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Abstract 

Background:  A large number of researchers have devoted to accelerating the speed 
of genome sequencing and reducing the cost of genome sequencing for decades, 
and they have made great strides in both areas, making it easier for researchers 
to study and analyze genome data. However, how to efficiently store and transmit 
the vast amount of genome data generated by high-throughput sequencing technolo-
gies has become a challenge for data compression researchers. Therefore, the research 
of genome data compression algorithms to facilitate the efficient representation 
of genome data has gradually attracted the attention of these researchers. Meanwhile, 
considering that the current computing devices have multiple cores, how to make full 
use of the advantages of the computing devices and improve the efficiency of par-
allel processing is also an important direction for designing genome compression 
algorithms.

Results:  We proposed an algorithm (LMSRGC) based on reference genome 
sequences, which uses the suffix array (SA) and the longest common prefix (LCP) array 
to find the longest matched substrings (LMS) for the compression of genome data 
in FASTA format. The proposed algorithm utilizes the characteristics of SA and the LCP 
array to select all appropriate LMSs between the genome sequence to be compressed 
and the reference genome sequence and then utilizes LMSs to compress the target 
genome sequence. To speed up the operation of the algorithm, we use GPUs to paral-
lelize the construction of SA, while using multiple threads to parallelize the creation 
of the LCP array and the filtering of LMSs.

Conclusions:  Experiment results demonstrate that our algorithm is competitive 
with the current state-of-the-art algorithms in compression ratio and compression 
time.
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Introduction
Genome sequencing technology is still moving towards high speed and low cost and 
has made significant breakthroughs. Such breakthroughs have attracted a large number 
of scholars to participate in the research of biological genome data, including how to 
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efficiently transmit and store a large amount of genome data generated by high-through-
put sequencing technology. The ERGC compression algorithm was proposed in [1], 
which separates the target sequence and the reference sequence into segments of a fixed 
length, creates a hash table for each segment, and then performs matching searches and 
extends these matches. After the process of searching and extending matches, the algo-
rithm processes the matching results and then compresses the temporary files by the 
PPMD algorithm. It is worth noting that the compression performance of ERGC is excel-
lent in compressing the target sequence that has a good similarity with the reference 
sequence, and reduces the memory usage of the algorithm. However, it performs worse 
in compressing the target sequence that is not so similar to the reference sequence. 
Experimental results show that the compression performance of ERGC is worse than 
that of the previous algorithms [2, 3] on some genome datasets [4]. In 2017, the HiRGC 
compression algorithm was proposed in [5]. In this algorithm, all letters except for 
{A.C.G.T} are deleted from the input target and reference sequences during the pre-pro-
cess, and lowercase letters are converted to uppercase letters. Then, a hash table for the 
pre-processed reference sequence is constructed for searching of the longest matches, 
which solves the problem of separating a long match into two or more short matches in 
ERGC, thus obtaining better matching results and further improving the compression 
ratio of the algorithm. It also improves the speed of establishing the hash table. How-
ever, HiRGC requires much more memorys for the hash table than ERGC does. Since 
HiRGC uses the longest matching strategy when searching for matches, resulting in a 
large variation in the distance between the positions of two neighboring matches, which 
in turn deteriorates the final compression result. The SCCG compression algorithm was 
proposed in [6], which dynamically combines the advantages of the matching meth-
ods of ERGC and HiRGC, and carefully considers the effect of the length and the posi-
tion of the matched sub-strings on the compression ratio. The target and the reference 
sequences are pre-processed and then the local matching strategy is adopted first, but, 
if this strategy fails, the global matching strategy is adopted. The local matching strategy 
segments the target and the reference sequences into fixed length substrings, to improve 
the efficiency of the following incremental coding. The global matching strategy expands 
the search scope and improves search efficiency. In 2019, the ECC algorithm was pro-
posed in [7], which efficiently selects a good reference sequence in a candidate set for 
the above compression algorithms to obtain better compression results. The HRCM 
compression algorithm was proposed in [8], which utilizes the second-order matching 
method in GDC-2. At the same time, it proposed a matching algorithm for lower case 
letters and no longer records the information of lower case letters in the target genome 
sequence. The algorithm achieves good compression results. All algorithms mentioned 
above use a greedy strategy to search, in the reference sequence, for the longest match-
ing string prefixed with the current kmer in the target sequence, while ignoring LMS 
(also known as Maximum exact matches (MEM)) between the target and the reference 
genome sequences. Scholars have been doing much research on MEM between different 
sequences. The essaMEM algorithm was proposed in [9], the algorithm improves over 
the SSA [10] to find the MEM between two sequences. In 2014, the kmacs algorithm 
was proposed in [11], which uses SA to establish the LCP array of adjacent suffix and 
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record the length of LCP for the searching of MEMs between different sequences. The 
copMEM [12] algorithm was proposed in 2018, which search MEMS by using coprime 
sampling technology that based on bfMEM [13], an algorithm that reduces the higher 
memory requirement in establishing a hash table and increases the speed of search-
ing MEM by keeping kmers that do not collide in the hash table through a bloom fil-
ter. An algorithm was proposed in [14], which use the longest common subsequence 
shared between the reference and the target sequences for the compression of the tar-
get sequence. The memRGC [15] utilizes MEMs between the target and the reference 
sequences to compress the target sequence. The key idea of the algorithm is to repeat-
edly detect the maximum exact matches between the target and the reference sequences 
by combining bfMEM and copMEM methods, and extend these matches in both direc-
tions. The temporary file storing the matching results is compressed by BSC, and the 
algorithm achieves a satisfactory compression ratio, but the algorithm does not con-
sider the reverse complementary of the to be compressed genome sequence. Although 
memRGC provides a multi-thread parallel mode, it still compresses one sequence per 
thread and does not involve multi-thread parallelization acceleration of the compression 
of a sequence. SparkGC [16] is based on Spark and utilizes multiple nodes to compress 
large collections of genomes. This algorithm contains two steps: the first-order and the 
second-order compression. MEMs between the target and the reference sequences are 
searched and encoded as tuples during the first-order compression. These tuples will be 
processed by the method in GDC-2 during the second-order compression to improve 
the compression ratio.

On the other hand, none of the researchers mentioned above have carefully con-
sidered the parallelization of their algorithms for multi-core CPUs when compress-
ing a single sequence. On the basis of this consideration, we propose an algorithm 
which compresses a single genome sequence by searching LMSs between the target 
and the reference genome sequences. Meanwhile, the proposed algorithm uses GPUs 
and multi-core CPUs to create the searching structure based on SA and the LCP 
array in parallel. According to the characteristics of SA and the LCP array, we use 
multi-threads programming to complete the selection of appropriate LMSs in paral-
lel. Finally, the selected LMSs are encoded to generate a temporary file to store the 
matching results, and the file is compressed. Taking into account the biological prop-
erty of the reverse complementary in genome sequences, we also constructed reverse 
complementary sequences for the reference genome sequence to increase the length 
of the matched LMSs. Experiment results show that our algorithm is competitive 
with the current state-of-the-art algorithms in terms of the compression result and 
the compression time.

Materials and methods
The input target and reference genome sequences are pre-processed first, the reverse 
complementary sequence of the input reference genome sequence is constructed, 
then SA and the LCP array are constructed based on the pre-processed sequences as 
the index structure for searching LMSs, the target genome sequences are compressed 
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by iteratively finding the remaining LMS using the index structure and encoding the 
corresponding information. The specific workflow of the algorithm is shown in Fig. 1.

Sequence pre‑processing and construction of SA and the LCP array

During the sequence pre-processing, all lowercase letters in the target and reference 
genome sequences are converted into uppercase letters, all letters except for {A, C, 
G, T} in the reference sequence are deleted, the reverse complementary sequence of 
the reference sequence are constructed and concatenated with the original sequence 
to form a longer reference sequence. In this way, the lengths of matched LMSs can 
be increased. When converting lowercase letters into uppercase letters in the tar-
get sequence, the position and length information of lowercase letters in the target 
sequence should be recorded and eventually compressed for decoding. The target and 
the reference sequences are concatenated, with a $ symbol between them, to form 
the input sequence S = S[0]....S[n] for the construction of SA, where n is the total 
length of the input sequence. Assume that the target sequence is ‘CCC​TAG​’, the ref-
erence sequence is ’ACC​TCT​’, the reverse complementary sequence of the reference 
sequence is ‘AGA​GGT​’, and the input sequence for the construction of SA is then 
‘CCC​TAG​$ACC​TCT​CTA​GAG​GT’. An example of SA and the LCP array constructed 
based on the input sequence ‘CCC​TAG​$ACC​TCT​AGA​GGT​’ is shown in Table 1: the 
suffix array is the index of all suffixes of the input sequence sorted by dictionary order, 
that is, SA[i] = m means that the i th suffix of all suffixes in the input sequence sorted 
by dictionary order is the suffix starting from the m th letter of the input sequence. 
The LCP array represents the length of the longest common prefix between the cur-
rent suffix and the previous suffix, that is, LCP[i] = x means that the two suffixes rep-
resented by SA[i] and SA[i − 1] have at most x identical prefix letters from the first 
letter.

Fig. 1  Schematic diagram of proposed algorithm
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As the creation of the suffix array requires all suffixes of the input sequence to be 
sorted in alphabetical order, this process is time-consuming and the time spent in 
the suffix array construction would account for the largest proportion of the running 
time of the entire algorithm. In recent years, as SA has been used in many studies, fast 
construction methods for SA have been proposed. The pDC3 [17] algorithm is the 
parallelization implementation of the DC3 suffix array construction algorithm [18] on 
distributed computers. Since a large number of CPU cores are required to obtain the 
desired performance when building the suffix array using multi-core CPUs, but CPU 
cores are more frequently occupied by users in multi-user systems, CPU core-based 
parallel SA construction methods are mostly implemented on clusters of comput-
ers to make full use of the free cores on each machine. In contrast, GPU is typically 
much less occupied than CPU on a normal computer. An algorithm [19] use GPU to 
achieve the parallel acceleration of the DC3 algorithm. A better implementation of 
the parallel construction of the suffix array using GPUs was proposed in [20], there-
fore it is employed to accelerate the construction of the suffix array in our work. This 
algorithm segments the input sequence based on the number of GPUs and assigns 
the segmented sequences to all GPUs. Each GPU uses the prefix doubling technique 
to sort all suffixes in the assigned sequence, and records the sorting result and the 
starting positions of the suffixes in the whole sequence in a global array. Finally, the 
algorithm complete the construction of the suffix array by sorting the global array. 
Experimental results show that the algorithm greatly speeds up the construction of 
the suffix array.

Table 1  Suffix-array and LCP array

Input: CCC​TAG​$ACC​TCT​AGA​GGT​

i SA[i] Suffix LCP[i]

0 6 $ACC​TCT​AGA​GGT​ –

1 7 ACC​TCT​AGA​GGT​ 0

2 4 AG$ACC​TCT​AGA​GGT​ 1

3 13 AGA​GGT​ 2

4 15 AGGT​ 2

5 0 CCC​TAG​$ACC​TCT​AGA​GGT​ 0

6 1 CCTAG$ACC​TCT​AGA​GGT​ 2

7 8 CCT​CTA​GAGGT​ 3

8 2 CTAG$ACC​TCT​AGA​GGT​ 1

9 11 CTA​GAG​GT 4

10 9 CTC​TAG​AGGT​ 2

11 5 G$ACC​TCT​AGA​GGT​ 0

12 14 GAGGT​ 1

13 16 GGT​ 1

14 17 GT 1

15 18 T 0

16 3 TAG$ACC​TCT​AGA​GGT​ 1

17 12 TAG​AGG​T 3

18 10 TCT​AGA​GGT​ 1
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To our best knowledge, there is no good algorithm for the construction of the LCP 
array specifically using GPU features at present. The running time improvement will be 
limited if merely implementing the existing LCP array construction algorithm in GPU. 
Even if a GPU algorithm were specifically designed for LCP array construction, the run-
ning time improvement would not has great impact on the overall algorithm execution 
efficiency, since we can use our multi-thread LCP construction algorithm based on a 
linear LCP construction strategy in [21] to build an LCP array for a 750 Mb sequence in 
less than 10 s using 20 CPU cores. Therefore, multi-thread programming is applied to 
construct the LCP array using CPU cores. After creating the suffix array, we segment the 
suffix array according to the available number of CPU cores and assign the construction 
of the LCP array of each suffix array segment to a CPU core. During the process of the 
segmentation, we select the last suffix of the previous segment as the first suffix of the 
next segment to calculate the length of the LCP between adjacent segments. After the 
segmentation, we calculate the LCP array for each segment by using the algorithm in 
[21]. Finally, the LCP array for each segment is concatenated to construct the global LCP 
array.

Processing of the LCP array

If the adjacent suffixes are both from the target or the reference sequence, the corre-
sponding value in the LCP array is useless for searching LMS of the two sequences. We 
should filter out those elements in the LCP array corresponding to adjacent suffixes 
both from the reference sequence. Based on the comparison of the values in SA with the 
length of the target sequence, it can be determined that a suffix comes from the refer-
ence sequence when its corresponding value in SA is greater than the length of the target 
sequence. For example, the values in SA[12], SA[13] in Table 1 are not less than the length 
of the target sequence, which is 6 , it means that the two suffixes come from the reference 
sequence. The value in SA[8] is less than 6 , while the value in SA[9] not less than 6 , mean-
ing that the two suffixes are from the target and the reference sequences respectively. 
This filtering process aims to filter out all lcp array elements whose corresponding suf-
fixes are both from the reference sequence only. In this process, if the length of the target 
sequence is tarlength, SA is traversed one by one first to find a suffix that comes from 
the target sequence, i.e. SA[i] < tarlength . Then, find in both directions for the nearest 
adjacent suffixes both from the reference sequence, whose indexes in SA are represented 
by rp1 and rp2. i.e. SA[rp1] < tarlength and SA[rp2] < tarlength but rp1 < i and rp2 > i 
by using the following equation,

(1)

plcp_len = min
rp1<p≤i

(LCP[p])

nlcp_len = min
i<n≤rp1

(LCP[n])

lcs_len = max (plcp_len, nlcp_len)
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we can find the longest common substring with length lcs_len in the reference sequence 
for the substring in the target sequence, which is the i th suffix in SA.

While filtering the LCP array, we create an array of structure with size equal to the 
length of the target sequence, in which struct[i] records 3 parameters: the starting posi-
tion of an LMS in the target sequence, the starting position of this LMS in the refer-
ence sequence, and the length of this LMS. Its index value i corresponds to the starting 
position of this LMS in the target sequence. The details of the selection process can be 
described with the pseudo-code in Algorithm 1.

With the example in Table 1, when i = 6, SA[i] = 1 < 6, that is, the starting position 
of the LMS in the target sequence is 1 . We determine rp1 first. Since we need rp1 < i

, if rp1 = 5 , then SA[rp1] = 0 < 6 , it means that the rp1-th suffix comes from the tar-
get sequence. When rp1 = 4 , SA[rp1] = 15 > 6 , it means that the rp1-th suffix comes 
from the reference sequence. Therefore,rp1 = 4 . Since LCP[5] = 0 < LCP[6] = 2 , 
p = 5 and the starting position of the suffix in the reference sequence is 
SA[rp1]− tarlength = 15− 6 = 9 , plcp_len = LCP[p] = 0 . Next, rp2 is determined. 
Since we need rp2 > i , if rp2 = 7 , then SA[rp2] = 8 > 6 , it means that the rp2-th suf-
fix comes from the reference sequence,n = 7 . The starting position of this suffix in the 
reference sequence is SA[rp2]− tarlength = 8− 6 = 2. nlcp_len = LCP[n] = 3 ; Since 
plcp_len = 0 < nlcp_len = 3 , lcs_len = 3 and the start position of the LMS in the ref-
erence sequence is 2 ; That is, the starting position of the LMS in the target sequence 
is 1 and its starting position in the reference sequence is 2, the length of the LMS is 
3. Based on the matched result, the components of struct[1] is determined, they are 
struct[1].tar = 1, struct[1].ref = 2, struct[1].lcs_len = 3.

When we use multi-thread programming to complete the selection of appropriate 
LMSs in parallel using multiple CPU cores, the LCP array cannot be simply segmented 
to each thread equally according to the number of threads. Since we need to compare 
the lengths of two LCPs, the length of the previous LCP and that of the next LCP of 
the current suffix whose starting position has to be in the target sequence, to obtain 
the LMS, we need to ensure that the starting positions of the first and the last suffixes 
of each suffix array segment come from the reference sequence. For the first suffix of 
the segment, we need to determine whether its starting position comes from the refer-
ence sequence. If it comes from the target sequence, we will iteratively check the start-
ing position of each previous suffix until we find the one whose starting position comes 
from the reference sequence. For the last suffix of the segment, if its starting position in 
the target sequence, we will check each next suffix until a suffix with its starting position 
in the reference sequence is found. The specific running time of this process is described 
in details in the experiment results.
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Processing of the longest matched substrings

After completing the processing of the LCP array, we obtain an array of the structure S[] 
with its size equal to the length of the target sequence. The element i in the array records 
the information of the substring starting from position i of the target sequence, its corre-
sponding LMS in the reference sequence and length of this LMS. However, these LMSs 
are not necessarily all valid LMSs. There are large number of cases where a shorter LMS 
are contained in a longer LMS and LMSs overlap with each other. Therefore, S[] should 
be traversed to filter out those LMSs which are contained in other LMSs and LMSs over-
lapping with each other should be processed.

Since the index value of S[] corresponds to the start position of the LMS in the target 
sequence, we traverse S[] according to the index value from small to large first. All LMSs 
contained in other LMSs will be deleted, and LMSs with length less than the predeter-
mined kmerlength will also be discarded. LMSs overlap with each other will be retained 
at this time. With the example in Fig.  2, the target sequence is Tar and the reference 
sequence is Ref , after the processing of the LCP array, we can obtain the structure S[]. For 
example S[2], where the value of its component S[2]. tar indicates the starting position of 
an LMS in the target sequence is 2, and the value of its component S[2].ref indicates the 
starting position of this LMS in the reference sequence is 1, and the value of S[2].lms_len 
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indicates the length of this LMS is 24. It can be seen that the LMS with starting posi-
tion from 3 to 20 in the target sequence are contained in the LMS with starting position 
of 2 in the target sequence. That is, S[2].tar + S[2].lms_len > S[3].tar + S[3].lms_len

,…, S[2].tar + S[2].lms_len > S[20].tar + S[20].lms_len. Therefore, S[3] to S[20] are 
deleted but S[2] is retained. The LMS with the start position of 2 in the target sequence 
overlaps with the LMS with the start position of 21 in the target sequence. That is, 
S[2].tar + S[2].LMS_len < S[21].tar + S[21].LMS_len. Therefore, S[21] will be retained 
too.

After all those LMSs contained in longer LMSs are deleted, S[] only contains inde-
pendent LMSs and LMSs overlap with each other. Since the length of LMS greatly 
affects the compression result, that is, the longer LMS, the smaller the final compression 
result. Therefore, we sort S[] according to the lengths of the LMSs from long to short and 
then traverse the sorted array S[] , then the longest of the LMSs is recorded. If an LMS 
overlaps with an already recorded LMS, then the substring of the LMS is truncated, only 
the part of the substring not covered by the already recorded LMSs is retained and a 
new LMS is formed. If the length of the new LMS is less than kmerlength, it is discarded. 
Otherwise, all LMSs in S[] not recorded yet are sorted again according to their lengths. 
The above procedure is repeated until all LMSs are recorded. With the example in Fig. 2, 
after those LMSs contained in longer LMSs are deleted, S[2] , S[21] , S[43] are retained, 
we sort S[] according to the length of LMSs in it. S[2] is recorded first, and then S[43] 
is recorded too. The first 6 characters of the LMS in S[21] overlaps with that in S[2], 
the LMS in S[21] is then truncated and to form a new LMS which can be represented 
by the LMS in S[27]. Since S[27].lms_len = 15 < kmerlength , this LMS is discarded. The 
details of the filtering process of the longest matched substrings can be described with 
the pseudo-code in Algorithm 2.

The LMSs to be processed in the above procedure are not independent of each other 
and some short LMSs are created after the processing of longer LMSs. The parallel pro-
cessing of S[] is not feasible by simply segmenting S[] into blocks, therefore we do not 
consider the parallelization of this step.

Fig. 2  Example of overlap and contain of LMS
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Encode

Valid LMSs are recorded by the previous procedures and are used to encode the target 
sequence from the beginning to the end. A substring in the target sequence for which 
an LMS in the reference sequence can be found is encoded by the position of the LMS 
in the reference sequence and the length of this LMS. Encoding results and the mis-
match letters (substrings for which no LMS can be found in the reference) are stored in 
a temporary file. For the first encoded LMS, its position in the reference sequence and 
its length are recorded in the temporary file. For the following encoded LMSs their posi-
tions are encoded by the delta coding.

Obviously, it is not that longer LMSs always result in better compression performance. 
If the position of the current LMS is too far from the location of the last encoded LMS, 
the results of subsequent delta coding will be worse, resulting in poor overall compres-
sion performance. Therefore, when processing the current LMS, it is necessary to con-
sider the distance between its position and the position of the last encoded LMS. If the 
distance is short, the current LMS is directly used for coding. If the distance exceeds 
a specific threshold, we will try to start from the end position of the previous LMS in 
the reference sequence and find the possible substring that can match the current sub-
string letter by letter in the reference sequence. If the length of the letter by letter match-
ing substring exceeds 90% of the length of the existing LMS, we will give up encoding 
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the LMS and encode the result of the letter by letter matching. Otherwise, the LMS is 
still used for encoding. It is worth noting that when two adjacent LMSs in the target 
sequence exactly correspond to two adjacent LMSs in the reference sequence, it is obvi-
ous that the letters between the adjacent LMSs and the corresponding LMSs in the ref-
erence sequence do not match. If the number of mismatched letters between the target 
sequence and the reference sequence is equal, instead of encoding the positions of these 
two LMSs separately we only encode the position of the first LMS in the target sequence 
to further improve the compression performance. As shown in Fig.  2, S[2] and S[43] 
correspond to adjacent LMSs both in the target sequence and the reference sequence, 
the mismatched string in the target sequence between S[2] and S[43] is ’atccctaag’, and 
S[43].Ref − S[2].Ref + S[2].lms_len  equals to the number of letters in the string ’atc-
cctaag’. The encoding result should be ’ 2,23atccctaag, 23’ instead of ’2,23atccctaag9,23’, 
the position of the next LMS is omitted.

As the position offsets of LMSs depend on the positions of all LMSs when encoding 
the recorded LMSs using the delta coding, we do not consider the parallel processing of 
this procedure to ensure the correctness of the encoding results. During the final com-
pression, the BSC (http://​libbsc.​com) compressor is used in this work.

Result
We report the compressed file sizes, compression time and memory consumption of 
the proposed algorithm in this section. All experiments were implemented in a Red Hat 
Linux 7.9 (64-bit) server with 2 RTX6000 GPUs with 24GB of RAM, and 2 * 2.6 GHz 
Intel Xeon Gold 6240 CPUs (18 cores) with 256GB RAM.

For the comparison of the compression performance, an important algorithm to be 
addressed is SparkGC. It has excellent performance for the compression of large col-
lections of genomes [16], but it performs weak for the compression of small number of 
genomes. Since in this algorithm, the information about previously compressed chro-
mosomes is also used for the compression of later chromosomes. During decoding, it 
is necessary to firstly decode the previous chromosomes in order to successfully decode 
the current chromosome. In practical applications, if the user only needs the last chro-
mosome, this algorithm needs to decode all previously compressed chromosomes 
before decoding the last chromosome. This characteristic also weakens the efficiency of 
genome data transmission. For comparison, we have listed the compression results of 
the proposed algorithm and that of the HiRGC, SCCG, memRGC, SparkGC. For the 
experiment, we select the genomes that have been used by all the above algorithms as 
the test data sets which are shown in Table 2. 

Compression performance

In these 8 genomes, each genome is used in turn as the reference genome to compress 
the other 7 genomes, each with a raw size of approximately 3  GB. SparkGC is based 
on Apache Spark, which is run on a 5-node cluster and each node has 20 CPU cores. 
However, since we do not have such environment, we execute the SparkGC algorithm 
on a single server. SparkGC generates one intermediate file for each chromosome of a 
genome, and then chromosomes with the same number in all genomes are compressed 
into the same final file using BSC. In our experiment, we call the BSC compressor by 

http://libbsc.com
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command line to compress these intermediate files to obtain 24 final compressed files 
for all genomes. For other algorithms, the intermediate files for 7 genomes are com-
pressed into 7 final files. By adding the sizes of the final files produced by each algorithm 
the compression results are obtained (Fig. 3).

From Fig. 3, it can be seen that out of the 8 groups, the proposed algorithm is the best 
in 6 groups, and the compression results of the remaining 2 groups are almost the same 
as those of the best algorithm. Due to the fact that we execute the SparkGC algorithm on 
a single server, which is different from its original running environment, some problems 
occur when using hg38, KO131, HuRef, and YH as references, the intermediate files can 
not be generated. Therefore, we cannot obtain the final compression results, which are 
represented by 0 in Fig. 3.

Meanwhile, we also report the detailed compression results for each genome. Dur-
ing the experiment, each genome serves in turn as the reference for the compression 
of the remaining 7 genomes and 7 compressed files are generated, which are obtained 
by using BSC compressor to compress the intermediate files for 24 chromosomes. 

Table 2  Test data

hg17 ftp://​hgdow​nload.​soe.​ucsc.​edu/​golde​nPath/​hg17/​chrom​osomes/

hg18 ftp://​hgdow​nload.​soe.​ucsc.​edu/​golde​nPath/​hg18/​chrom​osomes/

hg19 ftp://​hgdow​nload.​soe.​ucsc.​edu/​golde​nPath/​hg19/​chrom​osomes/

hg38 ftp://​hgdow​nload.​soe.​ucsc.​edu/​golde​nPath/​hg38/​chrom​osomes/

KO131 ftp://​ftp.​kobic.​re.​kr/​pub/​KOBIC-​Korea​nGeno​me/​KOREF_​20090​131/​fasta/

KO224 ftp://​ftp.​kobic.​re.​kr/​pub/​KOBIC-​Korea​nGeno​me/​KOREF_​20090​224/​fasta/

HuRef https://​www.​ncbi.​nlm.​nih.​gov/​nucco​re Accession: CM000462-CM000485

YH ftp://​climb.​genom​ics.​cn/​pub/​10.​5524/​100001_​101000/​100015/​fa/

hg17 hg18 hg19 KO224 hg38 KO131 HuRef YH
HiRGC 107.7 102.5 100.5 130.8 100.3 130 263.5 135.1
SCCG 92.5 85.6 85.6 114.6 85.6 113.8 243.7 119.1
mem 65.3 59 58.5 99.6 65.8 100 221 105.1
SParkGC 99.3 97.2 83 101.5 0 0 0 0
proposed 63.1 57.6 56.7 100.5 57.2 100.5 200.6 104.6
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Fig. 3  Compression results for 8 genomes
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The compression results for the 56 pairs of genomes are presented in Additional file 1: 
Table S1. However, SparkGC is not compared here, since SparkGC compresses the same 
chromosome of all genomes into a final file, it cannot generate the corresponding com-
pression result for each genome, which is different from other compared algorithms. 
Among the 56 genome pairs, the proposed algorithm performs the best in 40 pairs. 
Although we have 16 pairs of compression results that are worse than memRGC, but 
most of the differences are within 3%, and the overall compression ratio of the proposed 
algorithm for all 56 genomes is 4.3% better than that of memRGC.

Compression time

The compression time results corresponding to the compression of genomes in Fig.  3 
are presented in Fig. 4. It should be noted that it is unfair to compare the running time 
of SparkGC on a single server, since the parallelization advantage of SparkGC on large 
collection of genomes can not be presented. Anyway, its running time results in our 
environment are also provided. From Fig.  4, it can be seen that HiRGC is the fastest 
algorithm. However, the compression results of the proposed algorithm are obtained 
using 2 GPUs in our system, if more GPUs can be used, better results will be obtained. 
Considering that the proposed algorithm outperforms HiRGC in compression results by 
about 30%, and we believe that the current running time results are still worthwhile. The 
detailed compression time results for all 56 pairs of genomes are shown in Additional 
file 1: Table S2. Since SparkGC cannot generate the compression result for each genome, 
its compression time results are not included in this table.

Although the memRGC algorithm provides a multi-thread mode, but one sequence 
has to be compressed using one thread. i.e. when compressing 24 chromosomes of 
one genome, memRGC can only utilize a maximum of 24 threads and cannot improve 
the compression time further by using multiple threads for the compression of a 

hg17 hg18 hg19 KO224 hg38 KO131 HuRef YH
HiRGC 2391 2376 2344 2617 2460 2640 3191 2865
SCCG 4451 4043 4687 3749 4799 3682 4693 3952
memRGC 6259 6147 5944 6208 5609 6170 8616 6386
proposed 3926 3949 3961 3778 4036 3788 4174 3774
SparkGC 2756 2616 4334 2300
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Fig. 4  Compression time result for 8 genomes
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single chromosome sequence. However, our algorithm can accelerate the compres-
sion of one chromosome by using multiple threads. The left two columns in Table 3 
show the running time of the two algorithms when compressing genomes chromo-
some by chromosome. It can be seen from Additional file 1: Table S2 that the com-
pression time varies quite significant when memRGC compresses the same genome 
by using different reference genomes. For example, the compression time of mem-
RGC for hg17-hg18 pair is 1221 s, while the compression time for hg38-hg18 is 566 s. 
More than that, the compression time of memRGC on different data sets also varies 
quite significant. On the contrary, our algorithm has a relatively stable running time 
between 500 and 650 s regardless of which data set is compressed.

For hg38-hg17 pair, we have found 9202 LMSs and their average length is 26,679, 
but for HuRef-hg38 pair, we have found 361,517 LMSs and their average length is 672. 
It can be seen that our algorithm is insensitive to the number of LMSs that have been 
found.

Execution time under different number of threads

In addition, we also analyzed the impact of the number of threads on the running 
time of the parallel execution parts of our algorithm. For example, we compress the 
first chromosome of KO131-KO224 pair, the running time of the parallel execution 
parts of our algorithm in different number of threads are shown in Table 3. It can be 
seen that the running time speeds up as the number of threads increases from 1 to 30. 
However, as can be seen in Table 3, when the number of threads is increased from 20 
to 30, the improvement of the running time is not so obvious. Since the experiment 
platform of our algorithm has only 36 CPU cores. Since some CPU cores have to be 
occupied by the operating system and other users, there are not enough CPU cores 
for the execution of all threads when the number of threads is set more than 20.

Memory usage

In terms of memory usage, each element in the target and the reference sequence 
and reverse complementary sequence of reference sequence occupies 1 byte, and 
each element in the SA and LCP arrays occupies 4 bytes. There are 3 elements in the 
structure S − array and each element occupies 4 bytes. If the target and the refer-
ence sequences are both 250  MB, the proposed algorithm requires less than 15GB, 
which can be observed by the “top” command in the Linux system. For the compared 
algorithms, HiRGC requires less than 8 GB, SCCG requires less than 8 GB, memRGC 
requires less than 2 GB on the single thread mode, SparkGC requires less than 7 GB.

Table 3  Running time of different thread numbers

Time (s) Number of threads 30 20 10 1

KO131-KO224 (chr1.fa) Build LCP 6.3 6.43 10.48 82.44

Filter SA&LCP 1.86 2.25 4.05 31.38
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Time and memory usage of decompression

In terms of decompression time, we randomly select several pairs of genomes for experi-
ment, the results are presented in Fig.  5. In this figure, the decompression time for 
hg18-KO131 means that KO131 is the target genome with hg18 as the reference. Since 
the proposed algorithm utilizes the reverse complementary sequence of the reference 
sequence, it is also necessary to construct the reverse complementary sequence of the 
reference sequence during decompression. Therefore, its performance on decompres-
sion time is not so good.

For the memory usage of decompression, all algorithms require less than 1 GB during 
the decompressing of the longest sequence.

Conclusions
The proposed compression algorithm uses the suffix array and the longest common pre-
fix array to search the longest matched substrings between the target and the reference 
sequences for the compression of genome data. The key of the algorithm lies in repeated 
filtering of the suffix array (SA) and the longest common prefix array(LCP) to obtain 
longest matched substrings. During filtering SA and LCP, the similarity between the tar-
get and reference sequences does not affect the speed of the proposed algorithm, since 
the algorithm completes filtering by traversing the entire sequence. Therefore, this algo-
rithm has a relatively stable compression time when compressing different genomes. In 
addition, the parallelization consideration of the algorithm accelerates the compression 
time. Experiment results demonstrate that the proposed algorithm is also competitive 
with the state-of-the-art algorithms in terms of the compression ratio and the compres-
sion time.
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