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Introduction
Protein-ligand binding affinity prediction is a critical step in drug discovery [1]. It allows 
researchers to identify potential drug candidates and optimize their properties before 
conducting expensive and time-consuming experiments. The increasing availability of 
three-dimensional (3D) structural protein data provides a new paradigm for structure-
based drug discovery and 3D structural information has been proven to facilitate drug 
design [2]. Various computational methods have been developed to learn 3D structure 
information from a protein-ligand complex. These methods range from molecular dock-
ing [3–6] to more sophisticated machine learning [1, 7, 8] and deep learning approaches 
[9].
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Docking methods have been widely adopted with a scoring function for binding affin-
ity prediction, but their accuracy also limits the potential applications of docking meth-
ods [3, 4]. Traditional machine learning algorithms [7, 8] together with handcrafted 
features could sometimes deliver decent performance, but they are difficult to scale up 
due to cost of extensive feature engineering. To model 3D spatial structure, many deep 
learning approaches [10–12] divide the complex into 3D grid data and apply 3D con-
volutional neural works(3D CNNs) to extract useful features. These approaches have 
demonstrated better performance in predicting binding affinity than traditional machine 
learning-based models. However, the sparsity distribution of atoms in the complex can 
result in inefficient computations when using a 3D rectangular grid representation [13].

Modeling a protein-ligand complex as a graph where nodes correspond to atoms is 
a natural and effective approach [14, 15]. Graph neural networks (GNNs) have dem-
onstrated remarkable capabilities in expressing graph structures, and researchers have 
made considerable efforts to incorporate spatial information to enhance its expression 
ability. Spatial Graph Convolutional Networks [16, 17] utilize 3D coordinates to model 
the structure of complexes. However, the output of coordinate-based models can be 
negatively impacted by rotations of the coordinates. This limitation is addressed by 
distance-aware GNNs [13, 18], which only take distance into account. But these mod-
els may not suffice to accurately model 3D structures for binding affinity predictions. 
Directional message passing-based GNNs [2, 19] have been proposed to address this 
limitation. These models incorporate angle and distance information, which has been 
shown to be crucial in empirical potentials for molecules [20]. While these models offer 
improved prediction performance, their accuracy have a great potential to be further 
improved. Since the protein-ligand binding affinity is determined by its absolute bind-
ing free energy [21], which is primarily specified by curvature [22], incorporating cur-
vature information into the graph representation is necessary to enhance prediction 
accuracy.The concept of curvature is closely related to the geometry of a manifold, and 
some efforts have been made to generalize curvatures for a graph [23, 24]. Based on this 
generalization, two different curvature-based graph neural networks [25, 26] have been 
proposed, and they perform well on baseline datasets. Biomolecules often exhibit hierar-
chical and multiscale structures, which require a multiscale representation to accurately 
characterize their interactions [27]. It implies multiscale curvature for graph is more 
suitable. However, incorporating multiscale curvature into GNNs for predicting binding 
affinity remains an open research question.

Moreover, many studies have recognized the heterogeneity of protein-ligand com-
plex graphs and endeavored to incorporate this heterogeneity into their graph neural 
networks [2, 28, 29]. Nevertheless, it is often disregarded that the graph is not strictly 
homophilic, as neighboring nodes may not be similar. Graph neural networks based 
on the homophily assumption cannot effectively learn heterophily, which is the prop-
erty where linked nodes have dissimilar features [30, 31]. Therefore, previous studies on 
binding affinity have failed to capture heterophily.

To address above challenges, we propose a novel Curvature-based Adaptive Graph 
Neural Network (CurvAGN) for predicting protein-ligand binding affinity. The Cur-
vAGN comprises a curvature block and an adaptive attention guided neural block 
(AGN). The curvature block assigns edge attributes to include multiscale curvature, 
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and AGN is inspired by SIGN [2] and consists of two parts. The first part, called the 
polar-inspired adaptive graph attention block (PAGA), uses an adaptive graph atten-
tion mechanism [32] to model the 3D spatial structure of the protein-ligand complex by 
incorporating distance, angle, and curvature information. The adaptive attention mecha-
nism addresses the heterophily in the protein-ligand complex graph. The second part is 
the pooling block, which is described in [2] and includes the pairwise interactive pooling 
(PiPool) for leveraging long-range interactions and the output pooling layer for predict-
ing the protein-ligand binding affinity.

Our work makes three main contributions:

• We propose the curvature block that utilizes multiscale curvature to encode edge 
attributes of biomolecule graphs, effectively capturing the multiscale structure of 
these biomolecules.

• We find the distance-based complex interaction graph is a heterophilic graph, and 
further propose the adaptive attention guided neural model (AGN) to capture the 
heterophily and geometric structure of angles and distances, and and long-range 
molecular interactions.

• We combine the curvature-based graph neural network and AGN to propose the 
Curvature-based Adaptive Graph Neural Network (CurvAGN).

• We apply CurcAGN to predicting the protein-ligand binding affinity. We train and 
validate our model on the publicly available standard PDBbind-v2016 dataset, and 
show that it outperforms SIGN [2] by 7.5% in RMSE and 9.4% in MAE.

Related work
3D structure GNNs for binding affinity prediction

3D structural GNNs have been used to integrate the 3D structure of protein-ligand com-
plexes into high-level representations, thereby improving the accuracy of binding affin-
ity prediction. Atom coordinate-based GNNs [17] use atomic coordinates directly as 
node attributes, but they often fail to recognize the same protein-ligand complex due to 
coordinate variations in different coordinate systems. Distance-based GNNs [13, 33–35] 
overcome this deficiency by utilizing atomic distances. Angle and distance-based GNNs 
[2, 19] can enrich geometric information and enhance complex modeling capabilities.

Ricci curvature for graphs

Ricci curvature is a geometric object that measures the curvature of a Riemannian mani-
fold [36, 37]. Intuitively, if the Ricci curvature is positive, the manifold curves more like 
a sphere, while negative Ricci curvature results in a more saddle-like curve. In recent 
years, there has been growing interest in the study of graph curvature, which is a discrete 
analogue of Ricci curvature. There are two main types of graph curvature: Ollivier Ricci 
curvature (ORC) and Forman Ricci curvature (FRC). ORC is based on optimal transport 
theory and captures the geometric properties of a graph [23, 38–43], while FRC is based 
on the graph Laplacian and captures the algebraic topological properties of a graph [24, 
44]. In general, ORC is a more recent and sophisticated measure of curvature than FRC. 
However, FRC is more widely used because it is easier to compute.
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Persistent graph‑curvature‑descriptors

Xia et  al. propose a persistent graph curvature descriptor to characterize molecular 
features based on the observation that biomolecules have a hierarchical and multiscale 
structure [27, 43]. They first filter the edges of the graph by length to remove short edges 
that are less relevant to the hierarchical structure, and then construct a sequence of sub-
graphs, where each subgraph is a subset of the next one. They then define a permuta-
tion-invariant descriptor function for each subgraph that is related to curvature. This 
function is designed to be invariant to the order in which the nodes are arranged, so that 
it can be used to characterize the molecular features of the graph regardless of how the 
graph is represented. Finally, they arrange the descriptors of each subgraph in sequence, 
to form the persistent graph curvature descriptor.

Heterophily‑based GNNs

Heterophilic graphs refer to graphs where linked nodes exhibit heterophily, meaning 
that they have dissimilar features and different class labels [29]. Many real-world graphs, 
such as transaction networks [45], exhibit heterophily. Recent studies have shown that 
GNNs do not perform well on heterophilic graphs [46–49]. This is because GNNs are 
typically designed to learn from homophilic graphs, where linked nodes have similar fea-
tures and class labels. To address this issue, several GNN designs have been proposed 
that are specifically tailored for heterophilic graphs. These designs include MixHop [50], 
MM-DAN [51], BeyondGNN [32], AdaGNN [52], Beyond-GCN [53], and Geom-GCN 
[54].

Persistent curvature descriptors have been shown to be effective in representing pro-
tein-ligand complexes, but they rely on prior knowledge. To overcome this limitation, 
we developed a multiscale curvature graph neural network that incorporates the multi-
scale curvature of edges as edge attributes. In addition to the curvature information, the 
interactions between molecules play a critical role in binding affinity. When modeling a 
protein-ligand complex as a graph, protein atoms and ligand atoms are connected based 
on distance, but short distance does not necessarily mean similar features. This leads to 
the graph not having strict homophily. To capture this important feature, it is natural to 
utilize heterophily-based models. However, to the best of our knowledge, no heteroph-
ily-based GNNs have been used for modeling this complex yet. Therefore, we propose 
incorporating the adaptive graph attention mechanism [32] into our network.

Preliminaries
In this section, we introduce some key definitions that will be used in our model and 
formulas..

Definition 1 (Complex Interaction Graph [2, 35]) For an protein-ligand complex, let 
VL := {aL1, a

L
2, . . . , a

L
n} be the ligand atom set, VP := {aP1 , a

P
2 , . . . , a

P
m} be the protein atom 

set. We define the complex interaction graph as a direction graph GI := (V , E) , where the 
node set is

and the edge set is

V := VL ∪ {ai ∈ VP : ∃ aLj ∈ VL, �c(ai)− c(aLj )� ≤ d},
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Here c(·) sents each atom to is 3D coordinate, � · � is an Euclidean distance, and d is a 
cutoff distance.

Definition 2 (Edge-oriented Neighbors [2]) In the complex interaction graph GI , for an 
atom node ai or a directed edge eij (i.e., ai → aj ), the edge-oriented neighbors Ne of ai or 
eij are defined as the sets of directed edges {eki, . . . , eli} which point to the target atom ai 
or the target edge eij.

Definition 3 (Ollivier Ricci Curvature [42]) For a graph G := (V, E) , given a α ∈ [0, 1] , 
α-Ricci-curvature kα of nodes ai and aj is defined to be

where d(ai, aj) is the graph distance between two vertices ai and aj , mα
a is a probability 

measure defined as

and W(·, ·) is the transportation distance between two probability distributions m1 and 
m2 , is defined by

Here deg(·) sents each node to its degree, N(a) is the neighbors of node a, and the map 
A : V× V → [0, 1] is a coupling between m1 and m2 such that

Definition 4 (Foramn Ricci Curvature [24]) When a graph G := (V, E) is composed of 
nodes, edges and triangles, otherwise, Forman-Ricci-curvature F of an edge (a1, a2) ∈ E 
is defined to be

otherwise, it defined to be

where �a1a2 is the number of triangular containing the edge (a1, a2).

E := {(ai, aj) ∈ V × V : �c(ai)− c(aj)� ≤ d}.

kα(ai, aj) := 1−
W(mα

ai
,mα

aj
)

d(ai, aj)
,

mα
a(ak) :=

α ak = a
1−α
deg(a) ak ∈ N(a)

0 otherwise,

W(m1,m2) := infA
∑

a1,a2∈V

A(a1, a2)d(a1, a2).

∑

a2∈V

A(a1, a2) = m1(a1) and
∑

a1∈V

A(a1, a2) = m2(a2).

F(a1, a2) := 4 − deg(a1)− deg(a2)+ 3�a1a2 ,

F(a1, a2) := 4 − deg(a1)− deg(a2),
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Curvature‑based adaptive graph neural networks
In this section, we present our model, called CurvAGN (Curvature-based Adaptive 
Graph Neural Network). We begin by giving an overview of the framework, followed by 
a detail description of each component.

Overview

The overall framework of CurvAGN is shown in Fig. 1. It takes a complex interaction 
graph GI as input and is made up of three blocks: a curvature block, a PAGA block, and 
a pooling block. The first two blocks, namely the curvature and PAGA block, use a 3D 
model to capture the geometric structure of the protein-ligand complex interaction 
graph. Specifically, the curvature block captures the multiscale curvature information of 
the graph, while PAGA learns the spatial distance and angle information. The pooling 
block then gets the prediction of the binding affinity and the co-occurrent frequency of 
atom pairs, such as the Carbon-Carbon co-occurrence frequency.

The PAGA block is composed of multiple PAGA layers, where each layer has a 
node2edge layer, an edge2edge layer, and an edge2node layer. The node2edge layer 
utilizes the graph attention mechanism (GAT) to fuse the attribute information of the 
nodes at both ends of an edge into the edge attributes. The edge2edge layer uses the 
adaptive GAT to convert the angle information and edge attributes obtained from the 
first layer into edge representations. Lastly, the edge2node layer employs the adaptive 
graph attention mechanism to learn the node representations.

The pooling block consists of an output pooling layer and a Pipooling layer. The for-
mer generates the binding affinity prediction, while the latter produces the co-occurrent 
frequency of atom pairs.

The curvature block

Ricci curvature measures the extent to which a smooth object deviates from being 
flat. Two different discrete forms of Ricci curvature, Ollivier and Forman, have been 

Fig. 1 Illustration of the proposed CurvAGN framework. CurvAGN is composed of a curvature block, a 
PAGA block, and a pooling block. The curvature block encodes multiscale curvature structure and PAGA 
block incorporates the geometric information including distance, angle, and multiscale curvature, and the 
heterophily of protein-ligand complex graph into the representation of the complex. The pooling block 
outputs the co-occurrent frequency of atom pairs by the Pipooling layer and the prediction of the binding 
affinity by the output pooling layer
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incorporated into graph neural networks [25, 26]. Biomolecules often have hierarchical 
and multiscale structures, requiring a multiscale Ricci curvature to accurately charac-
terize these structures and interactions. Such curvature has been proposed in [27, 43]. 
However, their curvature descriptor for protein-ligand complexes relies on prior knowl-
edge such as the average and variance of all curvatures, and therefore, is not universally 
applicable. In contrast, we propose a multiscale curvature for each edge of the graph, 
making it a more versatile and flexible solution.

Let dc : E → R be a discrete curvature function defined on the edge set E of a complex 
interaction graph, where R denotes the set of real numbers. The curvature of an edge eij 
of the graph is denoted by dc(eij) or simply dcij.

To define the multiscale curvature, we first select a sequence of filtration values 
{li : l0 < l1 < · · · < ln−1} , then for each lk , construct a subgraph G(k) by removing edges 
with weight greater than lk from the original graph and compute the curvature dc(k)ij  of 
each edge eij in the subgraph.

The multiscale curvature fcij for an edge eij in the original graph is defined by concat-
enating the curvatures of the edge in subgraphs according to the order of the sequences, 
as follows:

where ‖ represents concatenation. If the edge eij is not in the subgraph G(k) , we set its 
curvature dcij as zero.

We then apply a dense layer to obtain a multiscale curvature embedding:

where Wf  is a transformation matrix.
As described in [2], we set a one-hot vector xij for the weight of edge eij by taking its 

integer part. Then the distance embedding for the edge is giving by

where Wd ∈ R
nw×m is a transformation matrix, and nw represents the dimension of the 

embedding.
Finally, we define the curvature block as follows:

where Wfd is a transformation matrix and dij is the distance embedding in Eq. 2.

The polar‑inspired adaptive graph attention block

PAGA is an adaptive graph attention network that models the 3D structure of the com-
plex interaction graph. Compared to PGAL [2], which uses a polar-inspired graph atten-
tion block, PAGA focuses on the adaptive graph attention mechanism and the varying 
dependency of different attributes of a node on a neighboring node. PAGA decomposes 
the layer into node2edge, edge2edge, and edge2node layers, which allows for a more 
granular understanding of the structural information.

fcij := �0≤k<ndc
(k)
ij ,

(1)fij := Softmax
(

LeakyRelu(Wf · fcij)
)

,

(2)dij := Wdxij ,

(3)crtij := ReLU
(

Wfd · [dij|fij]
)

,
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The node2edge layer

The node2edge layer passes node information to its edges in order to get the edge 
representation. In the case of PAGA, we need to add angle information to the 3D 
model, which requires the transportation of node information to edges. This is done 
by defining the l-th layer of the node2edge layer as follows:

here, W(l)
ab is a transformation matrix and hl−1

ai
 is the (l − 1)-layer node representation of 

the node ai.

The edge2edge layer

The edge2edge layer uses the adaptive graph attention mechanism to update the 
edge information based on the angles. To apply angle information, we construct 
a directed line graph and get subgraphs of the line graph by classifying the angles 
between edges in the original graph.

The directed line graph of the complex interaction graph is a dual graph where 
the nodes, node attributes, and edge-oriented neighbors of the nodes correspond 
respectively to the edges, the edge representations, and edge-oriented neighbors 
of the edges in the original graph. The weight of a directed edge between nodes in 
the dual is defined as the angle between the corresponding to edges in the complex 
interaction graph.

To get the subgraph of the line graph, we set N angle domains, denoted as 
(
180◦∗(q−1)

N , 180
◦∗q
N ] , for q = 1, 2, . . . ,N  . The q-th subgraph is the subgraph of the line 

graph that retains all nodes but only edges of weights in the q-th angle domain. We 
denote the neighbors of a node eij in the q-th subgraph by Nq

e (eij) . The aggregation 
process for the q-th local node representation is defined as follows:

where the operator ⊙ is the Hadamard product, W(l)
e,q is a learnable transformation 

matrix, and b(l)e,q is a learnable vector. Equation  6 applies the adaptive graph attention 
mechanism to get an attention vector which is viewed as the concatenation of coeffi-
cients of attributes between nodes. And m(l)

ij,q in Eq. 5 is the q-th local node representa-
tion at the l-th layer. To obtain the complete node representation, all the local aggregated 
node representations are combined:

For the dual, representation h(i)eij  is also the edge representation in the complex interac-
tion graph.

(4)h(l)eij := ReLU
(

W(l)
ab[h

(l−1)
ai

�h(l−1)
aj

�crtij]
)

,

(5)
m

(l)
ij,q :=

∑

eki∈N
q
e (eij)

α
(l)
ki,q ⊙ h(l)eki + h(l)eij ,

(6)α
(l)
ki,q :=tanh(W(l)

e,q · [h
(l)
eij
�h(l)eki ] + b(l)e,q),

h(l)ei,j := [m
(l)
ij,1�m

(l)
ij,2� · · · �m

(l)
ij,N].
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The edge2node layer

The node2edge layer incorporates angle information into the edge representation. To 
further inject the distance and multiscale curvature information into the node represen-
tation, we design the edge2node layer based on the adaptive attention mechanism. This 
is in contrast to the GAT-based distance-aware attention mechanism in [2], which can-
not capture heterophily.

Since the feature spaces of edges and nodes are different, we first use learnable param-
eter matrices W(l)

e  and W(l)
a  convert the representations of nodes and edges to the same 

space as follows:

Then we define the attention of eij with respect to aj as

where vTl  is a parameter vector at the l-th layer, and W(l)
dr is the learnable parameter 

matrix. Finally, we get the multi-head attention version of our edge2node layer by aggre-
gating over all edges eij ∈ Ne(aj) as follows:

where C is the number of attention heads and Ne(aj) is the edge-oriented neighbors of 
node aj.

Assuming PAGA has L polar-inspired adaptive graph attention layers, it yields the 
node representation a(L)j  for atom aj and the edge representation e(L)ij  between atoms ai 
and aj.

The pooling block

As illustrated in [2], the pooling block is composed of a PiPooling layer and an output 
pooling layer. The PiPooling layer is designed to capture the long-range intermolecu-
lar interactions between the protein and ligand and output poling layer to predict the 
affinity.

The PiPooling layer

The PiPooling layer first divides the edges into |SP | × |SL| components, where SP and SL 
be atomic type(number) sets of the protein and its ligand, respectively. For the (Tk ,Tl)

-component, the pooling of edge representations is defined as

(7)h̃(l)eij :=W(l)
e · h(l)eij ,

(8)h̃(l)aj :=W(l)
a · h(l−1)

aj
,

(9)β
(l)
ij := tanh(vTl · [h̃(l)eij �h̃

(l)
aj
�W(l)

dr crtij]),

(10)h(l)aj :=
1

C

C
∑

c=1

∑

eij∈Ne(aj)

β
(l)
ij,c · h̃

(l)
eij ,c + h̃(l)aj ,c,

(11)hkl :=
∑

eij∈EI

δ(τ (ai),Tk)δ
(

τ (aj),Tl

)

Whe
(L)
ij ,
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where Wh is a shared parameter, Tk ∈ SP ,Tl ∈ SL , the map τ sents each node to its atomic 
number, δ is a Kronecker delta function, and EI is the set containing all the intermolecu-
lar edges in the complex GI . The output of PiPool is given by

where qT is a learnable parameter. And Z̃kl can be considerd an approximation of inter-
action matrix

where n(Tk ,Tl) :=
∑

ai∈SP

∑

aj∈SL δ(τ (ai),Tk)δ
(

τ (aj),Tl

)

�(dρ − dij) , dρ is the interac-

tion cutoff distance, and �(·) a Heaviside step function which sents positive number to 
1, and non-positive to 0.

The output pooling layer

The output pooling layer is based on a graph-level representation. We pool the node rep-
resentations for the graph embedding, first. Then we apply the embedding for the affinity 
prediction. That is,

where a(L)i  is the node representation for atom i at the last layer of the PAGA model.

Optimization objective

The optimization objective of PAGA is to minimize the loss between the predicted interac-
tion matrix Z̃ and the ground truth interaction matrix Z, as well as the loss between the 
predicted affinity ỹ nd the ground truth affinity y [2].

The loss function for interaction matrix is given by

where F(·) is the flatten operation for matrix and D is the training set. The loss function 
for addinity prediction is

Then the overall optimization formulated as

where � is a hyper-parameter that controls the trade-off between the two loss terms.

(12)Z̃kl :=
exp(qThkl)

∑

ij exp(q
Thij)

,

(13)Zkl :=
n(Tk ,Tl)

∑

(ai ,aj)∈SP×SL �(dρ − dij)
,

(14)ŷ := MLP

(

∑

i

a
(L)
i

)

.

(15)Lb :=
∑

GI∈D

�F(Z̃)− F(Z)�,

(16)La :=
∑

GI∈D

|ŷ− y|.

L := La + �Lb,
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Experiment
The publicly available standard PDBbind-v2016 dataset1 is used to train and validate our 
module. This dataset contains a total of 13,283 protein-ligand complexes, with experi-
mental binding affinities expressed as the negative logarithm pka of the determined 
value (e.g, −logKd , −logKi , −logIC50 ). The dataset is hierarchically structured into three 
nested sets: the General set, the Refined set, and the Core set, with 13,283, 4057, and 290 
complexes, respectively. The Core set is used as the test set, a randomly selected subset 
of 1000 complexes from the difference between the Refined set and the Core set is used 
as the validation set. The remaining 11,993 complexes in the General set are used as the 
training set [11, 55].

Evaluation metrics

To evaluate the performance of our model, we employe four metrics that are widely 
adopted in computational biology to quantify the accuracy and precision of predictive 
models: Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Pearson’s cor-
relation coefficient (R), and the standard deviation (SD) in regression [2, 11, 35]. RMSE 
and MAE provide measures of the average error between predicted and actual values, 
whereas R and SD are used to assess the correlation and dispersion of the predicted val-
ues, respectively. The detail is introduced in Additional file 1. We selecte these metrics to 
comprehensively evaluate the performance of our model on the test data.

Baselines

To demonstrate the effectiveness of our CurvAGN model, we compare it against several 
representative methods from different categories, including free-spatial structure meth-
ods, 3D coordinate-based methods, distance-based methods, and angle-distance based 
methods.

• Free-spatial structure methods: only consider the topological structure of protein-
ligand complexes and neglect the spatial structure and interaction information.

– GraphDTA [56] includes four different variants based on different types of GNNs 
(GCN, GAT, GIN, and GAT-GCN).

• 3D coordinate-based methods:directly utilize atomic coordinates based on GNNs.

– SGCN [17]: is based on GCN.

• Distance-based methods: learn graph representation by employing distance informa-
tion.

– MAT [33]: learns graph representation by employing a molecule-augmented 
attention mechanism with the inter-atomic distances.

– CMPNN [34]: is an edge-oriented model that strengthens the message interac-
tions between edges (bonds) and nodes (atoms) while propagating the distance 
information.

1 http:// www. pdbbi nd. org. cn/.

http://www.pdbbind.org.cn/
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– GNN-DTI [13]: leverages GAT to represent a protein-ligand complex graph con-
structed by the distance between atoms.

– ELGN [35]: considers distance information and long-distance interaction infor-
mation between molecules, as well as the topology information of bonds

• Angle-distance based methods: mploy angle and distance information in GNNs.

– DimeNet [19]: employs the angle and distance information in graph neural net-
work.

– SIGN [2]: improves GNNs to model the 3D-structure of a protein-ligand complex 
by not only encoding angle and distance information, but also handling interac-
tions in the complex.

Implementation details

Let protein set be SP := {C,N,O, S} and ligand set be SL := {C,N,O, S, P, I, Cl, B, F} , we 
construct the complex interaction graph and interaction matrix by setting cutoff-thresh-
old dθ = 5 and the interaction cutoff distance dρ = 12 as previous work [8, 57].

For initial node features, we follow the approach in [2, 11], where an atom is repre-
sented by an 18-dimensional vector (refer to Table 1 in previous work). To distinguish 
between ligand and protein atoms, we encode an atom using a 36-dimensional vector, 
where the first half represents raw features and the second half are all zeros for a ligand 
and vice versa for a protein atom. The initial edge features consist of vectors of 26 dimen-
sions, where the 26th dimension represents the Euclidean distance between the atoms of 
the edge, and the first 50 dimensions are filter Forman curvatures with filtration values 
set as {0.1 ∗ i : i = 0, 1, 2, . . . , 49}.

The distance and curvature embedding dimensions are both set to 128. Each vector 
undergoes transformation matrix action, resulting in an embedding of 128 dimensions. 
To train the model, The Adam optimizer with a learning rate of 0.001 and the batch size 
of 32 is used to train the model. The dropout rate is set to 0.2, and the hyper-parameter γ 
is set to = 1.75. In the PAGA layers, there are 8 attention heads and 6 angle domains. We 
list the all settings as following Table 2.

All the experiments are conducted on one NVIDIA GeForce RTX 2080 Ti GPU and 
Inter Xeon Gold 5218 16-Core Processor. And the performance of all the baselines refers 
to [2].

Table 1 The list of atom features

Atom type C, N, O, S, P, I, Cl, B, F (onehot)

Atom hybridization 1, 2, 3 (integer)

Number of heavyatoms attached (integer)

Number of heteroatoms attached (integer)

SMARTS patterns Hydrophobic, aromatic, accep-
tor, donor and ring (onehot)

Partial charge (float)
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Performance evaluation

We conduct a comparison of our CurvAGN model and baseline models on the PDBbind 
v2016 core set. The average and standard deviation of four indicators for testing perfor-
mance, obtained from five random runs, are presented in Table 3. Overall, the results 
show that the CurvAGN model outperforms all other models in the dataset.

According to [2, 35], the performance of protein-ligand binding affinity prediction 
models is heavily influenced by their ability to utilize the spatial structure of protein-
ligand complexes. GraphDTA models, which do not use spatial structure, perform 
poorly. SGCN, which leverages atom coordinates, performs better than the GCN, a 
variant of GraphDTA. However, SGCN’s performance suffers because its coordinate 
operations are not rotation invariant. GNN-DTI, with distance information, clearly 
improves performance over GAT. Among distance-based methods, ELGN and CMPNN 
focus more on message communication between nodes and edges, resulting in better 
performance than MAT and GNN-DTI. ELGN leverages long-range intermolecular 
interactions and incorporates the topology information of bonds, resulting in the best 
performance among these distance-based methods.

DimeNet is capable of learning the angle and distance structure and outperforms 
SGCN marginally. SIGN, although it considers angle information, lacks the topology of 
edges, which could be the main reason for its weaker performance compared to ELGN. 
Our proposed CurvAGN, on the other hand, captures more spatial information in the 

Table 2 The parameter setting for our Curv-SIAGN model

Learning rate Batch size Hyper‑parameter Cutoff for graph Dim of Node_emb

0.001 32 � = 1.75 θd = 5 128

Heads Dim of Edge_emb Cutoff for matrix Filtrations Angle domains

4 128 θρ = 12 50 6

Dropout Blocks Dim of curvature

0.2 4 128

Table 3 The performace comparision on PDBbind-v2016 core set

Source: We present the average (standard deviation) across 5 random runs, highlighting the best results. Note that the 
upward arrow ↑ indicates that a higher value is better, while the downward arrow ↓ indicates that a higher value is worse

Methods RMSE↓ MAE↓ SD↓ R↑

Free-spatial GCN 1.735 (0.034) 1.343 (0.037) 1.719 (0.027) 0.613 (0.016)

GAT 1.765 (0.026) 1.354 (0.033) 1.740 (0.027) 0.601 (0.016)

Methods GIN 1.640 (0.044) 1.261 (0.044) 1.621 (0.036) 0.667 (0.018)

GAT-GCN 1.562 (0.022) 1.191 (0.016) 1.558(0.018) 0.697 (0.008)

Coordinate SGCN 1.583 (0.033) 1.250 (0.036) 1.582 (0.320) 0.686 (0.015)

MAT 1.457 (0.037) 1.154 (0.037) 1.445 (0.033) 0.747 (0.013)

Distance GNN-DTI 1.492 (0.025) 1.192 (0.032) 1.471 (0.051) 0.736 (0.021)

Methods CMPNN 1.408 (0.028) 1.117 (0.031) 1.399 (0.025) 0.765 (0.009)

ELGN 1.285 (0.027) 1.013 (0.022) 1.263(0.026) 0.810 (0.012)

Angle DimeNet 1.453 (0.027) 1.138 (0.026) 1.434 (0.023) 0.752 (0.010)

Methods SIGN 1.316 (0.031) 1.027 (0.025) 1.312(0.035) 0.797 (0.012)

Ours CurvAGN 1.217 (0.012) 0.930(0.014) 1.191(0.015) 0.8305 (0.004)
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form of curvature and utilizes an adaptive graph attention mechanism, resulting in supe-
rior performance compared to SIGN.

Ablation analysis

To validate the importance of multi-scale curvature, heterophily, and multi-head GAT 
on predicting protein-ligand binding affinity, we compare CurvAGN and its variants on 
the test data.

• CurvAGN-C: uses the adaptive GAT layer without curvature information.
• CurvAGN-H: uses the vanilla multi-head GAT layer.
• CurvAGN-V: uses the adaptive GAT layer.

As can be observed in the Fig. 2, CurvAGN performs best among all the variants, prov-
ing the necessity of curvature information, heterophily and multi-head GAT in pre-
dicting protein-ligand binding affinity. Specifically, CurvAGN-C performs worse than 
CurvAGN because it fails to capture the curvature information. CurvAGN-H suffers 
from the lack of heterophily, which leads to a performance drop. The different attrib-
utes of nodes have varying impacts on the interactions between neighboring nodes. Cur-
vAGN-V fails to capture this, resulting in a decrease in performance. CurvAGN-C has 
a larger prediction error than CurvAGN-H and CurvAGN-V, indicating that curvature 
information plays a greater role in improving the model’s performance.

To check whether the gains made by our method are uniformly distributed across all 
these 290. We compare the average absolute prediction error of the SIGN and CurvAGN 
models on the test set across 5 random runs, and the distribution of the difference in 
absolute prediction error between SIGN and CurvAGN on these complexes is shown 
in the Fig. 3. In the Fig. 3, the x-axis represents complexes, the y-axis denotes average 
absolute prediction error, and the area under the curve represents the difference in the 
total sum of absolute errors between SIGN and CurvAGN on the test set. It is easy to see 
that the area under the curve above the x-axis (70.67) is greater than the area under the 
curve below the x-axis (41.50). This implies that CurvAGN performs better than SIGN 
on average. However, the gains of CurvAGN are not consistent across all complexes, as 
there are 127 samples with negative y-coordinates.

We compare well-performing complexes with poorly-performing complexes and find 
our model performs better for complexes with a high ratio of the number of ligand-
protein atom pairs with a distance less than 4.8Å to the total number of ligand-protein 
atom pairs. This may suggest that intramolecular interactions within the protein and the 

Fig. 2 The variants of the CurvAGN model. Different colors mark different models. CurvAGN (green) performs 
the best, followed by CurvAGN-H (blue) and CurvAGN-V (purple). CurvAGN-C (orange) performs the worst, 
which suggests that curvature features have a significant impact on protein-ligand binding
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ligand interfere with the prediction. Further research and analysis is introduced in Addi-
tional file 1.

Conclusion
In this work, we propose CurvAGN, a curvature-based GNN model to predict protein-
ligand binding affinity with improved performance, through incorporating the fine-
grained geometric information, interaction information among atoms, and heterophily 
in the complex graph for enhanced representation learning. We first design a curvature 
block that encodes multiscale curvature information. We then introduce a polar-inspired 
adaptive graph attention block (PAGA) to capture the heterophily in the complex graph 
and also the angle and distance information. Additionally, since node attributes rely on 
the graph structure differently, we use vector attention in the edge2edge layer of PAGA 
which allows the model to learn different attention weights for different attributes in the 
node. Additionally, since node attributes rely on the graph structure differently, we use 
vector attention in the edge2edge layer of PAGA which allows the model to learn dif-
ferent attention weights for different attributes in the node. We train the model on the 
standard PDBbind-v2016 dataset and its experimental result outperforms SIGN by 7.5% 
in RMSE and 9.4% in MAE which confirms that the proposed CurvAGN model is effec-
tive in improving protein-ligand binding affinity prediction.

For protein-ligand binding affinity prediction, the accuracy of the prediction is impor-
tant for the design and development of drugs, understanding protein function and inter-
action mechanisms, etc. Therefore, even if the lift in RMSE is small, our method can 
improve the accuracy of the prediction and provide more reliable and useful results.

Future research

We believe that further exploration is warranted to address the issue that our model may 
not improve prediction accuracy for all protein-ligand complexes. This investigation can-
not only reveal the applicability range of our model but also provide new insights for its 
further improvement. Additionally, we aim to incorporate the overall geometric infor-
mation of the complexes, such as topological information, into our network structure. 

Fig. 3 Gains made by CurvAGN on each complex in the test set. The x-axis denotes the complexes, and the 
y-axis denotes the error between the difference in absolute prediction error between SIGN and CurvAGN on 
each complex. The area under curve represents the total gains made by CurvAGN on the test set. The figure 
shows that our method is only effective for some specific complexes
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Finally, we aspire to apply our model to other areas of biology, such as miRNA-disease 
association prediction [58] and drug repositioning [59].

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859- 023- 05503-w.

Additional file 1. Supplemental provides details of valuation metrics used in this work and the relation between 
complex structure and model performance.
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