interpretation using Explainable AI

Machine learning models are also known as “black box” models due to their complex 
internal mechanisms. One of the most challenging aspects of machine learning models 
has been identified as understanding the importance of every feature to the model [44]. 
SHAP is used to assess the contribution of each feature to the predictions of machine 
learning models [45]. SHAP is a global interpretation method that provides model-
agnostic explainability for text, images, and tabular data. It is based on optimal Shapley 
values from coalitional game theory. In game theory, Shapley values allocate the value 
produced by a group of players fairly. The “players” in machine learning are the input 

Table 9  The comparison of the PRMxAI with previous predictors on the same data set used by the 
previous predictors [39]

Year Author Prediction method Algorithm ACC (%) SP (%) SEN (%) MCC

2006 Chen et al. [30] MeMo SVM 68 99 38 0.46

2009 Shao et al. [33] BPB-PPMS SVM 56 100 12 0.25

2009 Shien et al. [31] MASA SVM 65 99 31 0.41

2012 Shi et al. [42] PMeS SVM 58 73 43 0.16

2014 Qiu et al. [32] iMethyl-PseAAC​ SVM 59 100 18 0.30

2016 Wen et al. [43] PSSMe SVM 72 83 60 0.44

2017 Wei et al. [35] MePred-RF RF 69 97 41 0.46

2020 Chaudhari et al. [38] DeepRMethylSite CNN, LSTM 79.42 84.47 75.08 0.60

2021 Lumbanraja et al. [39] SSMFN CNN, LSTM 81.15 82.40 80.00 0.62

2023 Proposed model PRMxAI RF 83.84 87.61 80.76 0.68
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features, and the “value” is the model’s output. SHAP offers local and global interpreta-
tion techniques based on aggregating the Shapley values.

The XAI SHAP model is used to analyze the feature importance for the proposed 
model by ranking them. The summary for the top 20 significant features computed 
using SHAP values for the mono-methylarginine sites is shown in Fig. 7a. The low-
est to highest values of the features are indicated by color contrast from blue to 
red, as shown in Fig.  7a. From Fig.  7a, it is clear that the AAC of “glycine” amino 
acid and DPC of dipeptide pair “RG” has a significant impact on identifying protein 
methylated sites. The higher values of AAC_G and DPC_RG contribute towards the 
prediction of arginine methylation sites, and the lower values of AAC_G and DPC_
RG contribute towards the prediction of arginine non-methylated sites. Moreover, 
the higher values of DPC_GR contribute to predicting arginine methylation sites.  
Figure 7b illustrates the top 20 features’ average impact on the proposed model out-
put for classifying mono-methylarginine and non-methylation sites.

Figure 8a, b illustrate the summary plot and features’ average impact on proposed 
model outputs for the top 20 ranked features computed using SHAP values for di-
methylarginine sites, respectively. From Fig.  8a, it can be concluded that higher 
values of DPC_RG, AAC_G, and turn feature descriptors contribute to predicting 
a positive sample. In contrast, lower values of DPC_RG, AAC_G, and turn feature 
descriptors contribute to predicting a negative sample. The physicochemical prop-
erties (instability index) feature descriptor significantly impact the prediction of 
non-methylation arginine sites. The top 20 ranked features for the identification of 
methylated sites consist of 4, 4, 6, and 6 feature descriptors from DPC, ITB, PP, and 
AAC feature extraction, respectively (see Fig. 8b). These indicate the importance of 
extracted features in identifying positive and negative samples.

Fig. 7  Model interpretation and feature importance for the prediction of mono-methylarginine sites. a 
Summary plot for SHAP values of top 20 features. b The feature’s average impact on model predictions for the 
top 20 features
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Conclusions
This research discusses a machine learning technique, PRMxAI, to predict arginine 
methylation sites and XAI SHAP to illustrate the feature importance. Each primary 
sequence is converted to a 434-dimensional vector by extracting informative features, 
i.e., AAC, DPC, ITB, and PP. These features are considered as input to the proposed RF-
based model PRMxAI. The PRMxAI provided an accuracy of 87.17%, a specificity of 
87.58%, a sensitivity of 86.76%, an MCC of 0.74 for the mono-methylarginine data set, 
and 90.40% accuracy, 89.16% sensitivity, 0.80 MCC, and 91.72% specificity for the di-
methylarginine data set. The cross-validation findings indicated that the PRMxAI per-
formed better than state-of-the-art predictors. Explainable AI is also used to analyze the 
importance of the features. In the future, employing fractal dimension might improve 
the results by detecting self-similarities within amino acid sequences [46]. The source 
code and data of this research is available at GitHub repository (https://​github.​com/​
Monik​a01p/​PRMxAI_​PMS).

Methods
This section explains the data sets and features that convert protein sequences to a fixed-
dimensional feature vector. A supervised learning algorithm will be used to detect meth-
ylation sites from the primary sequences.

Data sets

Hou et al. [37] produces the arginine methylation data set. They gathered the data from 
the UniProtKB database (release 2020_01, www.​unipr​ot.​org) by searching the keyword 
’methylarginine’ and obtained 875 proteins containing 4128 arginine sites. These 4128 

Fig. 8  Model interpretation and feature importance for the prediction of di-methylarginine sites. a Summary 
plot for SHAP values of top 20 features. b The feature’s average impact on model predictions for the top 20 
features

https://github.com/Monika01p/PRMxAI_PMS
https://github.com/Monika01p/PRMxAI_PMS
http://www.uniprot.org
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peptide sequences consist of mono-methylarginine and di-methylarginine. Of 4128 pep-
tide sequences, 3051 are mono-methylarginine, and 1077 are di-methylarginine sites. 
After applying CD-HIT [47] having a threshold of 0.9 to remove redundant sequences, 
they finally received 1465 mono-methylarginine sites and 474 di-methylarginine sites. 
The negative samples for mono-methylarginine and di-methylarginine are gener-
ated from 875 protein sequences where the central amino acid residue ’arginine’ is not 
a methylation site. We chose equal negative and positive samples for both problems 
(mono-methylarginine and di-methylarginine) to avoid biased results toward the class 
having more samples.

The data set was prepared based on Chou’s peptide strategy [48] to represent the pep-
tide sequences in the form of arginine methylation (positive) and arginine non-methyla-
tion (negative) samples. The peptide sequence was represented as follows:

where R can be an arginine methylation or arginine non-methylation site. Pγ represents 
the γ th upstream residue and P−γ indicates the γ th downstream residue from the center 
R. The length of the peptide sequences Pγ (R) will be 2γ + 1. Hou et al. [37] considered 
γ = 5 , so the length of each peptide sequence is 11. The peptide sequences Pγ (R) is con-
sidered a positive sample when the center R is a methylation site; otherwise, it is con-
sidered a negative sample. The positive and negative samples are merged to create the 
benchmark data sets for arginine methylation sites. The benchmark data sets for argi-
nine methylation are expressed by Eq. 2.

where D−
γ (R) and D+

γ (R) denote the negative and positive data set for arginine methyla-
tion sites, respectively.

Feature representation

DPC

Two amino acids are combined to form a dipeptide. To create a dipeptide, two amino 
acids make a peptide bond. Each dipeptide’s frequency is calculated to produce a 
400-dimensional vector that describes the peptide sequence [49]. The Eq. 3 is used to 
estimate the dipeptide composition of the peptide sequence S having length l.

where ni is the count that tells how many times the ith dipeptide pair occurs within the 
sequence S.

AAC​

Every primary sequence is made from the combinations of 20 amino acids. The occur-
rence of every amino acid is computed to represent the peptide sequence to the 20-D 
feature [50]. Suppose a peptide sequence S with length k, then Eq.  4 may be used to 
determine the frequency of every amino acid.

(1)Pγ (R) = P−γ . . .P−2P−1RP1P2 . . .Pγ

(2)Dγ (R) = D+
γ (R) ∪ D−

γ (R)

(3)Di =
ni

l
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where k denote the peptide sequence’s length and Ni denote the count with which the 
ith amino acid occurs in the sequence. Hence, every peptide sequence is represented by:

ITB

Various features from the information theory, such as Arimoto entropy (AE), Shannon 
entropy (SE), Havrda-Charvát entropy (HE), and Rényi entropy (RE), are computed, 
which are defined below.

(a) SE: An estimation of the degree of uncertainty in peptide sequences is the SE [51]. 
We may utilize SE to predict protein methylation sites and assess the amount of infor-
mation contained within protein sequences. The below equation estimates SE:

where pi specifies the occurrence of ith amino acids within the peptide sequence.
Relative SE measures the amino acid conservation concerning the background distri-

bution. The Eq. 7 estimates relative SE.

where the amount of uniformly dispersed amino acids within the sequence is indicated 
by p0.

Whether a particular sequence is positive or negative, the information gain represents 
the information’s transition from the random position to the one impacted by the class. 
The information gain is estimated by Eq. 8.

(b) HE: Havrda and Charvát [52] devised the structural entropy with degree α , and it 
generalizes SE. The Eq. 9 is used to compute HE.

The following equation estimates relative HE:

where α  = 1,α > 0.
(c) RE: RE was derived by Alfred Rényi [53], and it generalizes entropies, including SE, 

min-entropy, and Hartley entropy. The below equation gives it:

(4)Ai =
Ni

k

(5)AAC = [A1,A2,A3, .....,A20]T

(6)SE = −
20

i=1

pilog2(pi)

(7)Relative SE =
20
∑

i=1

pi log2

(

pi

p0

)

(8)Information gain = SE − Relative SE

(9)HE = (21−α − 1)−1

[

n
∑

i=1

pαi − 1

]

(10)Relative HE = −(21−α − 1)−1

[

20
∑

i=1

pαi

pα−1
0

− 1

]
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The relative RE is computed by Eq. 12.

where α  = 1,α > 0.
(d) AE: Arimoto proposed the generalized entropy having a real parameter [54]. The 

Eq. 13 is used to computing AE.

The below equation gives relative AE:

where α  = 1,α > 0.

PP

Different PP features were estimated utilizing the ProtParam web-server [55], such as 
isoelectric point, extinction coefficients (EX), instability index, molecular weight, aro-
maticity, helix, sheet, turn, and grand average of hydropathy (GRAVY).

(a) EX: The EX shows how much light a protein takes at various wavelengths. When 
purifying a protein, it is helpful to calculate this coefficient by utilizing ProtParam server 
[55]. The molar EX of the protein is estimated from the AAC. With the help of the molar 
EX of cystine, tyrosine, and tryptophan, the EX of protein in water is estimated by Eq. 15.

where ME(cy), ME(ty), and ME(tr) denote the molar EX of cystine, tyrosine, and tryp-
tophan, respectively. Whereas n(cy), n(tr), and n(ty) denote the count of cystine, trypto-
phan, and tyrosine residues per molecule, respectively.

(b) Instability index: The instability index determines whether a protein is stable in the 
test tube. A protein possessing an instability index value of more than 40 is unstable, and 
one with less than 40 is stable. There are 400 dipeptide pairs, and [56] set a dipeptide 
instability weight value (DIWV) for every dipeptide. The Eq. 16 was utilized to calculate 
the instability index.

where DIWV([AiAi+1 ]) specifies the instability weight value starting at ith index and L 
specifies the peptide sequence length.

(11)RE = (1− α)−1 log

(

20
∑

i=1

pαi

)

(12)Relative RE = (1− α)−1 log

(

20
∑

i=1

pαi

pα−1
0

)

(13)AE = (2α−1 − 1)−1

[(

20
∑

i=1

p
1/α
i

)α

− 1

]

(14)Relative AE = −(2α−1 − 1)−1

[(

20
∑

i=1

p
1/α
i

p
1/(α−1)
0

)α

− 1

]

(15)EX = ME(cy) ∗ n(cy)+ME(tr) ∗ n(tr)+ME(ty) ∗ n(ty)

(16)Instability index =
10

L

L−1
∑

i=1

DIWV ([AiAi+1])
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(c) GRAVY: The value of GRAVY for an amino acid sequence was calculated as the 
summation of hydropathy values [57] for all amino acids, divided by the length of the 
protein sequence. The online web server ProtParam [55] is used to estimate it.

RF algorithm

Leo Breiman first presented the RF classifier [58]. It depends upon ensemble learn-
ing and consists of a collection of DT from the subset of features via a random feature 
selection approach. The count of features in every tree is influenced by various aspects, 
including dependency, the strength of the classifier, and generalization error. RF was 
applied in various computational biology applications, i.e., protein-protein interaction, 
DNA-binding proteins identification [59], and protein fold prediction [60]. This paper 
implements the proposed PRMxAI using Intel Xeon(R) CPU E5-1650 v4 @ 3.60GHz 
with six cores and 12 processors, Python 3.9.12, and Keras 2.12.0 on the Windows oper-
ating system.

Let X = x1, x2, x3, ...., xN denote the set of instances, A represents the attribute, and Xv 
is subset of X with A = v . The RF algorithm is stated by Algorithm 1. 

Model training

Machine learning algorithms need feature extraction for finding useful and discriminative 
patterns from the primary sequences. Four feature representation methods were used to 
convert each primary sequence into numerical representation for training the models. The 
extracted features are then given as input to the machine learning algorithms. This paper 
used the RF algorithm as the base classifier for training the model and generating predic-
tions for protein methylation sites. The optimized hyperparameters for the RF algorithm 
are given in Table 10. We used a grid search method to find the optimum values of hyper-
parameters for the RF model [44, 61, 62]. We tried different numbers of trees, such as 10, 



Page 17 of 21Khandelwal and Rout ﻿BMC Bioinformatics          (2023) 24:376 	

50, 100, 150, 200, 250, 300, 350, 400, 450, and 500, for selecting the optimal number of trees 
in the forest. Different depths ranging from 10 to 100 with a gap of 10 were chosen to find 
the maximum depth of a tree in RF. Other hyperparameters, such as min_samples_split , 
max_features , max_samples are obtained using grid search.

Framework of the proposed model

A supervised machine learning model is proposed in this research to recognize arginine 
methylation sites from primary sequences. First, using a sliding window, each amino acid 
sequence is divided into peptide sequences having the same length. Then, choose the pep-
tide sequences with R as their center while rejecting the others. The next step is to charac-
terize each peptide sequence by a 434-dimensional feature vector by extracting features, 
such as dipeptide composition, physicochemical properties, amino acid composition, 
and information theory-based features (Arimoto, Havrda-Charvat, Renyi, and Shannon 
entropy), from the amino acid sequences. Then, an RF classifier is utilized for training the 
model and making predictions for arginine methylation sites. The performance of the pro-
posed PRMxAI is evaluated by employing 10-fold cross-validation. The flow diagram of the 
proposed model is shown in Fig. 9.

Evaluation metrics

The effectiveness of the PRMxAI was analyzed using 10-fold cross-validations. The data set 
was partitioned into ten roughly equal-size subsets. Then, nine subsets were utilized for 
training, and the unused subset was utilized for evaluating the model. This method was 
performed ten times, utilizing a different subset for testing to create ten models. The final 
performance was estimated using the average of all these ten models.

The evaluation metrics, such as ACC, SEN, SP, precision, f1-score, and MCC, are defined 
by the below equations:

(17)SP =
TN

TN + FP

(18)ACC =
TN + TP

TP + FN + TN + FP

(19)SEN =
TP

TP + FN

Table 10  Optimum values of hyperparameters used for the RF algorithm

Parameters Optimum value

n_estimators 250

max_depth 40

max_features log2

min_samples_split 3

max_samples 1.0
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Fig. 9  Flow diagram of the proposed PRMxAI for predicting mono-methylarginine and di-methylarginine 
sites in protein sequences. F1 − F20 describe the feature vector generated by amino acid composition; 
F21 − F420 represents the feature vector obtained using dipeptide composition; F421 − F424 describe the 
feature vector given by information theory-based features; and F425 − F434 provide the feature vector 
produced by physicochemical properties



Page 19 of 21Khandelwal and Rout ﻿BMC Bioinformatics          (2023) 24:376 	

The corresponding counts for true positives, false positives, true negatives, and false 
negatives are denoted by TP, FP, TN, and FN, respectively.
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