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Abstract 

Background:  The relationship between the sequence of a protein, its structure, 
and the resulting connection between its structure and function, is a foundational 
principle in biological science. Only recently has the computational prediction of pro-
tein structure based only on protein sequence been addressed effectively by Alpha-
Fold, a neural network approach that can predict the majority of protein structures 
with X-ray crystallographic accuracy.

A question that is now of acute relevance is the “inverse protein folding problem”: 
predicting the sequence of a protein that folds into a specified structure. This will be 
of immense value in protein engineering and biotechnology, and will allow the design 
and expression of recombinant proteins that can, for instance, fold into specified struc-
tures as a scaffold for the attachment of recombinant antigens, or enzymes with modi-
fied or novel catalytic activities.

Here we describe the development of SeqPredNN, a feed-forward neural network 
trained with X-ray crystallographic structures from the RCSB Protein Data Bank to pre-
dict the identity of amino acids in a protein structure using only the relative positions, 
orientations, and backbone dihedral angles of nearby residues.

Results:  We predict the sequence of a protein expected to fold into a specified 
structure and assess the accuracy of the prediction using both AlphaFold and RoseT-
TAFold to computationally generate the fold of the derived sequence. We show 
that the sequences predicted by SeqPredNN fold into a structure with a median 
TM-score of 0.638 when compared to  the crystal structure according to AlphaFold 
predictions, yet these sequences are unique and only 28.4% identical to the sequence 
of the crystallized protein.

Conclusions:  We propose that SeqPredNN will be a valuable tool to generate pro-
teins of defined structure for the design of novel biomaterials, pharmaceuticals, 
catalysts, and reporter systems. The low sequence identity of its predictions compared 
to the native sequence could prove useful for developing proteins with modified 
physical properties, such as water solubility and thermal stability. The speed and ease 
of use of SeqPredNN offers a significant advantage over physics-based protein design 
methods.
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Background
Levinthal and colleagues pointed out that, although the combination of all dihedral and 
allowed rotation angles in a protein was astronomical, the protein folded into a stable 
structure in solution within microseconds [1]. Anfinsen’s ribonuclease refolding experi-
ments further underscored that this structure was solely dependent on the amino acid 
sequence of the protein [2].

The rate of generation of genomic data far outstrips the rate of solving protein X-ray 
crystallographic structures. This disparity has resulted in a bottleneck in the full func-
tional interpretation of genomic data [3]. The development of algorithms to accurately 
predict protein structure from amino acid sequence was promoted by the bi-annual 
Critical Assessment of Techniques for Protein Structure Prediction (CASP) challenge 
[4]. This has resulted in spectacular advances in the success of ab initio predictions, and 
AlphaFold [5] and RoseTTAFold [6] now approach crystal structure accuracy. Many 
other methods are now available to accurately predict protein structures, including 
DMPFold [7], a deep learning model capable of predicting structures of proteins from 
underrepresented protein families, I-TASSER-MTD [8], which assembles template pro-
tein fragments into protein domains for multi-domain proteins, and PAThreader [9], 
another deep learning model that identifies remotely homologous protein templates that 
are used to significantly improve the structures predicted by AlphaFold. The reverse of 
the problem, namely the prediction of an amino acid sequence that will fold into a speci-
fied protein structure, is an evolving field, and holds significant promise for the advance-
ment of human health, polymer science and biotechnology, by the design of bespoke 
enzymes, structural proteins and interacting sub-units. To date the inverse folding prob-
lem has been addressed largely using physics-based methods to identify amino acid 
sequences that minimize the conformational energy of a backbone scaffold, with the aim 
of finding a sequence for which the target structure is the most stable conformation. This 
requires the calculation of pairwise energies between millions of amino acid side chain 
rotamers, resulting in a very high computational cost for protein design [10]. However, 
the success rate for producing stable proteins using these protocols may be as low as 6% 
[11] and many researchers screen hundreds to thousands of designs to find a few func-
tional proteins [12].

Machine learning can be applied to design proteins much more efficiently, by exploit-
ing the structural data of almost 200 000 proteins deposited in the Protein Data Bank 
[13]. Natural proteins have sequences that are near-optimal for stabilizing their folded 
state [14]. A neural network that successfully applies the principles of protein folding 
encoded in natural proteins could potentially generate protein sequences with a higher 
success rate using significantly fewer computations. Additionally, natural selection has 
optimized natural proteins for solubility and function, which would allow machine 
learning methods to produce proteins that are less likely to aggregate and are more flex-
ible than the most-stable sequence.

A few tools addressing the inverse folding problem using neural networks have 
recently appeared, including ProDCoNN [15], a convolutional neural network model, 
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and ProteinSolver [16], a graph neural network model. Here we present SeqPredNN, 
which, unlike ProDCoNN and ProteinSolver, is based on a simple deep multilayer per-
ceptron trained with sequence features distilled from sequences with less than 90% iden-
tity in the Protein Data Bank (PDB). We present a novel method for representing the 
structural context of amino acid residues using only the backbone atoms of 16 proxi-
mal residues. We show that this minimal representation of a small volume around each 
residue is sufficiently informative to predict sequences that fold into the target structure. 
Compared to other tools SeqPredNN generates amino acid sequences with lower iden-
tity to the original sequence. This property will allow greater versatility in enzyme design 
and in material science.

Implementation
SeqPredNN was developed in Python version 3.9 and executed on Windows (Version 
10 build 19,042.1348) and Linux (Ubuntu 20.4.2 LTR) platforms. The neural network is 
implemented using the Pytorch API. SeqPredNN comprises 3 programs: Featurise (for 
generating input features for the neural network from the PDB files), Train_model (for 
training new neural network models) and Predict (for predicting sequences from struc-
tural features and evaluating trained models). The programs, including the parameters of 
the pre-trained model are freely available at https://​github.​com/​falat​egan/​SeqPr​edNN. 
Before a user can predict amino acid sequences for protein structures, Featurise must 
be used to generate input features from PDB files containing the target structures. The 
user may then run Predict with the pretrained SeqPredNN model parameters to gen-
erate amino acid sequences for the target structures using the features generated with 
Featurise. The user may also use the features to train a new neural network model by 
running Train_model. All three programs are executed using a command line interface. 
Detailed usage instructions are included in the README file on the GitHub repository.

Data processing

The data sampling procedure is summarised in Fig. 1. The protein structures from the 
entire PDB were filtered using the PISCES server [17] to obtain a nonredundant set of 
33,973 protein chains with X-ray crystallographic structures at a resolution of less than 
2.5 Å and a length greater than 40 residues, and where each protein chain has less than 
90% similarity to any other chain in the dataset. Ten percent of the protein chains were 
randomly assigned to an independent test set. The rest of the chains were used to train 
the model. Ten percent of the residues in the protein chains of the training set were 
randomly assigned to a validation set that were only used to assess the model during 
training.

The Featurise program derives local structural features for each amino acid resi-
due in the dataset. These features represent the conformation of the protein back-
bone around a residue as the relative positions, orientations, and dihedral angles of 
nearby residues. The positions and orientations of these residues are expressed in 
a local coordinate system derived from the backbone geometry of each residue to 
ensure that the coordinates are invariant to translation and rotation of the entire pro-
tein, reducing the degrees of freedom in the representation of the protein structure. 
Figure  2a shows the derivation of the local coordinate system. The local backbone 

https://github.com/falategan/SeqPredNN
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conformation around residue i is represented as a set of translation vectors ti,j from 
the α-carbon of residue i to the α-carbon of each nearby residue j . Each translation 
vector consists of three coordinates in the local reference frame Oi,j. The orientation 
of each nearby residue is represented as a unit quaternion ri,j = a+ bi+ cj + dk  , 
which describes the rotation from the orientation Oi to Oj . (Fig. 2b).

Fig. 1  Flow diagram illustrating the sampling of protein structures to train, validate and test the SeqPredNN 
model

Fig. 2  Derivation of structural features for an amino acid residue. a The orientation matrix for residue i  
consists of 3 orthogonal unit vectors: ui , v i , and w i . The first basis vector of the orientation matrix is the 
normalised vector from the backbone amide nitrogen to the backbone carbonyl carbon of residue i  in 
the PDB crystal structure, i.e., ui = �ci − ni� . If ai is the vector from the amide nitrogen to the α-carbon 
cαi , ai = ni − cαi , then the second basis vector v i is the normalised component of ai that is orthogonal 
to ui . This vector is derived as the difference between ai and bi , the projection of ai onto ui such that 
bi = (ai • ui)ui and v i = �ai − bi�. The third basis vector w i = ui × v i . b The local structural environment of 
residue i  is represented by its relation to nearby residues j  . The translation vectors t i,j are the vectors to the 
α-carbons of residues j  , in the reference frame Oi with basis vectors ui , v i and w i with the origin on cαi. Thus 
t i,j = Oi •

(
cαj − cαi

)
. The relative orientations of proximal residues are represented by rotation quaternions 

r i,j , such that r−1
i,j Oir i,j = Oj . The φ and ψ dihedral angles of residues i  and j  are encoded as sinφ , cosφ , sinψ 

and sinψ values
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Neural network model

We trained the fully connected feed-forward neural network to classify a residue as one 
of the twenty standard amino acids based on the local structural features. The neural 
network consists of three hidden layers, with a rectified linear unit (ReLU) activation 
function and dropout [18] regularisation (with p = 0.5) between each layer (Fig. 3). The 
neural network outputs a SoftMax normalised prediction value for each of the twenty 
standard amino acids. The error of the model is quantified by the cross-entropy loss of 
the output, which is backpropagated to minimise the model by gradient descent. The 
Adam optimisation algorithm [19] optimises the model parameters with an adaptive 
learning rate. After extensive cross-validation on the validation dataset with multilayer 
perceptrons with two to five hidden layers, that are between 8 and 1024 nodes wide, we 
selected a neural network architecture with three hidden layers that are 64 nodes wide 
to optimise the sequence recovery rate, while also minimizing the number of learned 
parameters. The Train_model program allows users to train new neural network mod-
els, producing a parameter file containing the model weights and biases. We trained 
SeqPredNN using the training dataset described above, in batches of 4096 residues until 
the validation loss and sequence recovery converged after 200 epochs.

Sequence prediction

The Predict program uses the model parameters generated by Train_model and the 
structural features generated by Featurise for each residue in a protein to predict an 
amino acid sequence that will fold into the specified conformation. It also evaluates 
newly trained models. We used Predict to determine the sequence recovery, precision 
and recall for each amino acid class.

Validation of inverse folding

The native sequences as well as their matched SeqPredNN generated sequences for 662 
protein chains, randomly sampled from the test set, were folded using the ColabFold 

Fig. 3  Schematic of the neural network architecture implemented in SeqPredNN
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interface to AlphaFold2 [20]. The default parameter of generating five structures per 
sequence was used, and the highest ranked structure was selected for further analysis.

We aligned the AlphaFold predicted structures for both the SeqPredNN generated 
and native sequences to the original PDB structure using TMscore [21]. The root-mean-
square deviation (RMSD) and template modelling (TM) scores were then determined 
for each structure comparison. These measures were compared across the different 
independently folding protein domain classified by the CATH database [22] for each of 
the 427 single-domain proteins in the test set.

Comparison with other tools

To compare SeqPredNN to two related programs, ProdCoNN and ProteinSolver, we 
predicted the sequence of seven proteins from different structure families using all 
three programs. These proteins were selected to represent a wide range of protein folds, 
including a trans-membrane barrel structure, a globular enzyme, and an all-alpha leu-
cine zipper. We used the protein structures for histone H5 (PDB ID: 1HST), lipase EstA 
(PDB ID: 1I6W), rhodopsin (PDB ID: 1U19), general control transcription factor GCN4 
(PDB ID: 1YSA), TATA-box-binding protein (PDB ID: 1YTB), Lysozyme C (PDB ID: 
2CDS) and bromodomain-containing protein 2 (PDB ID: BRD2). We generated ProD-
CoNN predictions with the BBO_ID90 model, and ProteinSolver predictions using the 
ProteinSolver web server. ProteinSolver generates many sequences for a given struc-
ture. We obtained only the single highest confidence sequence for each structure by set-
ting the number of sequences to one and the temperature factor to the minimum value 
(0.0001). We compare the sequence recovery of the three programs by determining the 
sequence identity between the generated sequences and the real sequences of the crys-
tallised proteins according to a Needleman-Wunch pairwise alignment.

We predicted the folded structures of the generated sequences using AlphaFold 
and RoseTTAFold to estimate how close the folded conformation of each redesigned 
sequence is to the original crystallographic structure. AlphaFold and RoseTTAFold pre-
dictions were obtained using AlphaFold v2.1.0 Google Colab notebook and the Robetta 
server, respectively. We aligned the predicted structures of both the generated and native 
sequences to the original PDB structure using ChimeraX [23] and determined the root-
mean-square deviation for the backbone α-carbons (Cα–Cα RMSD) (Fig. 4).

Results and discussion
We evaluated the performance of SeqPredNN on the independent test set. The recall 
for each amino acid class shows that the model correctly identifies 67.5% of the gly-
cine residues and 82.5% of proline residues in the test set (Fig.  5a). This is consistent 
with the conformational freedom of glycine and the constrained torsional angles of 
proline that have unique effects on the secondary structure of proteins. For the other 
amino acid classes, the model is more likely to suggest alternative amino acids than the 
residue in the original PDB structure. Overall, SeqPredNN achieves a sequence recov-
ery of 28.4%. Sequence recovery is, however, a poor measure of model performance, 
because many protein pairs have highly similar structures even though they have very 
low sequence identity [24]. In fact, Kuhlman and Baker [14] have shown that the low-
est energy sequence for a given backbone conformation has about 27% identity to the 
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native structure. By comparison ProDCoNN and ProteinSolver are reported to have a 
sequence recovery of 46.5% and 32.0%, respectively. This is confirmed by the sequence 
identity between the true sequences and predicted sequences of the seven structures we 
use to compare the three tools (Fig. 5). The average sequence identity of the SeqPredNN 
predictions is 23.5%, 38.0% for ProDCoNN and 40.4% for ProteinSolver. Although the 
sequence identity of a predicted sequence is lower in the case of SeqPredNN compared 
to ProDCoNN and ProteinSolver, we regard this as a positive attribute. SeqPredNN’s 
ability to find sequences with low identity to the native protein is likely to be valuable for 
sampling sequences not found in biological systems. These unique sequences could con-
fer new dynamic and physicochemical characters that may be useful in material science 
and biotechnological applications. ProteinSolver predictions with a higher “tempera-
ture” parameter shares this advantage. Sequence recovery reveals how well a model can 

Fig. 4  Generation of sequences that can fold into defined tertiary structures. A crystal structure was used 
to generate a sequence using SeqPedNN, proDCoNN or ProteinSolver, and both the generated and the 
real sequence were used to predict a tertiary structure using AlphaFold and RoseTTAFold. The RMSD of the 
structures predicted from the generated and real sequences was calculated to determine the ability of the 
generated sequence to fold into a structure identical to that of the real sequence

Fig. 5  Accuracy of amino acid predictions. a Confusion matrix showing the empirical probability of the 
model predicting each amino acid (Predicted residue) given the original amino acid in the PDB structure 
(True residue). The values along the diagonal correspond with the recall for each amino acid class. b 
Percentage sequence identity of the sequences predicted by each model when aligned to the native 
sequence of the crystallographic structure
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identify residues in a crystal structure, but it is clearly insufficient for assessing inverse 
folding. For this the final folded structure of the predicted sequence needs to be known.

TM-scores for the fit of each AlphaFold prediction (native sequence and SeqPredNN 
generated sequence) to the original PDB were computed. For ease of comparison 
between the RMSD and the TM-Score, we present the difference between two struc-
tures as 1-TM which we will refer to as the residual-TM. This value is bounded on 
[0, 1) , where zero represents perfect agreement, and 1 represents infinite dissimilarity 
between structures.

There is generally very little difference between the AlphaFold structure of a natural 
sequence and its x-ray crystallographic structure Fig. 6a. The Cα- Cα-RMSD for these 

Fig. 6  Divergence between AlphaFold models of SeqPredNN predicted sequences and the native crystal 
structure. Sequences with high residual-TM values for the AlphaFold model of the native sequence are 
indicated by red crosses. a Scatter plot of the RMSD for the AlphaFold models of 662 SeqPredNN compared 
to the RMSD of the AlphaFold models of the native sequence. b Scatter plot of the residual-TM for the 
AlphaFold models of 662 SeqPredNN compared to the residual-TM of the AlphaFold models of the native 
sequence. The regression line residual-TMSeqPredNN/AF = 0.809 · residual-TMNative/AF + 0.335  is shown with 
the standard error in the shaded area. c Scatter plot of the estimated divergence of proteins generated 
by SeqPredNN from the native structure ( residual-TMSeqPredNN/AF−residual-TMNative/AF) . The linear model 
−0.191 · residual-TMNative/AF + 0.335 is shaded with the standard error. d Scatter plot of the estimated 
SeqPredNN error against the proportion of residues predicted correctly in the sequencs. A least-squares line 
of best fit is shown shaded with the standard error
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alignments (Fig. 6a) have a median RMSD of 1.09 Å. Similarly, the median residual-
TM (Fig. 6b) is only 0.038, confirming that AlphaFold produces highly accurate struc-
ture predictions for most protein sequences.

However, a small number of AlphaFold models do not agree with their crystal struc-
tures: 9 proteins have residual-TM values > 0.4. Protein pairs with a TM-Score of 0.6 
(residual-TM = 0.4) have a more than 20% chance of belonging to entirely different 
CATH topologies, with the probability rapidly increasing to 63% as the residual-TM 
increases to 0.5 [25]. These proteins were excluded from the figures and from fur-
ther statistics, since AlphaFold with a large error on the native sequence is unlikely to 
predict reliable structures for the SeqPredNN sequences of these proteins. Excluding 
these outliers resulted in a median residual-TM of 0.035.

The difference between the AlphaFold structures of SeqPredNN sequences and 
the crystal structure of the corresponding native sequence shows a much wider dis-
tribution than the native-sequence AlphaFold structures, with a median residual-
TM of 0.334 and a median RMSD of 5.28 Å. Furthermore, Pearson’s r = 0.250 (95% 
CI = [0.174, 0.323], showing a significant correlation between the native residual-TM 
and the SeqPredNN residual-TM.

This relationship implies that there is a component of the SeqPredNN residual-TM 
that can be explained by the AlphaFold error on the native sequence. A linear regres-
sion was used to estimate the remainder of the error, i.e., the SeqPredNN error. This 
is the expected difference between the folded structure of a SeqPredNN sequence 
and the native crystallographic structure from which the SeqPredNN sequence was 
derived.

The resulting least-squares model estimates the residual-TM between 
the SeqPredNN AlphaFold model and the native crystal structure as 
residual-TMSeqPredNN/AF = 0.809 · residual-TMNative/AF + 0.335 . The estimated devia-
tion of SeqPredNN structures from the original structure is the y-intercept, where the 
AlphaFold error is zero. This best estimate of the SeqPredNN error is a residual-TM 
of 0.33464 (95% CI = [0.312, 1.059]).

The estimate of the SeqPredNN error rests on the assumption that the AlphaFold 
error on predicted sequences is similar to the AlphaFold error on natural sequences. 
The difference between the residual-TM of each SeqPredNN sequence and the resid-
ual-TM of the native sequence provides an estimated SeqPredNN error for each 
sequence (Fig. 6c). This estimate successfully removes the influence of the AlphaFold 
error and shows no significant correlation with the AlphaFold error (Pearson’s r = 
0.250, 95% CI = [− 0.140, 0.019]).

Furthermore, the estimated SeqPredNN error has a weak negative correlation to the 
sequence recovery (Fig. 6d). Thus, a SeqPredNN sequence that is highly similar to the 
native sequence is expected to fold into a conformation somewhat closer to the origi-
nal conformation than a sequence with a low recovery.

The estimated SeqPredNN error also reveals the effect that the composition of the 
training data has on the model. A comparison between the protein domains at the 
Architecture level in the CATH hierarchy indicates that architectures that occur more 
frequently in the training data have lower estimated SeqPredNN errors (Fig. 7a). As a 
result, SeqPredNN tends to produce better predictions for common architectures like 
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Fig. 7  SeqPredNN performance across CATH domains. a Plot of the median estimated SeqPredNN error for 
CATH architectures with different frequencies in the training data. The medians are indicated by dots, and the 
area of the dots represent the number of single-domain proteins for each architecture in the test dataset. The 
vertical lines indicate the first and third quartile for each architecture. The least-squares regression line is fitted 
to all the individual protein domains datapoints (not presented here) with the standard error in the shaded 
region. b The distribution of sequence recovery rates for each CATH architecture represented in the test 
dataset as box-and-whisker plots  were superimposed on the density of sequence recovery values. Outliers 
are presented as black dots. c The distribution of sequence recovery rates for each CATH class
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the 3-Layer(aba) Sandwich compared to underrepresented architectures like the Beta 
Complex.

Yet the distribution of the training data does not predict the performance of 
SeqPredNN across CATH architectures exactly. Figure  7b relates the distribution of 
sequence recovery rates across architectures for all single-domain proteins in the test set 
that are represented in the CATH database and demonstrates a slight difference between 
them. A Tukey–Kramer test on the 10 architectures with more than 100 sequences, 
confirms that there is a small, but highly significant difference in the means of differ-
ent architectures. The mean sequence recovery of these groups differs by up to 8.42% 
recovery in the case of the Sandwich and Up-down Bundle architectures (95% CI 7.09%, 
9.75%) This difference is not explained fully by the training data distribution and may be 
due to varying levels of structural disorder across the architectures.

Similarly, only a slight difference in the mean sequence recovery can be seen at the 
Class level in the CATH hierarchy (Fig. 7c). A Tukey–Kramer test shows significant dif-
ferences in the mean sequence recovery of Mainly Alpha, Mainly Beta and Alpha Beta 
domains. The mean recovery of Mainly Beta is 4.17% points higher than the mean recov-
ery of Mainly Beta domains (95% CI 3.57%, 4.77%).

We used both AlphaFold and RoseTTAFold structure predictions to show that 
SeqPredNN produces sequences that largely fold into conformations close to the con-
formation of the native sequence. Focusing on the small globular Bacillus lipase A, a 
superposition of the predicted and control structures provides a visual impression of the 
similarity of the predicted structures (Fig. 8).

We compare the folds of sequences generated by SeqPredNN, ProDCoNN and Pro-
teinSolver using predictions by both AlphaFold and RosettaFold. Focusing on the small 
globular Bacillus lipase A, a superposition of the predicted and control structures 
provides a visual impression of the similarity of the predicted structures (Fig.  8). It is 
clear that all the models predicted sequences that are expected to fold into the same 

Fig. 8  Folded structures of predicted sequences are close to the native structure. The superposition of the 
control structure predicted from the real sequence (blue) and the crystal structure (tan) is shown, as well 
as the superposition of the structures predicted for the sequences generated with SeqPredNN, proDCoNN 
and ProteinSolver (magenta) and the control structure (tan). Structure predictions were performed with 
AlphaFold (top row) and RoseTTAFold (bottom row). The Ca–Ca RMSD values are shown
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secondary structures as the native crystal structure, with only small differences in the 
packing of the alpha-helices and beta-sheets, and in the conformation of loops and tails.

Looking at the closeness-of-fit for the seven sequences, it is seen (Fig.  9) that the 
RMSD values for SeqPredNN largely falls within the same range as the other meth-
ods, producing several structures that do not deviate significantly more from the native 
structure than the error associated with the AlphaFold prediction. It should be noted 
that the ProteinSolver prediction for GCN4 has a very low sequence complexity, and 
RoseTTAFold could not predict a structure for this sequence.

It is clear from the compared RMSD values that SeqPredNN produces proteins with 
structures as close to the native PDB structure as the proteins predicted by ProDCoNN 
and ProteinSolver and well within the range of error of the structure prediction meth-
ods. SeqPredNN, however, has the advantage of generating sequences with a lower iden-
tity to the crystallised sequences compared to proDCoNN and ProteinSolver, allowing 
the design of proteins with identical structures, but more divergent in physicochemical 
or dynamic properties, a desirable feature in biotechnological applications.

SeqPredNN is easily accessible by download from the GitHub page and can be exe-
cuted from any workstation with Python 3.9 or higher installed with common, freely 
available python packages. We include detailed usage instructions for users to gener-
ate new sequences, as well as directions to train new models using custom datasets. 
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Fig. 9  Difference between predicted structures and the native crystal structure. Cα–Cα RMSD of AlphaFold 
and RoseTTAFold predicted protein structures aligned to the original PDB crystallographic structure. The 
predicted structures for the native sequences (PDB) serve as a control to compare the SeqPredNN, ProDCoNN 
and ProteinSolver sequences of the seven proteins. Both the AlphaFold and RoseTTAFold predictions for the 
ProdCoNN sequence of 1YSA lie outside the plot area with RMSD values of 18.9 and 19.8 Å, respectively. The 
RoseTTAFold could not predict the structure of the ProteinSolver sequence for 1YSA
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SeqPredNN can rapidly generate predictions for thousands of structures in two steps: 
by first executing the Featurise and then the Predict program from the command line. 
The source code can be modified freely and adapted to suit different workflows in 
accordance with the GNU General Public License.

Conclusion
SeqPredNN is simple, yet powerful neural network implementation for generating 
protein sequences with desired backbone conformations. Highly accurate structure 
prediction models confirm that the predicted sequences are likely to fold into the tar-
get structure. SeqPredNN produces novel protein sequences that diverge more from 
natural proteins than sequences generated by the other models, suggesting that it will 
be more versatile in enzyme design and polymer and material science.

Availability and requirements
Project name: SeqPredNN
Project home page: https://​github.​com/​falat​egan/​SeqPr​edNN
Operating system(s): GNU/Linux, Windows
Programming language: Python 3.9
Other requirements: Pytorch, Numpy, SciKit-Learn, Matplotlib, Scipy, Biopython
License: GNU GPL 3
Any restrictions to use by non-academics: N/A.
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PDB	� Protein Data Bank
RMSD	� Root-mean-square deviation
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