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Abstract 

Background: Obtaining accurate drug–target binding affinity (DTA) information 
is significant for drug discovery and drug repositioning. Although some methods have 
been proposed for predicting DTA, the features of proteins and drugs still need to be 
further analyzed. Recently, deep learning has been successfully used in many fields. 
Hence, designing a more effective deep learning method for predicting DTA remains 
attractive.

Results: Dynamic graph DTA (DGDTA), which uses a dynamic graph attention network 
combined with a bidirectional long short-term memory (Bi-LSTM) network to predict 
DTA is proposed in this paper. DGDTA adopts drug compound as input according to its 
corresponding simplified molecular input line entry system (SMILES) and protein amino 
acid sequence. First, each drug is considered a graph of interactions between atoms 
and edges, and dynamic attention scores are used to consider which atoms and edges 
in the drug are most important for predicting DTA. Then, Bi-LSTM is used to better 
extract the contextual information features of protein amino acid sequences. Finally, 
after combining the obtained drug and protein feature vectors, the DTA is predicted 
by a fully connected layer. The source code is available from GitHub at https:// github. 
com/ luoju nwei/ DGDTA.

Conclusions: The experimental results show that DGDTA can predict DTA more accu-
rately than some other methods.

Keywords: Drug–target binding affinity, Dynamic graph attention network, Long 
short-term memory, Drug discovery

Background
Drug–target interaction (DTI) prediction is a critical task in drug discovery and drug 
repositioning [1, 2]. Structural changes to a drug can significantly alter its binding affin-
ity with proteins [3], making it important to predict whether a drug can bind to a specific 
protein. However, the traditional high-throughput screening experiments used to detect 
this activity are expensive and time-consuming [4]. Therefore, computing methods for 
DTI prediction have become popular and effective [5, 6].

DTI calculation methods focus on binary classification [2, 7], and the main goal is 
to determine whether a drug and a target interact with each other [8]. However, the 

*Correspondence:   
luojunwei@hpu.edu.cn

1 School of Software, Henan 
Polytechnic University, 
Jiaozuo 454003, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05497-5&domain=pdf
https://github.com/luojunwei/DGDTA
https://github.com/luojunwei/DGDTA


Page 2 of 15Zhai et al. BMC Bioinformatics          (2023) 24:367 

assumed binding strength values of the given protein and the drug compound are con-
tinuous and referred to as their binding affinity. The drug–target pair prediction task 
is described as an affinity prediction problem [8] in which, the binding affinity score is 
directly used, thus creating a more realistic experiment. In addition, regression-based 
models are more advantageous in approximating the strength of DTIs [9], making them 
more conducive to the discovery of new drug compounds in the limited drug research 
space.

Recently, some methods [10, 11] for predicting drug–target affinity (DTA) have been 
developed. SimBoost [11] enhances the performance of learning-based methods by 
extracting features from drugs, targets, and drug–target pairs and providing them to 
gradient-enhanced supervised learning methods. Affinity is characterized by an inhibi-
tion constant ( Ki ), dissociation constant ( Kd ), changes in free energy measures ( δG,δH ), 
half-maximal inhibition constant ( IC50 ) [12], half-maximal activity concentration ( AC50 ) 
[13], KIBA score [14] and scoring. Stronger affinity readings indicate greater DTIs [15]. 
In the KronRLS [10, 16] model, the Kronecker products of a drug and target are con-
structed by drug and protein pairs to calculate the kernel K of the pairs, which is entered 
into a regularized least-squares regression model (RLS) to predict the binding affinity.

With the success of deep learning, various deep networks have been used for DTA 
prediction [8, 13], and have achieved better performance than machine learning. Some 
prediction methods are summarized in Table 1. In the DeepDTA [8] model, one-dimen-
sional sequences of drugs and proteins are fed into a convolutional neural network 
(CNN) to extract the features of drugs and their targets through the (simplified molecu-
lar input line entry system) SMILES string representations of the drugs, and good results 
have been achieved. The PADME [13] model combines molecular graph convolution of 
compounds and protein features and uses fixed-rule descriptors to represent proteins, 
improving the predictive performance of the model. The model is more scalable than 
traditional machine learning models. WideDTA [17] builds on DeepDTA [8] by repre-
senting drugs and proteins as words, learning more potential characteristics of drugs 
and proteins. However, since the convolution window of a CNN is fixed, this network 
is unable to extract the features of contextual information. To represent molecules in a 
natural way that preserves as much molecular structure information as possible, thus 
allowing the model to better learn the relevance of the underlying space, an increasing 
number of approaches are utilizing graph neural networks to predict DTA. MT-DTI 
[18] introduces the attention mechanism in drug representation and takes more account 
of the correlation between different molecules, which improves the prediction perfor-
mance of DTA and greatly increases the interpretability. In DeepGS [19], the topological 
structure information of a drug is extracted by using a graph attention network (GAT) 
[20], while the local chemical background of the drug is captured by using a bidirectional 
gated recurrent unit (Bi-GRU) [21] and combined with the protein sequence features 
extracted by a CNN for prediction. rzMLP [22] uses a gMLP model to aggregate input 
features with constant size, and uses a ReZero layer to smooth the training process for 
that block. The model is able to learn more complex global features while avoiding poor 
predictions due to a too deep model. EnsembleDLM [23] aggregates predictions from 
multiple deep neural networks, not only obtaining better predictions, but also exploring 
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how much data deep learning networks need to achieve better prediction performance. 
GANsDTA [24] employs a generative adversarial network (GAN) [25] to extract fea-
tures of protein sequences and compound SMILES in an unsupervised manner. Because 
GAN’s feature extractor does not require labeled data, the model is able to accommodate 
unlabeled data for training. Because GAN’s feature extractor does not require labeled 
data, the model is able to accommodate unlabeled data for training. The model can use 
more datasets to learn protein and drug features, thus achieving correspondingly better 
feature representation and prediction performance. GraphDTA [26] modelled drugs as 
molecular graphs with one-dimensional drug sequences, then put the graph into sev-
eral graph network models and obtained deep learning models, which were excellent at 
the time. GraphDTA [26] demonstrated that representing drugs as graphs can further 
improve the prediction capabilities of deep learning models in terms of DTA.

However, two problems remain that prevent accurate DTA. (1) The GAT model used 
by some contemporary methods is a restricted form of static attention, and the attention 
coefficient function of the nodes in the drug graph is monotonic, which leads to the ina-
bility to comprehensively extract drug features. (2) When processing protein sequences, 

Table 1 Prediction methods

Method Published time Model Summary

SimBoost [11] 2016 Gradient boosting regression trees Predicting continuous values of 
binding affinities of compounds and 
proteins

KronRLS [16] 2018 Multiple kernel learning The first method for time- and 
memory-efficient learning with 
multiple pairwise kernels

DeepDTA [8] 2018 CNN Processing protein sequences and 
compound 1D representations using 
convolutional neural networks

PADME [13] 2018 DNN The first to combine Molecular Graph 
Convolution for compound featuriza-
tion with protein descriptors

WideDTA [17] 2019 CNN Combining four different textual 
pieces of information related to 
proteins and ligands

MT-DTI [18] 2019 Transformers + CNN Proposing a new molecule represen-
tation based on the self-attention 
mechanism

GANsDTA [24] 2019 GAN + CNN Effectively learning valuable features 
from labeled and unlabeled data

DeepGS [19] 2020 GAT + Bi-GRU Extracting the topological informa-
tion of the molecular map and the 
local chemical context of the drug

rzMLP [22] 2021 gMLP + ReZero Use MHM block for multiple protein 
and ligand representations and 
rzMLP block to aggregate concate-
nated protein-ligand pair representa-
tions

EnsembelDLM [23] 2021 Multiple deep networks Aggregating predictions from multi-
ple deep neural networks

GraphDTA [26] 2021 GIN + CNN Introducing multiple models of 
graph neural networks
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the contextual association information of amino acid sequences is not acquired, and the 
protein association features are thus ignored.

To solve the above problem, this paper proposes a method named dynamic graph DTA 
(DGDTA). In DGDTA, each drug is considered a graph of interactions between atoms 
and edges, and a dynamic attention score is used to consider which atoms and edges in 
the drug graph play more critical roles in predicting DTA. Compared with static atten-
tion, DGDTA is able to extract a more comprehensive drug signature. To better obtain 
the contextual features of amino acid sequences in proteins, DGDTA introduces bidirec-
tional long short-term memory (Bi-LSTM) [27] to extract more comprehensive amino 
acid sequence features in combination with drugs. Through validations conducted on 
the Davis [28] and KIBA [14] datasets, DGDTA achieves better performance than the 
competing methods in terms of results. In this paper, a dynamic graph attention network 
example is given to further improve the representativeness and effectiveness of drug 
molecule maps. The experimental results demonstrate the effectiveness of DGDTA.

Methods
DGDTA is a method for predicting DTA based on a deep learning network, and its 
architecture (shown in Fig. 1), is divided into three main steps. (1) Obtaining drug fea-
tures. DGDTA uses the SMILES [29] as the drug compound input, and transforms the 
drug into a drug graph consisting of atoms and edges with reference to the natural prop-
erties of the drug. According to the literature, a two-layer graph network structure has 
better feature extraction performance. DGDTA uses a two-layer dynamic graph atten-
tion network (GATv2) [30] and a combination of GATv2 and a graph convolutional net-
work (GCN) to obtain drug graph features, and DGDTA is divided into two versions: 
DGDTA-AL and DGDTA-CL. (2) Extracting protein features. DGDTA uses a combina-
tion of Bi-LSTM and multilayer convolutional networks to obtain more comprehensive 
protein amino acid sequence information while considering the contextual relationships 
among the amino acid sequences. (3) Performing DTA prediction. The observed con-
nections among drug features and protein features during extraction used to determine 

Fig. 1 General architecture of DGDTA
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DTA via a fully connected layer. The details of DGDTA are described in the following 
parts.

Obtaining drug features

With the development of graph neural networks for DTA, many approaches have been 
presented. When using a graph to represent a drug, it is difficult to accurately extract 
graph features due to the complexity of drug graphs. DGDTA adopts a dynamic GAT to 
obtain drug features. Through SMILE code, drug’s atomic composition, and the valence 
charge number of atoms can be inferred, which can further judge drug information 
such as the number of hydrogen bonds, and then used for the drug’s feature represen-
tation in affinity prediction. To better extract drug features, DGDTA uses the SMILES 
[29] sequences of drugs as inputs, and uses RDKit to extract the atoms and interac-
tions from the SMILES sequences. Then, DGDTA constructs a graph for each drug 
based on its SMILES sequence. A drug graph is denoted as G = (V ,E) , where V  is a 
node represented by a drug atom, and E represents the set of edges between nodes. Each 
node is represented by an n-dimensional vector from DeepChem [31]. This n-dimen-
sional vector includes the atomic symbols, the number of adjacent hydrogen atoms, 
the number of adjacent atoms, the implicit valence of the atoms (implicit valence) and 
whether the bonds are aromatic. One node is represented as d = f1, f2, f3 . . . , fn  . By 
representing the atoms d of each drug as the vertices of the drug graph, the features 
D =

{

d1, d2, d3 . . . , dD
}

 of each drug are obtained. To obtain more information about 
the graph structure in n-dimensional space, this paper adopts a dynamic attention 
mechanism for the graph:

e
(

di, dj
)

 denotes the importance of the features of neighbour node j to node i , where Ni  
represents the neighbours of node i , a ∈ R

2d′ , W ∈ R
2d′×d are learned, and II denotes 

vector concatenation. Utilizing the softmax function to normalize all neighbours, we can 
obtain the following attention function:

Combining Eqs. (1) and (2), the coefficients of attention are expressed as:

After integrating the feature information of the neighbouring nodes, we apply the non-
linear parameter σ , to obtain the output features of each node:

Nodes are represented as the weighted averages of their neighbouring feature vectors. 
To further solidify the learning process of dynamic graph self-attention and improve the 
learning effect, the attention is extended to multiheaded attention.
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H independent attention mechanisms connect the semantic feature vectors of the nodes 
through Eq.  (5), and obtain an updated drug feature representation 
D(1) =

{

d
(1)
1 , d

(1)
2 , d

(1)
3 . . . , d

(1)
D

}

 . Based on a combination of research and experiments, a 

two-layer graph network structure is able to obtain more accurate prediction results. 
First, the graph network in the second layer uses a dynamic graph neural network and 
obtains the drug feature representations D(2) =

{

d
(2)
1 , d

(2)
2 , d

(2)
3 . . . , d

(2)
D

}

 ; this version is 

named DGDTA-AL. After many experiments and comparisons, the graph network in 
the second layer is replaced with a GCN, whose propagation rules are as follows:

H (l) denotes the nodal feature matrix of lth , where 
∼

A= A+ I , A is the adjacency matrix, I 
is the unit matrix, 

∼

D= D + I , D is the degree matrix, and W  is a trainable weight. A drug 
feature representation D(2)′ =

{

d
(2)′

1 , d
(2)′

2 , d
(2)′

3 . . . , d
(2)′

D

}

 is obtained. The GCN is 

applied to the full graph via the Laplacian matrix, which captures the connectivity rela-
tionships between the graph nodes and updates the node features of the full graph. In 
this paper, this version is named DGDTA-CL. We use the rectified linear unit ( ReLU ) 
activation function after each layer and use global maximum pooling in the last layer to 
obtain the vector representation of the drug.

Extracting protein features

A protein sequence is a string of ASCII characters represented as amino acids. In many 
methods, one-hot codes are used to represent drugs and proteins, as well as other bio-
logical sequences, such as DNA and RNA. We use one-hot encoding to represent the 
atoms of the drug and incorporate atomic properties for drug initialization. Because 
drug molecules are shorter and simpler in structure than proteins, we utilize one-hot 
encoding to expand the dimensionality of the drug’s representation. This enables model 
to capture specific information associated with each drug atom. For protein, in order 
to prevent feature singularity, we employ different approaches for the initialization. In 
this paper, we map each amino acid to a numerical value and represent one protein as 
a sequence of integers. And then an embedding layer is added to the sequence, where 
each character is represented by a 128-dimensional vector. For training purposes, the 
sequences are cut or padded to a fixed sequence with a length of 1000. If the sequence 
is short, it is padded with 0 values. In this paper, the embedding representation ( c ∈ R

dp , 
where d is the dimensionality of the protein embedding) is a Bi-LSTM layer that cap-
tures the dependencies the characters in a sequence of length n ( C = [c1, c2 . . . cn] ). We 
obtain pi ∈ R

2d1 , where d1 denotes the number of output cells used in each LSTM cell.

(5)d′′i = σ
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1

H

H
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The vector P is composed of the output vectors generated by the Bi-LSTM; i.e., 
P = [p1, p2 . . . pn] . Finally, we use a one-dimensional convolutional layer to learn differ-
ent levels of abstract features to obtain a vector of protein sequences representations.

Performing DTA prediction

The prediction layer connects the learned drug vector representation with the vector 
representation of the protein sequence. Then, they are used as inputs and the output y is 
obtained from the fully connected layer.

 where Woutput denotes the weight matrix of the fully connected layer and boutput denotes 
the bias of the fully connected layer.

We choose the mean square error (MSE) loss as the loss function, which has the 
advantage of a function curve that is smooth, continuous and derivable everywhere, 
making it convenient for use in the gradient descent algorithm. As the error decreases, 
the gradient also decreases, which is more conducive to convergence and more stable.

 where Yi ∈ R
B , yi ∈ R

B denotes the predicted affinity value between the i th sample and 
the label of the affinity value in the sample, and B denotes the batch size.

Model training

DGDTA takes drug SMILES strings and protein amino acid sequences as inputs. In this 
paper, Python 3.9, PyTorch 1.12.1 and PyG2.1 are used to implement dynamic GAT and 
LSTM. In this paper, the number of layers in the graph neural network is set to 2, Bi-
LSTM is applied, the number of hidden states is set to 10, and the dropout parameter is 
set to 0.2. Then, the proposed method is trained on the above dataset for 1000 epochs, 
and the adaptive moment estimation (Adam) optimizer is used with a learning rate of 
0.0005. The devices that are used for the experiments are an Intel(R) Xeon(R) Platinum 
8260 CPU @ 2.30 GHz and an NVIDIA GeForce RTX 3090 GPU.

Results
In this section, we present the dataset used, the evaluation metrics, an ablation study 
and the results of a comparison with state-of-the-art methods. This section also illus-
trates the advantage of the dynamic GAT and gives an example of a real drug–target 
combination.

(8)←−
pi =

←−−−
LSTM(ci, pi+1)

(9)pi =
−→
pi �

←−
pi

(10)y = Woutput [D,P]+ boutput

(11)MSE =
1

n

n
∑

i=1

(Yi − yi)
2
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Dataset and evaluation metrics

We use the Davis [28] and KIBA [14] datasets to evaluate the performance of the method 
proposed in this paper. The numbers of drugs and targets in the dataset, and the sample 
sizes for training and testing during the experiments are shown in Table 2. In this paper, 
the concordance index (CI; the larger the better) [32] and MSE (the smaller the better) 
are also used as the main indicators for evaluating the performance of the tested models. 
In this paper, the GAT and GAT_GCN models are chosen as baseline1 and baseline2 of 
the ablation study, respectively.

Ablation study

In the ablation study, we analyse the effectiveness of the innovative elements of our 
method. In this section, to be as fair as possible, we use the same training and testing 
sets as those employed by the baselines and the same evaluation metrics. In this paper, 
a dynamic graph neural network is incorporated into the drug graph, and Bi-LSTM is 
added to extract protein amino acid sequence features to further improve the model 
accuracy. The popular GRU model is added as a comparison method. GRU and LSTM 
are important variants of recurrent neural networks, and they have strong memory and 
long-distance dependence capturing ability when processing sequence data. GRU has 
higher computational efficiency with reduced parameter settings compared to LSTM, 
but this also leads to some loss of information at longer distances in some cases. In order 
to better capture the contextual association information of amino acid sequences and 
further prove the effectiveness of LSTM method, GRU is introduced as a comparison in 
the ablation study. And the results of the ablation study are shown in Figs. 2 and 3.

Table 2 Datasets

Davis KIBA

Drugs 72 2116

Targets 442 229

Total samples 30,056 118,254

Train samples 25,046 98,545

Test samples 5010 19,709

Fig. 2 Comparison between baseline1 and different models at 200 and 1000 epochs
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Figure  2 shows that on the Davis and KIBA datasets, the DTA prediction results 
obtained by Model-2 using the dynamic GAT achieve a higher CI and a smaller MSE 
than those of baseline 1 in the same number of epochs. Model-1 with the addition of 
Bi-LSTM method is also better than baseline1. Based on Model-2, Bi-LSTM is used 
to improve the ability to extract contextual protein amino acid sequence features. The 
evaluation score of Model-4 is improved further, while the prediction result is bet-
ter than that of the GRU in Model-3 with the same parameters. Model-4 achieves the 
best results in the 200-epoch and 1000-epoch comparisons conducted on both datasets, 
and Model-4 is the DGDTA-AL method illustrated in 2.1. As shown in Fig. 3, Model-8 
obtains the highest CI and the lowest MSE in the comparison with baseline 2 over the 
same number of epochs; Model-8 is the DGDTA-CL method.

Fig. 3 Comparison between baseline2 and different models at 200 and 1000 epochs

Table 3 Ablation study on the Davis and KIBA datasets

*Bold values represent the best result

Dataset Methods GATv2 GCN GRU LSTM CI MSE

Davis Baseline1 – – – – 0.892 0.232

Model-1 – – – ✓ 0.893 0.230

Model-2 ✓ – – – 0.895 0.232

Model-3 ✓ – ✓ – 0.896 0.228

Model-4 ✓ – – ✓ 0.899* 0.225
Baseline2 – ✓ – – 0.881 0.245

Model-5 – ✓ – ✓ 0.886 0.241

Model-6 ✓ ✓ – – 0.883 0.242

Model-7 ✓ ✓ ✓ – 0.887 0.239

Model-8 ✓ ✓ – ✓ 0.889 0.237

KIBA Baseline1 – – – – 0.866 0.179

Model-1 – – – ✓ 0.867 0.172

Model-2 ✓ – – – 0.869 0.175

Model-3 ✓ – ✓ 0.871 0.169

Model-4 ✓ – – ✓ 0.878 0.162

Baseline2 – ✓ – – 0.891 0.139

Model-5 ✓ – ✓ 0.896 0.131

Model-6 ✓ ✓ – – 0.893 0.135

Model-7 ✓ ✓ ✓ – 0.898 0.128

Model-8 ✓ ✓ – ✓ 0.902 0.125
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In this paper, the results obtained by different models in the ablation study are pre-
sented in Table  3. On the Davis dataset, DGDTA-AL achieves the best results (in 
bold), reaching 0.899 and 0.225 CI and MSE values, respectively, which are improve-
ments of 0.7% and 0.7% over those of baseline. DGDTA-CL achieves a CI of 0.902 and 
an MSE of 0.125 on the KIBA dataset, which are improvements of 1.1% and 1.4% over 
those of baseline 2, respectively. The results of the ablation study demonstrate the 
effectiveness of the innovative elements proposed in this paper.

Comparison with the state‑of‑the‑art methods

In this section, Table 4 shows the experimental results obtained by DGDTA and the 
comparison methods. To be consistent with the ablation experiment in 3.2, we use the 
same datasets and evaluation metrics. Based on this, we added the r2m evaluation met-
ric. As shown in Table  4, DGDTA-AL is better than the mainstream DTA methods 
in terms of the CI, MSE and r2m on the Davis dataset. Compared with DeepGLSTM 
[33], which has the best results among the comparison methods, the CI and MSE of 
the proposed approach are improved by 0.6% and 1.1%, respectively. Additionally, the 
CI and MSE are improved by 0.9% and 0.4%, respectively, over those of the excellent 
MATT-DTI [34] method. And, r2m reaches 0.707. As shown in Table  4, DGDTA-CL 
achieves a more significant improvement in its results on the KIBA dataset. Com-
pared with the DeepGLSTM [33] method, DGDTA-CL attains 1.2% and 1.8% perfor-
mance improvements in terms of the CI and MSE metrics, and 1.3% and 2.5% CI and 
MSE improvements are achieved over the MATT-DTI [34] method, respectively. And, 
r2m reaches 0.809. Figure 4 plots the CI scores obtained by the methods in the table for 

Table 4 Comparison with the state-of-the-art methods

*Bold values represent the best result

Dataset Methods CI MSE r
2
m

Davis DeepDTA [8] 0.878 0.261 0.631

DeepCDA [35] 0.891 0.248 0.652

MATT-DTI [34] 0.890 0.229 0.688

GraphDTA(GAT) [26] 0.892 0.232 0.689

GraphDTA(GAT-GCN) [26] 0.881 0.245 0.667

CPInformer [6] 0.874 0.277 0.621

DeepGLSTM [33] 0.893 0.236 0.679

DGDTA-CL (ours) 0.889 0.237 0.672

DGDTA-AL (ours) 0.899* 0.225 0.707
KIBA DeepDTA [8] 0.863 0.194 0.673

DeepCDA [35] 0.889 0.176 0.682

MATT-DTI [34] 0.889 0.150 0.762

GraphDTA(GAT) [26] 0.866 0.179 0.738

GraphDTA(GAT-GCN) [26] 0.891 0.139 0.789

CPInformer [6] 0.867 0.183 0.678

DeepGLSTM [33] 0.890 0.143 0.789

DGDTA-AL (ours) 0.881 0.162 0.762

DGDTA-CL (ours) 0.902 0.125 0.809
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both datasets to further demonstrate the performance improvement provided by the 
DGDTA method. The experimental results show that DGDTA is better than the com-
parative methods, and the use of a dynamic graph with attention to extract drug fea-
tures and effective contextual protein information is significant for predicting DTA.

Advantages of the DGDTA model

A dynamic GAT suggests that a traditional GAT is only a computationally constrained form 
of “static” attention: for any query node, the attention function is monotonic with respect to 
the key fraction [30]. As shown in the GAT heatmap presented in Fig. 5, the ordering of the 
attention coefficients is global, and all queries focus primarily on the 7th key.

Formula (10) is the method for calculating the attention coefficients in the GAT, 
indicating the importance of the feature of node j to node i . As Ni  is limited, there 
exists a node jmax where the attention distribution a only calculates static attention 
from jmax due to it being the maximum value. To overcome the monotonicity restric-
tion of the key score, Formula (12) is transformed into Formula (1). This variant is 
more expressive than the GAT, as shown in the attention maps of GATv2 in Fig.  5. 
Since static attention cannot have different correlations for different keys and differ-
ent queries, if there is one key that has a higher attention score than the others, then 
no query can ignore the score of this key, which results in very limited static attention.

Among the datasets, Davis contains 2457 positive samples and 27,599 negative sam-
ples, the total number of samples is small, and the label distribution in the dataset is 
unbalanced. KIBA has 22,729 positive samples and 95,525 negative samples, so it con-
tains more samples than Davis, but most of the labels in KIBA are very concentrated, 
and the label distribution is relatively normal. These problems create barriers for the 
model in terms of affinity prediction. Dynamic graph attention pays different amounts 
of attention to different queries in the attention score, enabling it to better distinguish 
the similarities and differences between samples. It is more discriminative during drug 
graph extraction and alleviates the imbalance problem in the given dataset. Figure 6 
shows the MSE changes exhibited by the DGDTA-AL, DGDTA-CL, baseline 1 and 
baseline 2 models on Davis and KIBA at 200 and 500 epochs. Blue and green represent 
our proposed models with faster decreasing trends. The results demonstrate the more 
significant improvement yielded by the dynamic GAT in terms of predicting DTA.

(12)e
(

di, dj
)

= LeakyReLU
(

aT [Wdi] �
[

Wdj
]

)

j ∈ Ni

Fig. 4 CI comparison among the experimental methods on the Davis and KIBA datasets
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Example of a realistic drug–target combination

To further demonstrate the validity of the proposed method, this paper gives an example 
to show the 3D model produced for a tested sample in reality. As shown in Fig. 7, the 
targeted drug (sunitinib) inhibits receptor tyrosine kinases (RTKs), where certain recep-
tor tyrosine kinases are involved in tumour growth, pathological blood vessel formation 
and tumour metastasis. In biological and cytometric assays, sunitinib has been shown to 
inhibit tumour growth, cause tumour regression and inhibit tumour metastasis. In this 
paper, the bound small drug molecules are scaled up on the right side, and the drug and 

Fig. 5 Attention coefficients of the GAT and GATv2

Fig. 6 MSE trend

Fig. 7 Visualization of the binding of a drug ‘DB5329102’ and a target ‘ITK’
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its binding target correspond to the drug ‘DB5329102’ and the target ‘ITK’ in the test set, 
respectively; this is done to verify the validity and practicality of the model proposed in 
this paper in practical applications through known drug–target binding examples.

Discussion
In this paper, DGDTA is proposed based on the dynamic graph attention model and 
is divided into two versions, DGDTA-AL and DGDTA-CL, to predict the affinity val-
ues between drugs and proteins. Ablation experiments are performed on the Davis and 
KIBA datasets, and the proposed approach is compared with the DTA models that are 
popular today. The experimental results show that DGDTA can achieve better predic-
tion performance and demonstrate that the dynamic graph attention model can extract 
more comprehensive feature representations from molecular drug maps.

Conclusions
DGDTA can effectively predict DTA via deep learning, and it can obtain high CI and 
MSE metrics on experimental datasets, but it still has shortcomings. First, while dynamic 
graph attention models attain good prediction performance, they also require increased 
prediction time and computational cost. Second, drugs and proteins have very complex 
spatial structures, and much characteristic drug and protein information is lost in one-
dimensional sequences.

In the future, further consideration will be given to fusing other characteristic drug 
information, such as their side effects, physicochemical properties, and deep structures. 
This will contribute to improving the performance of drug–target binding prediction 
models from various aspects.
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