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Abstract 

Background: Autism spectrum disorder (ASD) is a serious developmental disorder 
of the brain. Recently, various deep learning methods based on functional magnetic 
resonance imaging (fMRI) data have been developed for the classification of ASD. 
Among them, graph neural networks, which generalize deep neural network models 
to graph structured data, have shown great advantages. However, in graph neural 
methods, because the graphs constructed are homogeneous, the phenotype informa-
tion of the subjects cannot be fully utilized. This affects the improvement of the clas-
sification performance.

Methods: To fully utilize the phenotype information, this paper proposes a heteroge-
neous graph convolutional attention network (HCAN) model to classify ASD. By com-
bining an attention mechanism and a heterogeneous graph convolutional network, 
important aggregated features can be extracted in the HCAN. The model consists 
of a multilayer HCAN feature extractor and a multilayer perceptron (MLP) classifier. First, 
a heterogeneous population graph was constructed based on the fMRI and pheno-
typic data. Then, a multilayer HCAN is used to mine graph-based features from the het-
erogeneous graph. Finally, the extracted features are fed into an MLP for the final 
classification.

Results: The proposed method is assessed on the autism brain imaging data 
exchange (ABIDE) repository. In total, 871 subjects in the ABIDE I dataset are used 
for the classification task. The best classification accuracy of 82.9% is achieved. Com-
pared to the other methods using exactly the same subjects in the literature, the pro-
posed method achieves superior performance to the best reported result.

Conclusions: The proposed method can effectively integrate heterogeneous graph 
convolutional networks with a semantic attention mechanism so that the pheno-
type features of the subjects can be fully utilized. Moreover, it shows great potential 
in the diagnosis of brain functional disorders with fMRI data.

Keywords: FMRI, Heterogeneous graph convolution network, ASD, Attention 
mechanism
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Backgound
Autism spectrum disorder (ASD) is a developmental disability that can cause significant 
social, communication and behavioral challenges [1]. ASD has attracted great attention 
from neuroscientists and clinical scientists, who hope to clarify its pathogenic mech-
anism and find an effective treatment method [2]. For children with ASD, early iden-
tification and intervention are important since they may mitigate disease severity and 
ameliorate the quality of the patients’ lives. However, due to the complexity and hetero-
geneity of ASD, no effective biomarkers for ASD have been found at present. The diag-
nosis of ASD is mainly based on the interaction between individuals and clinicians [3, 4]. 
Many children cannot receive a final diagnosis until much older.

In the past decade, functional magnetic resonance imaging (fMRI) as a promising neu-
roimaging technique has been widely used for studying interregional functional connec-
tivity (FC) in the human brain. In fMRI studies, FC is defined as the temporal correlation 
of blood oxygen level dependent signals measured in various brain regions. It is used to 
identify potential neuroimaging biomarkers for the diagnosis of neurological diseases [5, 
6]. In some specific functional connectivity in the brains with ASD, abnormalities have 
been found. For instance, Monk et al. [7] discovered that intrinsic connectivity within 
the default network in ASD subjects has been altered, and that connectivity between 
these structures is related to specific ASD symptoms. Therefore, effective modelling with 
brain functional connectivity of fMRI data is conducive to the identification of biomark-
ers for ASD.

Based on fMRI data, many machine learning methods and deep learning methods 
have been proposed for ASD classification. Feng et  al. [8] summarized the progress 
of ASD classification work with the Autism Brain Imaging Data Exchange (ABIDE) 
dataset in the last three years. Kong et  al. [9] proposed an ASD-assisted diagnosis 
method based on a deep neural network (DNN). Mostafa et al. [10] proposed diag-
nosing ASD based on eigenvalues of brain networks and linear discriminant analy-
sis (LDA). Ahmed et al. [11] designed a single volume image generator that converts 
individual fMRI images into a series of 2-dimensional images. Then they used an 
improved convolutional neural network to classify those generated images. Guo et al. 
[12] proposed a sparse autoencoder based feature selection method, and developed a 
DNN-based classification model for distinguishing ASD patients from typically devel-
oped controls. Heinsfeld et al. [13] extracted low-dimensional features from training 
samples with two stacked denoising autoencoders. Then they used an MLP to clas-
sify ASD and achieved a classification accuracy of 70% on the ABIDE dataset. Eslami 
et al. [14] proposed a framework called ASD-DiagNet to classify ASD by using only 
fMRI data. Hu et  al. [15] proposed an interpretable fully connected neural network 
(FCNN) to identify ASD participants from fMRI data and obtained an accuracy of 
69.81%. Liu et al. [16] improved ASD classification using dynamic functional connec-
tivity (DFC) and multitask feature selection. They used a multikernel support vec-
tor machine (SVM) learning method for ASD classification and achieved an accuracy 
of 76.8% on the ABIDE I dataset. Brahim and Farrugia [17] presented an approach 
based on graph fourier transform (GFT) and SVM for the analysis of resting-state 
functional magnetic resonance imaging. Yin et al. [18] employed an autoencoder (AE) 
to learn advanced features from fMRI data. Then they trained a DNN with the learned 
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features and achieved a classification accuracy of 76.2%. Haghighat et  al. [19] pro-
posed an age-dependent connectivity-based ASD computer aided diagnosis system 
using resting state fMRI. Wang et al. [20] proposed a multisite clustering and nested 
feature extraction (MC-NFE) method for fMRI-based ASD detection. Experimental 
results on 609 subjects from the ABIDE database suggest that the proposed MC-NFE 
outperforms several state-of-the-art methods in ASD detection.

Recently, graph neural networks, which generalize deep neural network models to 
graph structured data, have shown great advantages in model training and classifica-
tion tasks [21]. Researchers have tried to classify ASD data using graph models. In 2017, 
Parisot et al. [22] constructed a population graph using fMRI and phenotypic data, in 
which nodes and arc weights are associated with image-based feature vectors and phe-
notypic data, respectively. Then they applied a graph convolutional network (GCN) 
with the population graph as input to classify ASD. The results showed that integrating 
phenotypic data in classification tasks was beneficial. In 2018, Parisot et al. [23] further 
studied the impact of different feature selection strategies on the classification of ASD. 
They used a GCN in a semisupervised manner for node classification. A classification 
accuracy of 70.4% for the ABIDE dataset was achieved. Rakhimberdina et al. [24] pro-
posed a population graph-based multimodel ensemble to classify patients with ASD 
and healthy controls (HCs). Compared with using a single model, the proposed method 
obtained higher accuracy on the ABIDE dataset. Jiang et al. [25] proposed a hierarchi-
cal GCN framework to learn graph feature embeddings for ASD classification. In the 
framework, the network topology information and subject’s association are considered 
at the same time. Li et al. [26] proposed a graph neural network framework (BrainGNN) 
to analyse functional magnetic resonance images and discovered neurological biomark-
ers for ASD. Wen et al. [27] presented a prior brain structure learning-guided multiview 
graph convolutional neural network to learn common features for ASD classification. In 
our previous work [28], a combination of deep feature selection and GCN was proposed 
to classify ASD. First, the deep feature selection method of [29] was used to select the 
functional connection features of fMRI data. Then, a GCN was used to classify 871 sub-
jects in the ABIDE I dataset, and a high classification accuracy of 79.5% was achieved, 
which is currently the highest.

As brain connectivity graphs are irregular graph structures, GCNs are well suited to 
handle such data structures. Thus, the classification performances of the above methods 
are significantly improved compared to traditional machine learning methods. However, 
it needs to be noted that in the above graph-based models for ASD classification, the 
graphs constructed are all homogeneous (i.e., only one type of node and one type of arc 
are constructed) in which the imaging features are mapped into node feature vectors 
while the phenotype features are mapped into arc weights. However, since arc weights 
are scalar, they cannot fully represent the phenotype features. Therefore, the perfor-
mances still suffer from the limitation that all edges in the graph have an aggregated 
weight and the phenotypic data are not fully used. To solve this problem, this paper 
further investigates using graph neural networks to classify ASD patients from healthy 
controls. The goal of the present work is to fuse fMRI and phenotype information of 
subjects into a graph neural network so that better classification performance and more 
accurate diagnosis can be achieved.
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In order to fully make use of the phenotype information of non-imaging data of the 
subjects, a heterogeneous population graph based on the fMRI and phenotypic data is 
constructed. At the same time, an attention mechanism is introduced so that different 
weights can be learned and aggregated important features can be extracted. There-
fore, based on the heterogeneous graph, GCN and attention mechanism, a heteroge-
neous graph convolution attention network (HCAN) for the classification of ASD is 
proposed. This work is inspired by the work of [30], a heterogeneous graph attention 
network for node classification. Different from homogeneous graphs, heterogeneous 
graphs have multiple types of nodes and arcs. In HCAN, different phenotype features 
are mapped into different types of arcs; thus, richer hidden information is contained.

The main contribution of this work is summarized as follows.

• In this paper, a heterogeneous graph construction method is constructed for the 
ABIDE dataset. The heterogeneous graph contains not only imaging data features 
but also rich phenotypic data features.

• Based on the heterogeneous graph, a heterogeneous graph convolution attention 
network for ASD classification is proposed. With the attention mechanism, the 
importance of phenotype information can be fully considered.

• On the ABIDE dataset, the proposed method achieves the best classification accu-
racy of 82.9%, which is the new state-of-the-art and significantly outperforms pre-
vious approaches.

The rest of the paper is organized as follows. In Sect. 2, the ABIDE dataset and the pre-
processing of the data are introduced. In Sect. 3, the proposed HCAN method, including 
the construction of a heterogeneous graph, the heterogeneous graph convolution net-
work, the semantic attention network, and the model loss function, is shown. In Sect. 4, 
some numerical results are shown, and the proposed method is compared with some 
other methods in the literature. Finally, conclusions are drawn in Sect. 5.

Data and preprocessing
This paper carries out research on the challenging public ABIDE I dataset [31], which 
aggregates data from 17 different international collection sites, sharing neuroimaging 
and phenotype data of 1112 subjects. In the experiment, 871 subjects (including 403 
ASD patients and 468 healthy controls) who meet the imaging quality and atypical 
information criteria were used. The related phenotypic data, including ‘Age’, ‘Handed-
ness’, and ‘Sex’ of these subjects are shown in Table 1.

The preprocessed data of the 871 subjects were downloaded from the Preproc-
essed Connectomes Project (http:// prepr ocess ed- conne ctomes- proje ct. org/). Data 
preprocessing was performed using the configurable pipeline for the analysis of con-
nectomes. According to the Harvard-Oxford atlas, there are 111 ROIs in the brain 
[32]. The mean time series for each ROI was calculated. Then the distance correlation 
coefficients between different mean time series were calculated to obtain a functional 
connection matrix. Finally, the 6105 elements belonging to the upper right triangle 
part of the matrix were extracted to form a functional connection feature vector.

http://preprocessed-connectomes-project.org/
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The proposed method
In this section, the proposed HCAN method for the classification of ASD is introduced. 
The architecture of the proposed HCAN model is shown in Fig. 1, which includes a mul-
tilayer HCAN and an MLP. The input of the model is fMRI and phenotypic data, while 
the output is the prediction result (i.e., the probability of ASD) of each sample.

For a specified classification task, the HCAN model works as follows. First, a hetero-
geneous population graph using the fMRI and phenotypic data is constructed. Then, the 
heterogeneous graph is processed through a multilayer HCAN to extract fused features 
with semantic information. Next, the fused features will go through a dropout layer for 
regulation and are further fed into an MLP with softmax to output prediction results.

Table 1 Phenotype data of the selected 871 subjects in the ABIDE I dataset for individual site

* Handedness: ‘L’ represents ‘Left’, ‘R’ represents ‘Right’, ‘Other’ includes ‘Mixed’, ‘Ambidexterous’ and ‘Not avaliable’

Site ASD TD

Age Handedness 
(L/R/Other)*

Sex (M/F) Age Handedness 
(L/R/Other)*

Sex (M/F)

CALTECH 24.0 ± 7.6 0/4/1 4/1 28.2 ± 12.2 1/9/0 6/4

CMU 26.0 ± 5.4 1/5/0 4/2 27.8 ± 4.4 0/5/0 3/2

KKI 10.7 ± 1.3 0/9/3 9/3 10.1 ± 1.2 1/18/2 15/6

LEUVEN_1 21.9 ± 4.1 1/13/0 14/0 23.0 ± 2.8 1/13/0 14/0

LEUVEN_2 13.9 ± 1.5 2/10/0 9/3 14.4 ± 1.5 3/13/0 12/4

MAX_MUN 28.4 ± 13.2 2/17/0 16/3 25.2 ± 8.4 0/27/0 26/1

NYU 14.8 ± 7.1 0/0/74 64/10 15.8 ± 6.2 0/0/98 72/26

OHSU 11.4 ± 2.2 1/11/0 12/0 10.2 ± 1.0 0/13/0 13/0

OLIN 17.1 ± 3.3 3/11/0 11/3 16.9 ± 3.6 2/12/0 12/2

PITT 18.3 ± 7.0 3/21/0 21/3 18.7 ± 6.7 1/24/1 22/4

SBL 34.0 ± 6.6 1/0/11 12/0 33.6 ± 6.8 0/0/14 14/0

SDSU 15.3 ± 1.8 0/8/0 8/0 14.0 ± 1.9 2/17/0 13/6

STANFORD 10.2 ± 1.6 3/8/1 9/3 9.8 ± 1.7 0/12/1 9/4

TRINITY 17.0 ± 3.2 0/19/0 19/0 17.1 ± 3.8 0/25/0 25/0

UCLA_1 13.3 ± 2.6 3/34/0 31/6 13.4 ± 2.1 3/24/0 24/3

UCLA_2 12.8 ± 2.0 3/8/0 11/0 12.1 ± 1.2 0/10/0 8/2

UM_1 13.3 ± 2.5 5/25/4 26/8 14.1 ± 3.2 7/42/3 35/17

UM_2 14.9 ± 1.6 1/11/1 12/1 16.7 ± 4.0 2/19/0 20/1

USM 23.6 ± 8.4 0/0/43 43/0 20.9 ± 8.3 0/0/24 24/0

YALE 13.1 ± 3.0 5/17/0 14/8 13.6 ± 2.1 2/17/0 11/8

Total 17.1 ± 8.0 34/231/138 349/54 16.8 ± 7.2 25/300/143 378/90

Fig. 1 The architecture of the HCAN model, which inludes a multilayer HCAN and an MLP



Page 6 of 17Shao et al. BMC Bioinformatics          (2023) 24:363 

The structure of an HCAN layer is shown in Fig.  2. Each HCAN layer consists of a 
heterogeneous graph convolutional network (HGCN) and a semantic attention network 
(SAN).

Next, the proposed method will be shown in detail from the following three parts: the 
construction of a population heterogeneous graph, the HCAN model, and the loss func-
tion of the model.

Heterogeneous graph construction

Different from homogeneous graphs, heterogeneous graphs are a special type of infor-
mation network that involve multiple types of objective nodes or multiple types of arcs 
[33].

Definition 1 ([33]) Heterogeneous graph G = (V ,E) consists of a node set V and an 
arc set E. Moreover, there is a mapping relationship φ : V → Q , and ψ : E → S , where Q 
is the node type collection, S is the arc type collection, and |Q| + |S| > 2.

For a heterogeneous graph, two objective nodes can be connected through different 
semantic paths. These paths are called meta-paths.

Definition 2 ([34]) For a heterogeneous graph G, a meta-path � is defined as: 
Q1

S1
−→ Q2

S2
−→ . . .

Sl
−→ Ql+1 ( Q1Q2 . . .Ql+1 ). It represents a composite relation 

S = S1 ◦ S2 ◦ · · · ◦ Sl between node Q1 and node Ql+1 , and ◦ refers to composition opera-
tor on relations.

In a heterogeneous graph, the relations defined by different meta-paths are different, 
and they can be used to analyse the composite connections and meanings between dif-
ferent nodes. Given a meta-path, for each node, its neighbor nodes are defined as all the 

Fig. 2 The structure of a HCAN layer. Each HCAN layer consists of a heterogeneous graph convolutional 
network (HGCN) and a semantic attention network
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other nodes on the path. A set of neighbors based on the meta-path contains structure 
information and specific semantics.

This paper constructs a heterogeneous population graph of the ABIDE dataset, where 
image-based functional connection features are contained in the nodes, while non-
image phenotype features are contained in the arcs. In the graph, there is only one type 
of node (i.e., sample nodes) being constructed. There is a one-to-one corresponding rela-
tionship between the nodes and the samples. Each node contains an image-based feature 
vector of a sample. For each sample, the functional connection feature vector after fea-
ture selection can be used as the feature vector of the sample node.

Once the sample nodes are set, they are connected by different arcs according to the 
non-image phenotype features of the samples. Specifically, according to a certain type of 
non-image phenotype feature, the samples with the same non-image phenotype attrib-
ute value are connected. Therefore, the number of arc types is equal to the number of 
involved non-image phenotype features. In this work, three types of arcs based on ‘site’, 
‘sex’, and ‘handedness’ are constructed. For example, if a non-image phenotype feature 
is ‘sex’, all the samples with the sex of ‘male’ are connected, while all the samples with 
the sex of ‘female’ are connected, and those connections are regarded as the arcs of 
the ‘sex’ type. All the arcs are undirected and unweighted, which forms an undirected 
unweighted heterogeneous graph. Figure 3 shows the construction of a heterogeneous 
population graph based on the ABIDE dataset, in which red, blue, and green are used to 
distinguish the three types of arcs based on ‘site’, ‘sex’, and ‘handedness’, respectively.

Heterogeneous graph convolutional networks

Graph convolutional networks are important tools for graph data feature extraction. 
However, graph convolutional networks can only be used for training homogene-
ous graphs. Therefore, this research designs a heterogeneous graph convolutional net-
work (HGCN) to extract features from heterogeneous graphs. The HGCN includes the 
decomposition of a heterogeneous graph and residual graph convolution networks.

In an HGCN, the constructed heterogeneous graph is first decomposed into several 
homogeneous graphs based on the meta-paths. Then, for each homogeneous graph, an 
independent residual graph convolution network is set up. Thus, for each sample node in 
the heterogeneous graph, different embedding vectors (representations) can be obtained 

Fig. 3 Construction of a heterogeneous graph with functional connection features and non-image 
phenotype features. Image-based functional connection features are contained in the nodes, while 
non-image phenotype features are contained in the arcs
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through the forward propagation of different residual graph convolution networks, and 
they can be integrated as a weighted sum fused feature vector.

Decomposition of a heterogeneous graph

In a heterogeneous graph, sample nodes are connected with different types of arcs based 
on meta-paths. The neighbor connections represent a certain type of relation between 
the samples. The connected nodes have more potential similar features than the uncon-
nected ones. For example, if two sample nodes are connected based on the ‘node - sex 
- node’ meta-path, then the two samples have the same ‘sex’ attribute. To fully use and 
mine the structure information and specific semantics information in a meta-path, 
the heterogeneous graph is decomposed into multiple homogeneous graphs based on 
meta-paths.

For a specific meta-path, when a node is connected with all its neighbor nodes in a 
new graph, a homogeneous graph can be obtained. For the ABIDE heterogeneous popu-
lation graph, based on the three types of meta-paths, i.e., ‘node - sex - node’, ‘node - site 
- node’, and ‘node - handedness - node’, three homogeneous graphs (see Fig. 4) can be 
obtained. It needs to be noted that all the nodes with their feature vectors in the homo-
geneous graph are inherited from the heterogeneous graph.

Residual graph convolutional networks

For each homogeneous graph, a residual graph convolutional network is constructed 
to extract features. Consider an undirected unweighted graph G = (V ,E,A) , where V 
is a node set, |V | = n , E is an arc set, and A ∈ R

N×N is the adjacency matrix. Let D be 
the degree matrix and L be the normalized graph Laplacian; then, L = IN − D− 1

2AD− 1
2 , 

where IN ∈ R
N×N is an identity matrix. L can be decomposed as L = U�U with the 

matrix of eigenvectors U and the diagonal matrix of its eigenvalues � . Suppose that 
each node i in the graph contains only one-dimensional feature xi , then the vector sig-
nal formed for all the nodes is x ∈ R

N . Let us consider spectral convolutions on graphs 

Fig. 4 Decomposition of a heterogeneous graph into homogeneous graphs based on meta-paths
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defined as the multiplication of signal x with a filter (convolution kernel function) 
gθ = diag(θ) parameterized by θ ∈ R

N in the Fourier domain

In view of the high computational complexity of graph convolution operations, the Che-
byshev polynomial expansion method can be applied to approximate the convolution 
kernel function gθ . Usually, a first-order Chebyshev approximation is adopted. Thus, the 
convolution operation of a graph signal can be approximated as follows:

where θ ′ is a convolution kernel parameter, Ã = A+ IN , D̃ is a diagonal matrix, and 
D̃ii = j Ãij . At this point, the graph convolution expression of the one-dimensional 
signal on the graph is obtained. Since each node may contain multiple features, i.e., the 
signal on a node is multi-channel, the one-dimensional signal x is generalized to be C 
channel signals X ∈ R

N×C . Suppose there are F convolution kernels (the number of con-
volution kernels is also denoted as the hidden size of an HCAN layer), the convolution 
operation for X is as follows:

where � is a matrix of convolution kernel parameters, and Z ∈ R
N×F is the convolved 

signal matrix.
Therefore, the graph convolutional network has the following layer-wise propagation 

rule,

where H (l) ∈ R
N×D is the output of the lth layer of the network ( H (0) = X ), σ denotes 

an activation function such as ReLU(·) = max(0, ·) , and W (l) is the network parameter 
of the lth layer, which can be trained. Considering that the graph convolutional network 
is difficult to train, a residual connection is added to the graph convolutional network; 
thus, the above layer-wise propagation rule is changed to

where M is a linear transformation matrix. When the dimensions of H (l) and H (l+1) are 
the same, M is an identity matrix.

Semantic attention networks

For each sample node, after forward propagation through the heterogeneous graph con-
volutional network, three embedding vectors can be obtained. Each embedding vector 
contains a piece of specific semantic information, which is related to its corresponding 
meta-path. Since the importance of that semantic information to the classification task 
is difficult to determine, a semantic-level attention network is constructed to learn the 
importance of different semantic information. Based on the three meta-paths, the atten-
tion weights for the three specific semantics are

gθ ∗ x = UgθU
Tx.

gθ ∗ x ≈ θ ′D̃− 1
2 ÃD̃− 1

2 x,

Z = D̃− 1
2 ÃD̃− 1

2X�,

H (l+1) = σ(D̃− 1
2 ÃD̃− 1

2H (l)W (l)),

H (l+1) = σ(D̃− 1
2 ÃD̃− 1

2H (l)W (l))+H (l)M,
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where Z�1 ,Z�2 and Z�3 represent the embedding vectors of all the sample nodes 
obtained based on meta-paths �1 , �2 , and �3 , respectively, and attsem(·) represents the 
neural network for computing attention weights (which can be used to learn the impor-
tance of each semantic information through back-propagation). The process of comput-
ing semantic attention weights is shown in Fig. 5.

Let z�i
j·  be the jth row of Z�i , an embedded vector of node j (j ∈ V ) based on meta-path 

�i . It contains specific semantic information related to meta-path �i . In a semantic atten-
tion network, first, the embedding vector z�i

j·  is transformed into an embedding representa-
tion of the specific semantic through a learnable nonlinear transformation

where W is a weight matrix, and b is an offset vector. Then, a learnable semantic-level 
attention vector q is used to measure the importance of the specific semantic by cal-
culating the similarity between the embedding representation tanh(Wz

�i
j· + b) and the 

semantic-level attention vector q. Next, for the specific semantic based on meta-path �i , 
the average of those importance factors of all the nodes w�i is calculated with

Furthermore, a softmax function is used to normalize w�i as a semantic attention weight. 
Suppose the semantic attention weight for meta-path �i is β�i , then

(β�1 ,β�2 ,β�3) = attsem(Z�1 ,Z�2 ,Z�3),

tanh(Wz
�i
j· + b),

w�i =
1

|V |

∑

j∈V

qT · tanh(Wz
�i
j· + b).

β�i =
exp(w�i)

∑3
j=1 exp(w

�j )
,

Fig. 5 Computation of attention weight β�i for embedding vector Z�i in a semantic attention network
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which represents the contribution of the semantic based on meta-path �i to the classifi-
cation task. Obviously, the higher β�i is, the more important its semantic information is. 
For different tasks, β�i may be different.

Finally, the weight β�i in the attention network is used as a coefficient to integrate 
embedding vectors Z�i , i = 1, 2, 3 as a final embedding vector Z,

Obviously, vector Z has the same dimension as Z�1 , Z�2 and Z�3 . It is the output vector 
of an HCAN layer.

The model loss function

The final embedding vector Z of the last HCAN layer will go through a dropout layer 
to drop part of the features. Then, the feature embeddings after dropout are fed into an 
MLP with a softmax function to output a class vector y′ , which is the prediction class 
value vector of the samples. Suppose T is a set of selected nodes, |T | is the number of 
nodes in T, and Y is the set of classes. For node l, we use yli and y′li to represent its true 
class value and predicted value, respectively. We use the cross-entropy loss function to 
calculate the loss between the predicted value and the true value. Let LT be the loss of 
node set T, then it is calculated as follows

Results and discussion
In this section, the proposed method is tested on the ABIDE I dataset. FC features and 
non-image phenotype features of the selected subjects are used to construct a heteroge-
neous population graph.

For each sample node, 800 features selected from the 6105 functional connectivity fea-
tures with the deep feature selection method (see [28]) are utilized as the node feature 
vector. The model is implemented in PyTorch. Training of the model uses a computer 
that contains an Intel (R) Core (TM) i5-9300 H CPU with 4 cores running at 4.00 GHz 
and 8 GB RAM, and an NVIDA GeForce GTX 1650MQ GPU with 896 CUDA cores and 
4 GB GDDR5. During the model training, GPU acceleration and the early stop technique 
are utilized.

The parameters of the model are set as follows. The HCAN model includes two HCAN 
layers and an MLP. For each HCAN layer, the hidden size is 20, while in the MLP, the 
number of output units is 2. The Adam algorithm is used to optimize the model loss, 
where the learning rate is set to 0.005, and the weight decay is set to 5× 10−4 . For the 
dropout layer, the dropout rate is set to 0.6.

Experiments on the ABIDE database

The proposed method is first tested on the whole dataset with 871 subjects. In the exper-
iment, a 10-fold cross-validation schema that mixes data from all 17 sites while keeping 
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the proportions between the different sites is used to evaluate the model performance. 
The average accuracy (ACC), sensitivity (SEN), specificity (SPE) and area under curve 
(AUC) are reported. The proposed HCAN method achieves an average ACC of 82.9%, 
SEN of 76.7%, SPE of 86.6% and AUC of 84.6%. The running time of performing 10-fold 
cross validation is 256 s.

Then, 5-fold cross-validation on each site is performed separately. The average ACC, 
SEN, SPE and AUC values are provided in Table 2. From the table, it can be seen that the 
SPE value of STANFORD is only 53.3% and the SEN value of SDSU is only 50%. The SEN 
values for both CALTECH and STANFORD are equal to 100%. This indicates that all the 
ASD subjects in the testing sets for the two sites were identified correctly. For CMU, it 
needs to be noted that there are only 11 subjects, and the ACC, SEN and SPE values are 
quite low (close to 60%). For all the datasets from different sites, the mean ACC, SEN, 
SPE and AUC values are 75.6%, 72.6%, 77.3% and 83.0%, respectively. In general, the pro-
posed method performs well on the per site datasets.

Impact of model hyperparameters

This paper carries out experiments to study the impact of the model hyperparameters 
on the classification performance. In the HCAN model, the following three hyper-
parameters, namely, the number of HCAN layers, hidden size, and dropout rate, are 
investigated.

First, the relationship between the number of HCAN layers and the classification per-
formance is explored. The number of HCAN layers is gradually increased from 1 to 5 
while keeping the hidden size 20 and the dropout rate 0.6 unchanged. The accuracy and 

Table 2 Average ACC, SEN, SPE and AUC values on individual site data using 5-fold cross-validation 
with our proposed method

Column ‘ASD/HC’ shows the number of subjects with ASD and healthy controls, respectively

Site ASD/HC Our proposed method

ACC (%) SEN (%) SPE (%) AUC (%)

CALTECH 5/10 86.7 100.0 80.0 90.0

CMU 6/5 63.3 60.0 60.0 80.0

KKI 12/21 71.9 63.3 76.0 83.8

LEUVEN 26/30 83.7 81.0 85.5 81.9

MAXMUM 19/27 79.3 73.3 92.7 81.3

NYU 74/98 82.0 68.9 91.7 87.0

OHSU 12/13 72.3 63.3 80.0 86.7

OLIN 14/14 75.0 73.3 76.7 81.1

PITT 24/26 72.0 54.0 88.0 79.9

SBL 12/14 62.0 60.0 66.7 74.4

SDSU 8/19 74.0 50.0 85.0 82.5

STANFORD 12/13 75.7 100.00 53.3 76.7

TRINITY 19/25 73.3 80.0 68.0 78.0

UCLA 48/37 81.4 81.7 80.5 89.2

USM 43/24 75.1 83.1 60.0 78.4

UM 47/73 77.1 64.9 84.5 88.6

YALE 22/19 80.6 78.0 85.0 91.8

Mean 75.6 72.6 77.3 83.0
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F1 score are computed. Figure 6 shows the comparative boxplot of accuracy and F1. For 
boxplots, the distribution of data based on a five-number summary including minimum, 
first quartile, median, third quartile, and maximum is displayed; also mean values in 
solid points are shown. When the number of HCAN layers increases from 1 to 2, the 
model performance improves significantly, while when the number of HCAN layers con-
tinues to increase, the model performance decreases.

Then, the impact of hidden size on the classification results is studied. The number of 
HCAN layers and the dropout rate are kept at 2 and 0.6, respectively. The hidden size 
is changed from 12 to 28 with a step size of 4. Figure 7 shows the impact of the hidden 
size. Before the hidden size increases to 20, the model performance is improved with 
increasing hidden size. However, once the hidden size is over 20, the model performance 
worsens.

In general, hyperparameters such as the number of layers and the hidden size in the 
network are related to the model complexity. A network with a larger number of layers 
or hidden size is of higher complexity. It seems that when the model complexity is low, 
increasing the model complexity can significantly improve the model performance, but 
when the model complexity reaches a certain degree, increasing the model complexity 
will cause overfitting and decrease the model performance.

Fig. 6 Impact of the HCAN layer number on the model performance

Fig. 7 Impact of the hidden unit number on the model performance
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Finally, the influence of the dropout rate on the model performance is investigated. 
Dropout can be used to improve the model performance by reducing overfitting. The 
dropout rate is changed from 0 to 0.8 with a step size of 0.2, while the number of HCAN 
layers and hidden size are kept at 2 and 20, respectively. Figure 8 shows the change of 
accuracy and F1 score with the dropout rate. Both the accuracy and F1 score achieve 
the highest value when the dropout rate is equal to 0.6. However, when the dropout 
rate is over 0.6, the model performance decreases significantly due to the loss of feature 
information.

Comparison with other methods

In our previous work [28], it was shown that the GCN method with deep feature selec-
tion is superior to some machine learning methods for the classification of ASD. In this 
work, the same comparisons are not repeated. Instead, to show the superior perfor-
mance of our method, this paper compares the proposed method with some deep learn-
ing methods, i.e., MLP, HAN [30], GCN [28] and ASD-Diagnet [14].

In order to establish a fair comparison, all the above methods are implemented on 
the same computer and use the same 800 selected functional connection features. The 
same training and testing sets are used in the 10-fold cross-validation for all the meth-
ods. The parameters of MLP, HAN and GCN are optimally selected based on the grid-
search method. In the MLP, 3 hidden layers, 16 hidden neurons and a dropout rate of 
0.2 are set; In the GCN, 1 hidden layer and a dropout rate of 0.3 are set, and the graph 
weight matrix is constructed as described in [28]. In the HAN model, 2 HAN layers and 
1 MLP layer are used; the output vector dimension for each HAN layer is 20; the output 
vector dimension of the MLP layer is 2; and the dropout rate is 0.6. For the MLP, HAN 
and HCAN models, a learning rate of 0.005 and weight decay of 5× 10−4 in the Adam 
optimizer are used. For ASD-DiagNet, the code from https:// github. com/ pcdsl ab/ ASD- 
DiagN et were downloaded, and the same parameters as the ones in [14] were used.

The average ACC, SEN, SPE and AUC values, as well as their standard deviations, are 
calculated. The running time for each method is also recorded. The results are listed in 
Table 3.

Fig. 8 Impact of the dropout rate on the model performance

https://github.com/pcdslab/ASD-DiagNet
https://github.com/pcdslab/ASD-DiagNet
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From the table, it can be seen that the ACC, SEN and AUC of the HAN method are the 
lowest compared to the other methods, while the computation time of the HAN is the 
largest. Therefore, the performance of HAN is the worst. GCN and MLP perform better 
than ASD-DiagNet and HAN in terms of ACC, SEN, SPE, AUC and computational time. 
The proposed HCAN method achieves the best performance with an average accuracy 
of 82.9% and an average SEN of 86.6%. It is superior to the MLP, GCN, and HAN meth-
ods. It takes 256 s for HCAN to finish the 10-fold cross-validation, which is longer than 
MLP (156  s ) and GCN (186  s). This is because HCAN is more complicated than the 
MLP and GCN.

In the literature, except for Shao et al. [28], other researchers, i.e., Mostafa et al [10], 
Hu et al. [15], Liu et al.[16], Brahim and Farrugia[17], Yin et al. [18], Parisot et al. [22] 
and Rakhimberdina et al. [24], have also used the same 871 subjects (consisting of 403 
patients with ASD and 468 healthy controls) in the ABIDE I dataset to classify ASD 
patients and normal controls. Therefore, this paper also compares the proposed method 
with these methods and summarizes the comparative results in Table  4. In the table, 
‘Reference’, ‘Method’, ‘Number of ROIs’ (used for constructing features), and ‘Accuracy’ 
are listed.

From Table 4, it can be concluded that the proposed method performs the best among 
all the above methods. To the best of our knowledge, this result is so far the best in the 
literature for ASD classification with the selected 871 subjects.

The experimental results show that integrating non-imaging data has an important 
influence on the classification performance of ASD. By using all potential phenotypic 
measures and introducing an attention mechanism, new aggregated important features 

Table 3 Comparative results of different methods on the whole ABIDE dataset with 871 subjects

The highest average values of ACC, SEN, AUC, and SPE are indicated in bold

Model ACC (%) SEN (%) SPE (%) AUC Time (s)

MLP 78.1 ± 4.7 77.2 ± 4.9 79.8 ± 4.8 83.1 ± 3.1 156

GCN 79.5 ± 3.3 78.3 ± 3.5 81.2 ± 3.6 84.8 ± 2.7 186

HAN 64.4 ± 2.9 38.7 ± 16.5 85.5 ± 12.4 64.4 ± 5.2 1556

HCAN 82.1 ± 3.3 76.7 ± 4.8 86.6 ± 3.6 84.6 ± 3.1 256

ASD-DiagNet 66.4 ± 3.9 55.60 ± 11.5 75.6 ± 8.9 73.0 ± 5.3 1924

Table 4 ASD classification on the ABIDE dataset with 871 subjects

Reference Method Number of ROIs Accuracy (%)

Mostafa et al. [10] LDA 264 77.7

Hu et al. [15] FCNN 116 69.8

Liu et al. [16] DFC+SVM 116 76.8

Brahim and Farrugia [17] GFT+SVM 360 60.9

Yin et al. [18] AE+DNN 264 79.2

Parisot et al. [22] GCN 111 69.5

Rakhimberdina et al. [24] GCN-based ensemble 111 73.1

Shao et al. [28] DFS+GCN 111 79.5

Our proposed method HCAN 111 82.9



Page 16 of 17Shao et al. BMC Bioinformatics          (2023) 24:363 

can be extracted from the HCAN network; thus, the classification performance can be 
improved. It needs to be noted that since the GCN involved in the model can only be 
applied to data with graphs of a fixed structure, if new subjects need to be predicted, it is 
necessary to reconstruct the graph using the phenotypic information of all the subjects. 
This will result in a high computational cost, which is the main limitation of the pro-
posed method.

Conclusions
In this paper, a deep learning model, namely, the heterogeneous graph convolutional 
attention network model, is constructed. The model is based on a heterogeneous graph 
and integrates a GCN and an attention mechanism. It uses rs-fMRI data and phenotypic 
data to classify ASD. The model can effectively extract features from a heterogeneous 
graph by integrating semantic information of different meta-paths with an attention 
mechanism. Experimental results have shown that the proposed model outperforms 
other methods. It reaches the current state of the art.
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