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Abstract 

Background: Identifying drug–target interactions (DTIs) plays a key role in drug devel-
opment. Traditional wet experiments to identify DTIs are costly and time consuming. 
Effective computational methods to predict DTIs are useful to speed up the process 
of drug discovery. A variety of non-negativity matrix factorization based methods are 
proposed to predict DTIs, but most of them overlooked the sparsity of feature matrices 
and the convergence of adopted matrix factorization algorithms, therefore their perfor-
mances can be further improved.

Results: In order to predict DTIs more accurately, we propose a novel method iPALM-
DLMF. iPALM-DLMF models DTIs prediction as a problem of non-negative matrix fac-
torization with graph dual regularization terms and L2,1 norm regularization terms. The 
graph dual regularization terms are used to integrate the information from the drug 
similarity matrix and the target similarity matrix, and L2,1 norm regularization terms are 
used to ensure the sparsity of the feature matrices obtained by non-negative matrix 
factorization. To solve the model, iPALM-DLMF adopts non-negative double singular 
value decomposition to initialize the nonnegative matrix factorization, and an inertial 
Proximal Alternating Linearized Minimization iterating process, which has been proved 
to converge to a KKT point, to obtain the final result of the matrix factorization. Exten-
sive experimental results show that iPALM-DLMF has better performance than other 
state-of-the-art methods. In case studies, in 50 highest-scoring proteins targeted 
by the drug gabapentin predicted by iPALM-DLMF, 46 have been validated, and in 50 
highest-scoring drugs targeting prostaglandin-endoperoxide synthase 2 predicted 
by iPALM-DLMF, 47 have been validated.

Keywords: Drug–target interactions, L2,1 norm, Inertial proximal alternating linearized 
minimization

Background
Determining the drug–target interactions (DTIs) is a key step in drug development 
process [1]. However, identifying the DTIs via wet experiments is time consuming and 
expensive [2, 3]. To reduce the consumption of expensive wet experiments, a variety of 
computational prediction models for DTIs have been proposed. The existing models 
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for DTIs prediction mainly fall into two categories [4]. The first category formulates 
the interaction prediction as a binary classification task [5]. The second category aims 
to estimate the interaction strength of drug–target pairs [6, 7]. This paper focuses on 
the first category. The first category of DTI prediction models could be further grouped 
into ligand-based models, docking simulation based models, and chemogenomics based 
models [8].

Ligand-based models assume that similar ligands would interact with similar proteins 
[9].

The ligand based models require that a certain number of binding ligands of a given 
protein target should be known [10]. Docking simulation based models are based on 
crystal structures of target binding sites and docking simulations [11]. However, obtain-
ing the crystal structure of a target binding site is challenging. Therefore, docking simu-
lation based models couldn’t apply to large scale DTIs prediction.

To avoid above difficulties, chemogenomics based models use known target-drug 
interactions, chemical structures of drugs, genomic sequences of target proteins, and/or 
other related information of targets and drugs to predict potential target-drug interac-
tions. The chemogenomics based models [8] usually use a DTI network to present the 
known drug–target interactions, and adopt machine learning or deep learning to predict 
DTIs. For example, based on the DTI network, Yamanishi et al. [12] proposed a bipar-
tite graph learning method to predict DTIs by mapping the chemical structure space 
of drugs and the genomic sequence space of proteins into a unified space. In order to 
predict target proteins for a given drug, and the drugs targeting a given protein, Bleakley 
and Yamanishi [13] proposed bipartite local models (BLM), which transformed edge-
prediction problems into binary classification problems. RLS-WNN [14], BLM-NII [15] 
and WKNKN [16] were proposed by integrating the neighbor information of similarity 
networks of drugs and targets.

In addition to chemical structures of drugs and genomic sequences of target proteins, 
some works have incorporated multiple types of information, such as side-effects [17, 
18], protein-protein interactions [19], drug-disease associations [20], protein-disease 
associations [21] and gene ontology information [22] for DTIs prediction. In order to 
integrate multiple types of information, random walk with restart (RWR) [23, 24] was 
used to capture topological relations between nodes in the heterogeneous network. In 
addition, 2D structural images of drugs [25] and 3D structures of the proteins [26] were 
also used as input data for DTIs prediction.

As a kind of machine learning method, matrix factorization has also been used to predict 
DTIs and has achieved better performance than other machine learning methods [2]. In 
DTIs prediction, a DTI matrix is usually used to represent the known drug–target inter-
actions. Matrix factorization decomposes the interaction matrix into two low rank matri-
ces, which represent the feature matrices of drugs and targets. The optimization object 
of matrix factorization based DTIs prediction methods is that the product of the feature 
matrices of drugs and targets approximates the interaction matrix of drugs and targets as 
closely as possible. For example, Gönen [27] proposed a kernelized Bayesian matrix factori-
zation with twin kernels method to predict DTIs. Bolgár and Antal [28] proposed a fusion 
method, called a variational Bayesian multiple kernel logistic matrix factorization method, 
which used graph Laplacian regularization, multiple kernel learning, and a variational 
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Bayesian inference process to infer interactions. In order to learn the values of missing 
entries in DTI matrix, a variety of methods with regularization terms were proposed based 
on matrix factorization, such as MSCMF [29], NRLMF [30], GRMF [31], L2,1-GRMF [32] 
and SRCMF [33]. Recently, Ding et al. [34] proposed a multiple kernel-based triple collabo-
rative matrix factorization (MK-TCMF) method. MK-TCMF used Multi-kernel learning 
(MKL) to integrate different similarities of drugs and targets, and used triple collaborative 
matrix factorization to decompose the original DTI matrix into three matrices: a latent fea-
ture matrix of drugs, latent feature matrix of targets and a bi-projection matrix.

To solve matrix factorization problems, the above methods used either the alternating 
least squares algorithm [35] or the multiplicative update algorithm [36]. However, it is dif-
ficult to guarantee that the above algorithms converge to a stationary point [37]. Recently, 
Pock and Sabach [38] proposed an inertial version of the Proximal Alternating Linearized 
Minimization algorithm (iPALM), which can be used to solve non-negative matrix factori-
zation, and iPALM has been proven to converge to a stationary point.

In this paper, we propose a novel method iPALM-DLMF. iPALM-DLMF models DTIs 
prediction as a problem of non-negative matrix factorization with graph dual regularization 
terms and L2,1 norm regularization terms. The graph dual regularization terms are used to 
integrate the information from the drug similarity matrix and the target similarity matrix, 
and L2,1 norm regularization terms are used to ensure the sparsity of the matrices obtained 
by non-negative matrix factorization. To solve the model, non-negative double singular 
value decomposition (NNDSVD) [39] is used to initialize the nonnegative matrix factoriza-
tion, and an inertial Proximal Alternating Linearized Minimization iterating process is used 
to obtain the final matrix factorization.

The main contributions of iPALM-DLMF are as follows: 

1. Improving the non-negative matrix factorization model by adding graph dual regu-
larization terms and L2,1 norm regularization terms.

2. L2,1 norm regularization terms ensure sparsity of the matrices obtained by non-nega-
tive matrix factorization.

3. The inertial proximal alternating linearized minimization algorithm with fast conver-
gence is used to solve the matrix factorization.

Extensive experimental results show that iPALM-DLMF has better performance than other 
state-of-the-art methods. In case studies involving the drug gabapentin and the target pros-
taglandin-endoperoxide synthase 2, 46 of the 50 highest-scoring highest-scoring targets 
predicted to interact with gabapentin and 47 of the 50 highest-scoring drugs predicted to 
interact with prostaglandin-endoperoxide synthase 2 have been validated by wet experi-
ments. The case studies show that, for drugs that do not have any known target proteins 
and for proteins that are so far not approved as drug targets, iPALM-DLMF also has good 
prediction performance.

Materials
In order to evaluate prediction performance of the proposed iPALM-DLMF, we used the 
same four benchmark datasets as used by most similar works. The information of the four 
datasets are shown in Table  1. Each dataset contains three types of information: known 
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drug–target interactions, drug chemical structures and target protein sequences. The 
datasets correspond to different target protein types, including nuclear receptors (NR), G 
protein-coupled receptors (GPCR), ion channels (IC) and enzymes (E). Accordingly, the 
four datasets are called NR, GPCR, IC and E. The four datasets were built by Yamanishi 
et al. [12] from public databases BRENDA [40], KEGG BRITE [41], SuperTarget [42] and 
DrugBank [43], and are publicly available at http:// web. kuicr. kyoto-u. ac. jp/ supp/ yoshi/ 
drugt arget/. The known interactions between n drugs and m proteins are recorded by a 
n×m DTI matrix Z. If the ith drug is approved to target the jth protein, Zi,j = 1 ; otherwise 
Zi,j = 0.

The structural similarities between drugs are calculated using SIMCOMP [44] according 
to the size of the common substructures between two drugs. The similarity information of 
n drugs are stored in a n× n matrix Sd.

The normalized version of the Smith-Waterman score is used to calculate the 
sequence similarity of the target proteins [45]. Let p1 and p2 represent two proteins. 
The Smith-Waterman score of the standardized version of p1 and p2 is 
s(p1, p2) = SW (p1,p2)√

SW (p1,p1)
√

SW (p2,p2)
 , where SW(., .) be the original Smith-Waterman align-

ment score. The similarity information of m target proteins are denoted by a m×m 
matrix St.

Methods
iPALM-DLMF models DTIs prediction problem as a non-negative factorization problem 
with graph dual regularization terms and L2,1 norm regularization terms. iPALM-DLMF 
takes the DTI matrix Z, drug similarity matrix Sd and target similarity matrix St as inputs, 
uses Sd and St to construct graph dual regularization terms, and solve non-negative matrix 
factorization problem of Z with graph dual regularization terms and L2,1 norm regulariza-
tion terms to obtain the feature matrices of drugs and targets. Finally the feature matrices 
are utilized to predict DTIs. A brief flow chart of iPALM-DLMF is shown in Fig. 1.

Non‑negative matrix factorization

In DTIs prediction, the non-negativity matrix factorization (NMF) of the DTI matrix is 
widely used to obtain low-dimensional feature representations of drugs and targets in the 
DTI space. The general form of the NMF is as follows:

(1)
min Z − XYT

2

F

s.t. X ≥ 0,Y ≥ 0.

Table 1 The information of the benchmark datasets

Datasets NR GPCR IC E

Interactions 90 635 1476 2926

Drugs 54 223 210 445

Targets 26 95 204 664

Sparsity(%) 93.59 97.00 96.55 99.01

http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/
http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/
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where X and Y represent the latent feature matrices of drugs and targets, respectively. 
k is the rank of X and Y, k ≪ min(m, n) , X ∈ R

n×k ,Y ∈ R
m×k . The non-negativity con-

straint terms are adopted to ensure non-negativity of X and Y.

Graph dual regularized non‑negative matrix factorization

As a embedding model, the learning performance of NMF can be greatly improved if the 
geometrical information has been taken into account [46]. Cai et al. [47] used a graph 
regularization item to integrate the geometric information. Furthermore, Shang et  al. 
[48] introduced graph dual regularization items based on both data manifold and feature 
manifold.

In order to obtain geometric information of drugs and targets, two K-nearest neighbor 
graphs Nd and Nt of drugs and targets respectively are constructed based on Sd and St , 
respectively.

For two drugs di and dj , the weight of the edge between vertices i and j in graph Nd is 
defined as follows.

where NK (i) denotes the sets of K most similar drugs of drugs di according to Sd . Based 
on Nd and Sd , a sparse matrix Ŝdij is computed as follows.

(2)Nd
ij =





1, j ∈ NK (i) and i ∈ NK (j)
0, j /∈ NK (i) and i /∈ NK (j)
0.5, otherwise,

(3)Ŝdij = Nd
ij S

d
ij ,∀i, j.

Fig. 1 A brief flow chart of iPALM-DLMF
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Ŝd is a weight matrix representing the drug neighbor graph. The graph Laplacian of Ŝd is 
Ld = Dd − Ŝd , where Dd is a diagonal degree matrix with Dd

ii =
∑
r
Ŝdir.

Similarly, the weight matrix Ŝt corresponding to the target neighbor graph is com-
puted as follows.

The graph Laplacian of Ŝt is Lt = Dt − Ŝt , where Dt is diagonal degree matrix with 
Dt
jj =

∑
q
Ŝtjq.

The normalized graph Laplacian forms of Ld and Lt are as follows.

The optimization model of graph dual regularization non-negative matrix factorization 
(GDNMF) of the drug-protein interaction matrix Z is formulated as follows.

where �d and �t are regularization parameters.

GDNMF with L2,1‑norm regularization terms

In order to ensure sparsity of the matrices obtained by non-negative matrix factoriza-
tion, we introduce the L2,1-norm of X and Y into GDNMF optimization model, and the 
optimization model of GDNMF with L2,1-norm regularization terms is formatted as 
follows.

where �l is a regularization parameter, ‖X‖2,1 and ‖Y ‖2,1 represent L2,1 norms of matrix X 

and Y, respectively, and �X�2,1 =
∑
i

(
∑
j

(xij)
2
)
1/2

 , �Y �2,1 =
∑
i

(
∑
j

(yij)
2
)
1/2

.

Algorithm

Non‑negative double singular value decomposition

To provide better and explainable initial component matrices for matrix factoriza-
tion, non-negative double singular value decomposition (NNDSVD) [39] is adopted to 
obtain initial value of matrix factorization. NNDSVD is an algorithm based on SVD of 

(4)Ŝtij = Nt
ijS

t
ij ,∀i, j.

(5)L̃d =
(
Dd

)−1/2
Ld

(
Dd

)−1/2
,

(6)L̃t =
(
Dt

)−1/2
Lt

(
Dt

)−1/2
.

(7)
min
(X ,Y )

1

2

∥∥∥Z − XYT
∥∥∥
2

F
+ �dTr(X

T L̃dX)

+ �tTr(Y
T L̃tY ).

s.t.X ≥ 0,Y ≥ 0,

(8)
min
(X ,Y )

1

2

∥∥∥Z − XYT
∥∥∥
2

F
+ �dTr(X

T L̃dX)

+ �tTr(Y
T L̃tY )+ �l(�X�2,1 + �Y �2,1),

s.t. X ≥ 0,Y ≥ 0,
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Z. Z =
∑

i=1,..,k σiuiv
T
i  , where Z equals to the sum of k leading singular factors, ui and vi 

denote the left and right singular vectors corresponding to σi , respectively, and σ denotes 
singular value of Z.

For a vector or matrix z, z+ = max(0, z) represents nonnegative section of z, 
z− = max(0,−z) represents nonpositive section of z, z = z+ − z− . Z =

∑
i=1,..,k σiuiv

T
i  

can be transformed to the following form:

If 
∥∥u+i

∥∥∥∥v+i
∥∥ >

∥∥u−i
∥∥∥∥v−i

∥∥ , 
√
σi||u+i ||||v

+
i ||(u

+
i /||u

+
i ||) is used to obtain initial value of i-

th column of X. 
√
σi
∥∥u+i

∥∥∥∥v+i
∥∥(v+i /

∥∥v+i
∥∥) is used to obtain initial value of i-th column 

of Y. Otherwise, 
√
σi
∥∥u−i

∥∥∥∥v−i
∥∥ 
(
u−i /

∥∥u−i
∥∥) and 

√
σi
∥∥u−i

∥∥∥∥v−i
∥∥(v−i /

∥∥v−i
∥∥) . The detailed 

steps of NNDSVD are shown in the Additional file 1: Table S1, 2.

 Proximal alternating linearized minimization

Bolte et  al. [49] proposed a Proximal Alternating Linearized Minimization method 
(PALM), which can be regarded as a blockwise application of the proximal forward-
backward algorithm [50, 51] in the nonconvex setting.

Model (8) can be transformed to the following form:

where R(X) = �dTr(X
T L̃dX)+ �l�X�2,1 , R(Y ) = �tTr(Y

T L̃tY )+ �l�Y �2,1 . The non-
negative constraint of formula (10) can be transformed to the following form:

Then the model (10) is transformed into the following form:

Gauss-Seidel method is adopted to solve model (13). The schemes are as follows,

(9)

Z =
∑

i=1,..,k

uivi

=
∑

i=1,..,k

(u+i v
+
i + u−i v

−
i )− (u−i v

+
i + u+i v

−
i ).

(10)
min
(X ,Y )

1

2

∥∥∥Z − XYT
∥∥∥
2

F
+ R(X)+ R(Y )

s.t. X ≥ 0,Y ≥ 0,

(11)X ≥ 0 → δX =
{
X ,X ≥ 0,
∞, otherwise,

(12)Y ≥ 0 → δY =
{
Y ,Y ≥ 0,
∞, otherwise.

(13)
minψ(X ,Y ) =min

1

2

∥∥∥Z − XYT
∥∥∥
2

F

+ R(X)+ R(Y )+ δX + δY .

(14)Xi+1 ∈ arg min
X

ψ(X ,Y i),
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Let G(X ,Y ) = 1
2

∥∥Z − XYT
∥∥2
F
+ R(X)+ R(Y ) . We remove the constant terms by 

plugging Y i into ψ(X ,Y ) and get Xi+1 ∈ arg min{δX + R(X)+
∥∥Z − XYT

∥∥2
F
} , where 

G(X ,Y i) is smooth function. After removing the constant term, the second-order Taylor 
series of G(X ,Y i) at a point Xi is given by:

where ∇XG is the partial derivative of G with respect to X.
Define the proximal map of f: proxft = arg min{f (u) + 1

2t
�u− x�2F ,u ∈ R

d} , where 
f : Rd → (−∞,+∞] is the lower semi-continuous function to ensure non-negativity, 
x is a fixed point, t is a constant, x ∈ R

d , t > 0 . According to the definition of proxi-
mal map, the solution of formula (16) is as follows (the detailed derivation processes are 
shown in Appendix):

Similarity, Y i+1 ∈ prox
δY

ci
2

(Y i − 1

ci
2

∇Y G(Xi+1,Y i)) , where 




ci
1
= ∇X (∇XG(Xi ,Y i)) =

���Y i(Y i)
T
���
F
,

ci
2
= ∇Y (∇Y G(Xi ,Y i)) =

���Xi(Xi)
T
���
F
.

Let

The formula (17) is translated to

where proxδX
ci1
Ui is a map, which project on Rm×n

+  . Similarity, we have

For a sequence (Xi,Y i)i∈N , parameters ci1 and ci2 , we can get

(15)Y i+1 ∈ arg min
Y

ψ(Xi+1,Y ).

(16)
Xi+1 ∈ arg min

X
{
〈
X − Xi,∇XG(Xi,Y i)

〉

+ 1

2
∇X (∇XG(Xi,Y i))

∥∥∥X − Xi
∥∥∥
2

F
+ δX },

(17)Xi+1 ∈ prox
δX

ci1
(Xi − 1

ci1
∇XG(Xi,Y i)).

(18)Ui = Xi − 1

ci1
∇XG(Xi,Y i).

(19)Xi+1 ∈ prox
δX

ci1
Ui = max{0,U},

(20)

Y i+1 = arg min
Y

ψ(Xi,Y )

=max{0,Y i− 1

ci2
∇YG(Xi+1,Y i)}.

(21)





Xi+1 ∈ prox
δX

ci1
(Xi − 1

ci1
∇XG(Xi,Y i)),

Y i+1 ∈ prox
δY

ci2
(Y i − 1

ci2
∇YG(Xi+1,Y i)),
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Inertial terms

Alvarez and Attouch [52] first proposed the ideal of inertia in 2001, which was applied in an 
proximal method for maximal monotone operators via discretization of a nonlinear oscil-
lator with damping. Polyak showed that inertial terms can speed up convergence for the 
standard gradient method, while the cost of each iteration stays basically unchanged [53, 
54]. In PALM, the optimization scheme is an first-order gradient descent method. In order 
to accelerate the PALM, inertial terms are used.

Inertial proximal alternating linearized minimization

We uses G to denote the object function of the model (8), i.e. 

The partial derivative of function G for X is

The partial derivative of function G for Y is

where ∂‖X‖2,1
∂X

=




1
�X1�2

1
�X2�2

. . .
1

�Xi�2
. . .

1
�Xn�2




X ,

∂‖Y ‖2,1
∂Y

=




1
�Y 1�2

1
�Y 2�2

. . .
1

�Y j�2
. . .

1
�Ym�2




Y ,

For sequences (Xi,Y i)i∈N , (mi
1,m

i
2)i∈N , (ni1, n

i
2)i∈N , parameters ci1 , c

i
2 , β

i
1 and β i

2 , we can 
get

(22)
G(X ,Y ) =1

2

∥∥∥Z − XYT
∥∥∥
2

F
+ �dTr(X

T L̃dX)

+ �tTr(Y
T L̃tY )+ �l(�X�2,1 + �Y �2,1).

(23)
∂G

∂X
= (Z − XYT )YT + �dL̃dX + �l

∂�X�2,1
∂X

.

(24)
∂G

∂Y
= XT (Z − XYT )+ �tL̃tY + �l

∂�Y �2,1
∂Y

,
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The pseudocode of the algorithm (iPALM-DLMF) is shown in Algorithm 1.

Experiments
To evaluate the performance of DTIs prediction algorithms, 5 repetitions of 10-fold 
cross-validation are performed for all prediction methods. The averages 5 repetitions of 
10-fold cross-validation results are used as the final test results.

The cross-validation experiments are conducted under the following two scenarios 
[55]. 

1. CVd : The drugs are divided in ten folds, each fold is selected in turn as the test data-
set and the other remained 9 folds are used as the training dataset. If the i-th drug 
is in the test dataset, the elements in the i-th row of Z are all set 0, which means 
the known interactions with tested drugs are removed from the input DTI matrix. It 
aims to evaluate the targeted protein prediction performance for the drugs without 
any known interactive targets.

2. CVt : The targets are divided in ten folds, each fold is selected in turn as the test data-
set and the other remained 9 folds are used as the training dataset. If the j-th target 
in the test dataset, the elements in the j-th column of Z are all set 0, which means 
the known interactions with tested targets are removed from the input DTI matrix. 
It aims to evaluate the targeting drug prediction performance for the targets without 
any known interactive drugs.

We use the area under receiver operating characteristic curve (AUC) and area under the 
precision-recall curve (AUPR) to evaluate performance of methods.

(25)





mi
1 = Xi + αi

1(X
i − Xi−1),

ni1 = Xi + β i
1(X

i − Xi−1),

Xi+1 ∈ prox
δX

ci1
(mi

1 − 1

ci1
∇XG(ni1,Y

i)).

(26)





mi
2 = Y i + αi

2(Y
i − Y i−1),

ni2 = Y i + β i
2(Y

i − Y i−1),

Y i+1 ∈ prox
δY

ci2
(mi

2 − 1

ci2
∇YG(Xi+1, ni2)).
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Comparison with state‑of‑the‑art methods

iPALM-DLMF are compared with the following eight methods, namely BLM-NII [15], 
WKNKN [16], RLS-WNN [14], GRMF [31], WGRMF, CMF [29], SRCMF [33] and 
MK-TCMF [34], where WGRMF is a weighted form of GRMF. Among them, BlM-NII, 
WKNKN and RLS-WNN use the neighborhood information of graph to predict DTIs, 
while the others are model based on matrix factorization.

Parameter settings

According to the original literature [31, 33, 34] and the source code of GRMF [31], we 
set parameters to obtain results of relevant methods. For iPALM-DLMF, according to 
previous research [31], grid search [56] are used to choose parameters based on the 
AUPR value. the regularization parameter �l is selected from {2−2, 2−1, 20, 21} . �d and �t 
are selected from {0, 10−4, 10−3, 10−2, 10−1} . The numbers of maximum iterations are 2. 
k is 26 on NR. k is 49 on GPCR. rank k is selected from {50, 100} on IC and E. For inertial 

parameters αi
1 = αi

2 = 0.2,β i
1 = β i

2 = 0.4 . ci1 =
∥∥∥Y i(Y i)

T
∥∥∥
F
 , ci2 =

∥∥∥Xi(Xi)
T
∥∥∥
F
.

In order to explore the effect of performance of iPALM-DLMF with different values 
of K, we change the values of K and show the corresponding AUC and AUPR of iPALM-
DLMF under the CVd and CVt scenario in Fig. 2. We can find from these four figures that 
with the increase of the values of K, the performance of iPALM-DLMF can not maintain 
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Fig. 2 Performance of iPALM-DLMF on four benchmark datasets with different values of K 
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stability on different datasets. As shown in Fig. 2, iPALM-DLMF is very sensitive to the 
value of K. Therefore, based on [31], we set K = 5.

Prediction results

Under the CVd scenario, iPALM-DLMF performs better than other methods in 
terms of AUC and AUPR on NR, GPCR, IC, and E datasets. The AUC values of 

Table 2 AUC values of different algorithms under CVd scenario

The maximum AUC on each dataset is shown in bold. Standard deviation is shown in parentheses

Method NR GPCR IC E

BLM-NII [15] 0.856292 (0.0077) 0.836102 (0.0073) 0.756714 (0.0102) 0.815547 (0.0080)

WKNKN [16] 0.806684 (0.0289) 0.810142 (0.0048) 0.706933 (0.0079) 0.766433 (0.0050)

RLS-WNN [14] 0.821758 (0.0273) 0.839478 (0.0116) 0.743888 (0.0113) 0.762227 (0.0066)

GRMF [31] 0.820413 (0.0185) 0.774848 (0.0082) 0.742022 (0.0080) 0.744108 (0.0240)

WGRMF [31] 0.856979 (0.0135) 0.868548 (0.0065) 0.785357 (0.0070) 0.824591 (0.0071)

CMF [29] 0.802526 (0.0109) 0.801118 (0.0069) 0.758156 (0.0144) 0.794486 (0.0109)

SRCMF [33] 0.810242 (0.0227) 0.825318 (0.0093) 0.736402 (0.0329) 0.776464 (0.0214)

MK-TCMF [34] 0.838043 (0.0228) 0.852802 (0.0158) 0.811913 (0.0171) 0.758621 (0.0092)

iPALM-DLMF 0.886132 (0.0184) 0.87153 (0.0074) 0.814679 (0.0150)  0.834224 (0.0035)

Table 3 AUPR values of different algorithms under CVd scenario

The maximum AUPR on each dataset is shown in bold. Standard deviation is shown in parentheses

Method NR GPCR IC E

BLM-NII [15] 0.455027 (0.0395) 0.230746 (0.0118) 0.198357 (0.0091) 0.172086 (0.0068)

WKNKN [16] 0.496622 (0.0366) 0.349695 (0.0096) 0.268694 (0.0113) 0.312078 (0.0121)

RLS-WNN [14] 0.528022 (0.0294) 0.324815 (0.0149) 0.235889 (0.0176) 0.310967 (0.0232)

GRMF [31] 0.496592 (0.0252) 0.349027 (0.0129) 0.339622 (0.0124) 0.339569 (0.0227)

WGRMF [31] 0.545559  (0.0252) 0.410652 (0.0126) 0.351595 (0.0223) 0.397949 (0.0176)

CMF [29] 0.505449 (0.0299) 0.282205 (0.0081) 0.356396 (0.0227) 0.358833  (0.0205)

SRCMF [33] 0.481308  (0.0273) 0.394653  (0.0049) 0.306309  (0.0116) 0.367386 (0.0054)

MK-TCMF [34] 0.498415 (0.0097) 0.382824 (0.009) 0.392313 (0.0079) 0.395368 (0.0044)

iPALM-DLMF 0.549245 (0.0137) 0.392701 (0.0111) 0.398948 (0.0269) 0.399354 (0.0136)

(a) (b)

Fig. 3 AUC values and AUPR values of the methods on the four datasets under CVd. a Histogram with error 
bars of AUC. b Histogram with error bars of AUPR
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iPALM-DLMF are 0.886132, 0.87153, 0.814679 and 0.834224 on NR, GPCR, IC, and 
E datasets, respectively. The AUPR values of iPALM-DLMF are 0.549245, 0.398948, 
and 0.399354 on NR, IC, and E datasets, respectively. On the GPCR dataset, WGRMF 
achieve the highest AUPR values, which are 0.410652. The AUPR value of iPALM-
DLMF is 0.392701. The AUC and AUPR values of the different algorithms on the four 
datasets are shown in Tables 2 and 3, respectively. The AUC and AUPR histograms 
with error bars of different algorithms are shown in Fig. 3a and b, respectively. The 
receiver operating characteristic (ROC) curves and the precision-recall (PR) curves of 
different methods on the four datasets are shown in Figs. 4 and 5, respectively.

Under the CVt scenario, the AUC of iPALM-DLMF are higher than the other meth-
ods on the four datasets. The AUC values of iPALM-DLMF are 0.797695, 0.886124, 
0.948157 and 0.938395 on NR, GPCR, IC, and E datasets, respectively. The AUPR values 
of iPALM-DLMF on NR and GPCR datasets are 0.474567 and 0.590447, respectively. On 
the IC and E dataset, WGRMF achieve the highest AUPR values, which are 0.800896 and 
0.799641, respectively. The AUPR value of iPALM-DLMF is 0.776349 and 0.772684 on 
the IC and E dataset, respectively. The AUC values and AUPR values of different algo-
rithms on the four datasets are shown in Table  4 and Table  5, respectively. The AUC 
and AUPR histograms with error bars of different algorithms are shown in Fig. 6a and b, 
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Fig. 4 ROC curves for different methods are plotted together under CVd , where subfigures a, b, c, d 
correspond to ROC curves on NR dataset, GPCR dataset, IC dataset, E dataset, respectively.
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respectively. ROC and PR curves of different algorithms are shown in Fig. 7 and Fig. 8 on 
the four datasets, respectively.

Ablation experiments

In order to determine the effect of several techniques on performance in our proposed 
iPALM-DLMF, we separately assess the performance of iPALM-DLMF, iPALM-DLMF 
(without NNDSVD, i.e. using SVD in the initialization stage of matrix factorization), 
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Fig. 5 PR curves for different methods are plotted together under CVd , where subfigures a, b, c, d 
correspond to PR curves on NR dataset, GPCR dataset, IC dataset, E dataset, respectively

Table 4 AUC values of different algorithms under CVt scenario

The maximum AUC on each dataset is shown in bold. Standard deviation is shown in parentheses

Method NR GPCR IC E

BLM-NII [15] 0.795604 (0.0217) 0.856269 (0.0071) 0.930531 (0.0029) 0.917814 (0.0056)

WKNKN [16] 0.700475 (0.0430) 0.835764 (0.0217) 0.922583 (0.0079) 0.916965 (0.0042)

RLS-WNN [14] 0.763799 (0.0208) 0.884184 (0.0128) 0.941532 (0.0031) 0.926638 (0.0053)

GRMF [31] 0.753382 (0.0293) 0.876011 (0.0063) 0.920496 (0.0060) 0.920224 (0.0074)

WGRMF [31] 0.749512  (0.0384) 0.883883  (0.0083) 0.945641 (0.0024) 0.933971 (0.0161)

CMF [29] 0.75651  (0.0520) 0.855621  (0.0164) 0.924479 (0.0051) 0.924598 (0.0161)

SRCMF [33] 0.614843 (0.0333) 0.840992 (0.0127) 0.926765 (0.0049) 0.913015 (0.0082)

MK-TCMF [34] 0.650609 (0.0238) 0.797212 (0.0164) 0.929812 (0.0165) 0.930681 (0.0092)

iPALM-DLMF 0.797695 (0.0214) 0.886124 (0.0218) 0.948157 (0.0069) 0.938395 (0.0048)
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iPALM-DLMF ( �d=0, i.e. the graph regularization term for drugs is not used), iPALM-
DLMF ( �t=0, i.e. the graph regularization term for targets is not used), iPALM-DLMF 
( �l=0, i.e. L2,1 norm graph regularization is not used) and PALM-GRMF (i.e. inertial 
forces is not used). The results of above settings are shown in Tables  6, 7, 8, and 9.

In Tables 6, 7, 8, and 9, iPALM-DLMF have better performance than other settings. 
In CVd , when NNDSVD are used in the initialization stage of matrix factorization, the 
AUC values have increased by 0.6%, 1.8%, 2% on NR, GPCR and E datasets, respec-
tively, and the AUC values have decreased by 1.3% on IC datasets. The AUPR values 
have increased by 2.2%, 11.5%, 6%, 4% on NR, GPCR, IC and E datasets, respectively. 
In CVt , using NNDSVD, The AUC values have increased by 6%, 6%, 3%, 1.6% on NR, 
GPCR, IC and E datasets, respectively. The AUPR values have increased by 6.5%, 9.7%, 
1.5% and 3.4% on NR, GPCR, IC and E data sets, respectively. Experimental results 
show that using NNDSVD in the initial stage of matrix factorization can improve the 
ability of the algorithm to predict DTIs.

When we use regularization terms for drugs and targets, iPALM-DLMF has the 
good prediction performance in CVd and CVt . In CVd , when �d = 0 , the values of 
AUC and AUPR of iPALM-DLMF are significantly decreased. The AUC values have 
decreased by 30%, 27%, 27%, 34% on NR, GPCR, IC and E datasets, respectively. The 
AUPR values have decreased by 75%, 82%, 87%, 96% on NR, GPCR, IC and E datasets, 

Table 5 AUPR values of different algorithms under CVt scenario

The maximum AUPR on each dataset is shown in bold. Standard deviation is shown in parentheses

Method NR GPCR IC E

BLM-NII [15] 0.40149 (0.0618) 0.439848 (0.0259) 0.640928 (0.0191) 0.589524 (0.0069)

WKNKN [16] 0.421919 (0.0382) 0.536317 (0.0281) 0.741412 (0.0131) 0.720789 (0.0100)

RLS-WNN [14] 0.437335 (0.0206) 0.537046 (0.0235) 0.760776 (0.0169) 0.674211 (0.0266)

GRMF [31] 0.422442 (0.0486) 0.531487 (0.0175) 0.745256 (0.0091) 0.760562 (0.0100)

WGRMF [31] 0.417925 (0.0447) 0.567606 (0.0201) 0.800896 (0.0036) 0.799641 (0.0185)

CMF [29] 0.415443  (0.0407) 0.432831  (0.0596) 0.752132 (0.0154) 0.731174 (0.0140)

SRCMF [33] 0.378573  (0.0318) 0.589037 (0.0183) 0.774355  (0.0117) 0.746004  (0.0198)

MK-TCMF [34] 0.380124 (0.0098) 0.338609 (0.0071) 0.654037 (0.0086) 0.584139 (0.005)

iPALM-DLMF  0.474567 (0.0461) 0.590447 (0.0225) 0.776349 (0.0076) 0.772684 (0.0126)

(a) (b)

Fig. 6 AUC values and AUPR values of the methods on the four datasets under CVt . a Histogram with error 
bars of AUC. b Histogram with error bars of AUPR
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respectively. Similarly, in CVt , if the graph regularization terms for targets is not used, 
the performances of iPALM-DLMF is significantly decreased too. When �t = 0 , the 
AUC values have decreased by 37%, 38%, 39%, 42% on NR, GPCR, IC and E datasets, 
respectively. The AUPR values have decreased by 79%, 92%, 91%, 98% on NR, GPCR, 
IC and E datasets, respectively. When �t = 0 , these results show that regularization 
terms for drugs and targets contribute the improvement of DTIs prediction perfor-
mance of iPALM-DLMF significantly.

In CVd , when �l = 0 , the values of AUC and AUPR of iPALM-DLMF are decreased. 
The AUC values have decreased by 3%, 2%, 0.4%, 1.1% on NR, GPCR, IC and E data-
sets, respectively. The AUPR values have decreased by 1.9%, 7.2%, 4.8%, 7% on NR, 
GPCR, IC and E datasets, respectively. Similarly, in CVt , when �l = 0 , the AUC values 
have decreased by 8.6%, 6.4%, 3.5%, 1.8% on NR, GPCR, IC and E datasets, respec-
tively. The AUPR values have decreased by 0.5%, 11%, 1.1%, 2.8% on NR, GPCR, IC 
and E datasets, respectively. When �l = 0 , these results show that L2,1 regularization 
terms for drugs and targets contribute the improvement of DTIs prediction perfor-
mance of iPALM-DLMF.

When inertial terms is not used in iPALM-DLMF, the values of AUC and AUPR of 
iPALM-DLMF are decreased under CVd scenario. The AUC values have decreased by 
3.8%, 0.7%, 1.1%, 1.8% on NR, GPCR, IC and E datasets, respectively. The AUPR values 
have decreased by 0.3%, 3.8%, 8.4%, 5.2% on NR, GPCR, IC and E datasets, respectively. 
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Fig. 7 ROC curves for different methods are plotted together under CVt , where subfigures a, b, c, d 
correspond to ROC curves on NR dataset, GPCR dataset, IC dataset, E dataset, respectively



Page 17 of 24Zhang and Xie  BMC Bioinformatics          (2023) 24:375  

0 0.2 0.4 0.6 0.8 1
Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ec

is
io
n

iPALM-DLMF(0.474567)
BLM-NII(0.40149)
CMF(0.415443)
GRMF(0.422442)
RLS-WNN(0.437335)
SRCMF(0.378573)
WGRMF(0.417925)
WKNKN(0.421919)
MK-TCMF(0.380124)

(a)

0 0.2 0.4 0.6 0.8 1
Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ec

is
io
n

iPALM-DLMF(0.590447)
BLM-NII(0.439848)
CMF(0.432831)
GRMF(0.531487)
RLS-WNN(0.537046)
SRCMF(0.589037)
WGRMF(0.567606)
WKNKN(0.536317)
MK-TCMF(0.338609)

(b)

0 0.2 0.4 0.6 0.8 1
Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ec

is
io
n

iPALM-DLMF(0.776349)
BLM-NII(0.640928)
CMF(0.752132)
GRMF(0.745256)
RLS-WNN(0.760776)
SRCMF(0.774355)
WGRMF(0.800896)
WKNKN(0.741412)
MK-TCMF(0.654037)

(c)

0 0.2 0.4 0.6 0.8 1
Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ec

is
io
n

iPALM-DLMF(0.772684)
BLM-NII(0.589524)
CMF(0.731174)
GRMF(0.760562)
RLS-WNN(0.674211)
SRCMF(0.746004)
WGRMF(0.799641)
WKNKN(0.720789)
MK-TCMF(0.584139)

(d)

Fig. 8 PR curves for different methods are plotted together under CVt , where subfigures a, b, c, d correspond 
to PR curves on NR dataset, GPCR dataset, IC dataset, E dataset, respectively

Table 6 AUC values of different algorithms under CVd scenario

The maximum AUC on each dataset is shown in bold. Standard deviation is shown in parentheses

Method NR GPCR IC E

iPALM-DLMF 0.886132 (0.0184) 0.87153 (0.0074) 0.814679 (0.0150)  0.834224 (0.0035)

iPALM-DLMF (without 
NNDSVD)

0.880843 (0.0264) 0.855862 (0.0074) 0.825428 (0.0167) 0.817143 (0.0085)

iPALM-DLMF ( �d=0) 0.620998 (0.0543) 0.639598 (0.0268) 0.592975 (0.0140) 0.547534 (0.0098)

iPALM-DLMF ( �t=0) 0.831302 (0.0180) 0.844522 (0.0048) 0.815958 (0.0140) 0.805771 (0.0049)

iPALM-DLMF ( �l=0) 0.859537 (0.0099) 0.853745 (0.0094) 0.811177 (0.0104) 0.824733 (0.0111)

PALM-DLMF 0.852378 (0.0262) 0.865187 (0.0072) 0.805869 (0.0062) 0.81903 (0.0031)

Table 7 AUPR values of different algorithms under CVd scenario

The maximum AUPR on each dataset is shown in bold. Standard deviation is shown in parentheses

Method NR GPCR IC E

iPALM-DLMF 0.549245 (0.0137) 0.392701 (0.0111) 0.398948 (0.0269) 0.399354 (0.0136)

iPALM-DLMF (without 
NNDSVD)

0.537198 (0.0237) 0.34756 (0.0049) 0.374837 (0.0212) 0.383282 (0.0172)

iPALM-DLMF ( �d=0) 0.135244 (0.0152) 0.072055 (0.0102) 0.053728 (0.0031) 0.016293 (0.0011)

iPALM-DLMF ( �t=0) 0.491092 (0.0268) 0.347821 (0.0059) 0.363915 (0.0201) 0.35153 (0.0038)

iPALM-DLMF ( �l=0) 0.539008 (0.0226) 0.364441 (0.0100) 0.37975 (0.0158) 0.371432 (0.0277)

PALM-DLMF 0.547462 (0.0326) 0.377908 (0.0103) 0.3656 (0.0079) 0.378476 (0.0083)
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Similarly, the AUC values have decreased by 7.8%, 6.5%, 4.8%, 1.1% on NR, GPCR, IC 
and E datasets in CVt , respectively. The AUPR values have decreased by 9.3%, 12.8%, 
1.3%, 0.3% on NR, GPCR, IC and E datasets, respectively. These results show that inertial 
terms contribute the improvement of DTIs prediction performance of iPALM-DLMF.

Case studies

To further evaluate the ability of iPALM-DLMF to find new targets for a drug and new 
drugs for a target in practice, two case studies concerning the drug gabapentin and the 
target prostaglandin-endoperoxide synthase 2 were conducted. Furthermore, we also 
conducted experiments according to [23].

In the first case study, we predicted targets that interact with the drug gabapentin 
on the IC dataset using iPALM-DLMF. Gabapentin (GBP) is an antiepileptic drug, 
which is an amino acid. In the mechanism of action, gabapentin (GBP) is different 
from other anticonvulsant drugs which makes identifying interaction target for GBP 
more complicated [57]. The known interactions of gabapentin with targets were 
deleted from the training dataset, and the candidate targets of gabapentin predicted 
by iPALM-DLMF were prioritized according to the prediction scores. At last, the top 
50 highest-scoring predicted targets were picked out to be validated using the original 
database [12]. The results showed that 46 targets had evidences to drug GBP among 
the predicted 50 drugs. The detailed results of the predictions are shown in Table 10.

Table 8 AUC values of different algorithms under CVt scenario

The maximum AUC on each dataset is shown in bold. Standard deviation is shown in parentheses

Method NR GPCR IC E

iPALM-DLMF 0.797695 (0.0214) 0.886124 (0.0218) 0.948157 (0.0069) 0.938395 (0.0048)

iPALM-DLMF (without 
NNDSVD)

0.749641 (0.0249) 0.832083 (0.0200) 0.919673 (0.0066) 0.923762 (0.0084)

iPALM-DLMF ( �d =0) 0.559851 (0.0288) 0.801559 (0.0261) 0.90617 (0.0084) 0.903253 (0.0084)

iPALM-DLMF ( �t=0) 0.498876 (0.0290) 0.553367 (0.0232) 0.582471 (0.0166) 0.547481 (0.0136)

iPALM-DLMF ( �l=0) 0.72897 (0.0133) 0.828976 (0.0184) 0.914893 (0.0066) 0.921384 (0.0054)

PALM-DLMF 0.735579 (0.0248) 0.828103 (0.0175) 0.902373 (0.0009) 0.928485 (0.0069)

Table 9 AUPR values of different algorithms under CVt scenario

The maximum AUPR on each dataset is shown in bold. Standard deviation is shown in parentheses

Method NR GPCR IC E

iPALM-DLMF 0.47678  (0.0461) 0.590447 (0.0225) 0.776349 (0.0076) 0.772684 (0.0126)

iPALM-DLMF (without 
NNDSVD)

0.445602 (0.0205) 0.532892 (0.0346) 0.764708 (0.0091) 0.745737 (0.0173)

iPALM-DLMF ( �d=0) 0.393418 (0.0226) 0.53539 (0.0257) 0.769829 (0.0190) 0.751815 (0.0132)

iPALM-DLMF ( �t=0) 0.101816 (0.0137) 0.049806 (0.0048) 0.072554 (0.0109) 0.018001 (0.0018)

iPALM-DLMF ( �l=0) 0.474567 (0.0287) 0.525707 (0.0335) 0.767536 (0.0137) 0.751271 (0.0068)

PALM-DLMF 0.432608 (0.0479) 0.514862 (0.0368) 0.766604 (0.0066) 0.770734 (0.0090)
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Table 10 Top 50 predicted targets of Gabapentin by iPALM-DLMF on the IC dataset

Rank Name of targets ID Evidence

1 Calcium voltage-gated channel subunit alpha1 H hsa8912 Confirmed

2 Calcium voltage-gated channel auxiliary subunit gamma 1 hsa786 Confirmed

3 Calcium voltage-gated channel auxiliary subunit alpha2delta 4 hsa93589 Confirmed

4 Calcium voltage-gated channel auxiliary subunit beta 2 hsa783 Confirmed

5 Calcium voltage-gated channel subunit alpha1 I hsa8911 Confirmed

6 Calcium voltage-gated channel subunit alpha1 G hsa8913 Confirmed

7 Calcium voltage-gated channel subunit alpha1 C hsa775 Confirmed

8 Calcium voltage-gated channel subunit alpha1 F hsa778 Confirmed

9 Calcium voltage-gated channel subunit alpha1 D hsa776 Confirmed

10 Calcium voltage-gated channel auxiliary subunit alpha2delta 1 hsa781 Confirmed

11 Calcium voltage-gated channel subunit alpha1 S hsa779 Confirmed

12 Calcium voltage-gated channel subunit alpha1 E hsa777 Confirmed

13 Calcium voltage-gated channel subunit alpha1 A hsa773 Confirmed

14 Calcium voltage-gated channel auxiliary subunit beta 1 hsa782 Confirmed

15 Calcium voltage-gated channel subunit alpha1 B hsa774 Confirmed

16 Calcium voltage-gated channel auxiliary subunit beta 4 hsa785 Confirmed

17 Calcium voltage-gated channel auxiliary subunit alpha2delta 3 hsa55799 Confirmed

18 Calcium voltage-gated channel auxiliary subunit gamma 2 hsa10369 Confirmed

19 Calcium voltage-gated channel auxiliary subunit alpha2delta 2 hsa9254 Confirmed

20 Calcium voltage-gated channel auxiliary subunit gamma 4 hsa27092 Confirmed

21 Calcium voltage-gated channel auxiliary subunit beta 3 hsa784 Confirmed

22 Inositol 1,4,5-trisphosphate receptor type 1 hsa3708 Confirmed

23 Inositol 1,4,5-trisphosphate receptor type 3 hsa3710 Confirmed

24 Transient receptor potential cation channel subfamily A member 1 hsa8989 Confirmed

25 Calcium voltage-gated channel auxiliary subunit gamma 7 hsa59284 Confirmed

26 Transient receptor potential cation channel subfamily V member 6 hsa55503 Confirmed

27 Polycystin 1 hsa5310 Confirmed

28 Sodium channel epithelial 1 subunit alpha hsa6337 Confirmed

29 Sodium channel epithelial 1 subunit gamma hsa6340 Confirmed

30 Sodium channel epithelial 1 subunit delta hsa6339 Confirmed

31 Sodium channel epithelial 1 subunit beta hsa6338 Confirmed

32 Acid sensing ion channel subunit family member 5 hsa51802 Confirmed

33 Acid sensing ion channel subunit family member 4 hsa55515 Confirmed

34 Acid sensing ion channel subunit 3 hsa9311 Confirmed

35 Sodium voltage-gated channel beta subunit 3 hsa55800 Confirmed

36 Sodium voltage-gated channel beta subunit 1 hsa6324 Confirmed

37 Sodium voltage-gated channel beta subunit 4 hsa6330 Confirmed

38 Sodium voltage-gated channel alpha subunit 7 hsa6332 Confirmed

39 Ryanodine receptor 3 hsa6263 Confirmed

40 Ryanodine receptor 2 hsa6262 Confirmed

41 Ryanodine receptor 1 hsa6261 Confirmed

42 Sodium voltage-gated channel alpha subunit 10 hsa6336 Confirmed

43 Sodium voltage-gated channel alpha subunit 3 hsa6328 Confirmed

44 Sodium voltage-gated channel alpha subunit 4 hsa6329 Confirmed

45 Sodium voltage-gated channel alpha subunit 5 hsa6331 Confirmed

46 glutamate ionotropic receptor NMDA type subunit 3A hsa116443 Confirmed

47 Potassium two pore domain channel subfamily K member 13 hsa56659 Unknown

48 Potassium two pore domain channel subfamily K member 5 hsa8645 Unknown

49 Potassium Calcium-activated channel subfamily N member 4 hsa3783 Unknown

50 ATP binding cassette subfamily C member 9 hsa10060 Unknown
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In the second case study, we predicted candidate drugs for the target prostaglan-
din-endoperoxide synthase 2 (PTGS2) on the E dataset and aimed to assess the abil-
ity of iPALM-DLMF to predict candidate drugs for targets with no known targeting 
drugs. PTGS2 expression has been validated to be associated with colorectal cancer. 
However, PTGS2 and prostaglandin-endoperoxide synthase 1 are confused in colo-
rectal cancer pathology and therapy. The known interactions of PTGS2 with drugs is 
essential in clinic [58]. The known interactions of PTGS2 with drugs were removed 
from the training dataset, and the candidate drugs of PTGS2 predicted by iPALM-
DLMF were prioritized according to the prediction scores. The top 50 highest-scoring 
predicted drugs were selected to be validated against original database [12] and lit-
eratures. Among the predicted 50 drugs, 47 drugs had evidences to target PTGS2, 
where pentoxifylline, mesalamine, suprofen, mofezolac and sulfinpyrazone have been 
validated to interact with PTGS2 by literature [59–63], respectively. This means that 
iPALM-DLMF have good performance for new predicted interactions. The detailed 
results of the case study are shown in Table 11.

According [23], the whole heterogeneous network (in which drug and targets have at 
least one known interacting pair) was regarded as training data on the E dataset. We 
removed 80000 protein-protein interactions from the target proteins network in training 

Table 11 Top 50 predicted drugs of prostaglandin-endoperoxide synthase 2 by iPALM-DLMF on the 
E dataset

Rank Name of targets ID Evidence Rank Name of targets ID Evidence

1 Ketoprofen D00132 Confirmed 26 Meclofenamic acid D02341 Confirmed

2 Indomethacin D00141 Confirmed 27 Tenoxicam D01767 Confirmed

3 Naproxen D00118 Confirmed 28 Sodium salicylate D00566 Confirmed

4 Phenylbutazone D00510 Confirmed 29 Lornoxicam D01866 Confirmed

5 Ibuprofen D00126 Confirmed 30 Valdecoxib D02709 Confirmed

6 Caffeine D00528 Unknown 31 Diclofenac potassium D00903 Confirmed

7 Pentoxifylline D00501 Confirmed 32 Diclofenac sodium D00904 Confirmed

8 Milrinone D00417 Unknown 33 Lumiracoxib D03714 Confirmed

9 Mesalamine D00377 Confirmed 34 Etoricoxib D03710 Confirmed

10 Acetaminophen D00217 Confirmed 35 Meloxicam D00969 Confirmed

11 Ciclopirox olamine D01364 Unknown 36 Piroxicam D00127 Confirmed

12 Sulindac D00120 Confirmed 37 Tolfenamic acid D01183 Confirmed

13 Celecoxib D00567 Confirmed 38 Alminoprofen D01513 Confirmed

14 Fenoprofen D02350 Confirmed 39 Ampiroxicam D01397 Confirmed

15 Suprofen D00452 Confirmed 40 Diflunisal D00130 Confirmed

16 Flurbiprofen D00330 Confirmed 41 Parecoxib D03716 Confirmed

17 Mofezolac D01718 Confirmed 42 Nabumetone D00425 Confirmed

18 Acemetacin D01582 Confirmed 43 Indometacin farnesil D01565 Confirmed

19 Naproxen sodium D00970 Confirmed 44 Magnesium salicylate D00827 Confirmed

20 Mefenamic acid D00151 Confirmed 45 Pranoprofen D01578 Confirmed

21 Meclofenamate sodium D00169 Confirmed 46 Tolmetin sodium D00158 Confirmed

22 Tolmetin D02355 Confirmed 47 Sulfinpyrazone D00449 Confirmed

23 Tiaprofenic acid D01325 Confirmed 48 Flurbiprofen axetil D01475 Confirmed

24 Flurbiprofen sodium D02290 Confirmed 49 Choline salicylate D00810 Confirmed

25 Indomethacin sodium D02110 Confirmed 50 Ketorolac tromethamine D00813 Confirmed
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data. Among the top 200 highest-scoring predictions, we found that all of them can also 
be supported by the original database [12]. Networks of the predicted drug–target inter-
actions are shown in Fig. 9.

Conclusion
It is important to ensure sparseness of the matrices obtained by non-negative matrix 
factorization to find the novel usage of drugs in drug research. In this paper, we pro-
pose a matrix factorization based method, iPALM-DLMF, to predict interactions 
between drugs and targets. iPALM-DLMF uses graph dual regularization terms to 
capture structural information from the drug similarity matrix and the target similar-
ity matrix. At the same time, L2,1 norm regularization terms is used to ensure sparse-
ness of the matrices obtained by non-negative matrix factorization. Finally, an inertial 
proximal alternating linearized minimization algorithm is used to solve the matrix 
factorization with graph dual regularization terms and L2,1 norm regularization 
terms. Extensive experiments show that iPALM-DLMF outperforms the state-of-the-
art methods in predicting DTIs.

As a kind of gradient descent methods, iPALM-DLMF can converge to KKT point. 
In the future, we are interested in using the idea of multi-objective particle swarm 
optimization [64] and fixed-point iterative method [65] to obtain a accurate solution 
in DTIs prediction models. At that time, more attention should be paid to synergistic 
drug combinations prediction problem [66].
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