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Abstract 

Background:  Identification of pleiotropic variants associated with multiple pheno‑
typic traits has received increasing attention in genetic association studies. Overlap‑
ping genetic associations from multiple traits help to detect weak genetic associations 
missed by single-trait analyses. Many statistical methods were developed to identify 
pleiotropic variants with most of them being limited to quantitative traits when pleio‑
tropic effects on both quantitative and qualitative traits have been observed. This 
is a statistically challenging problem because there does not exist an appropriate multi‑
variate distribution to model both quantitative and qualitative data together. Alter‑
natively, meta-analysis methods can be applied, which basically integrate summary 
statistics of individual variants associated with either a quantitative or a qualitative trait 
without accounting for correlations among genetic variants.

Results:  We propose a new statistical selection method based on a unified selec‑
tion score quantifying how a genetic variant, i.e., a pleiotropic variant associates 
with both quantitative and qualitative traits. In our extensive simulation studies 
where various types of pleiotropic effects on both quantitative and qualitative traits 
were considered, we demonstrated that the proposed method outperforms the exist‑
ing meta-analysis methods in terms of true positive selection. We also applied 
the proposed method to a peanut dataset with 6 quantitative and 2 qualitative 
traits, and a cowpea dataset with 2 quantitative and 6 qualitative traits. We were 
able to detect some potentially pleiotropic variants missed by the existing methods 
in both analyses.

Conclusions:  The proposed method is able to locate pleiotropic variants associated 
with both quantitative and qualitative traits. It has been implemented into an R pack‑
age ‘UNISS’, which can be downloaded from http://​github.​com/​statp​ng/​uniss.
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Background
In the last few decades, genome-wide association studies (GWASs) have success-
fully discovered a number of genetic variants associated with various phenotypes 
of interest, providing an unprecedented opportunity for researchers to explore the 
genetic architecture underlying complex traits and diseases. Recent years, there is 
renewed attention to genetic pleiotropy which refers to the phenomenon where a 
single genetic variant is associated with multiple phenotypes. In different organisms, 
pleiotropic variants have been studied to understand a mechanistic underpinning of 
multiple traits. For example, a majority of patients with cystic fibrosis are also infer-
tile due to congenitial bilateral absence of vas deferens (CBAVD). This is an evidence 
that a mutation in CFTR gene plays a shared role in both lung function and CBAVD 
[1]. Another example is the frizzled feather trait, which is a well known pleiotropy in 
chickens [2]. Recently, a pleiotropic effect on hyperpigmentation and egg production 
was discovered by chicken genome analysis [3]. In plant biology, the recent advent 
of high-throughput plant phenotyping technologies also contributed to the attention 
given to pleiotropy, which plays a potential role in improvement of the genetic gain in 
yields of major crops such as wheat (Triticum aestivum L.) stagnated over decades [4].

Identification of pleiotropic variants may address the missing heritability problem 
caused by genetic variants that cannot be detected by single-trait GWAS [5]. For 
example, recent studies have successfully identified pleiotropic variants using multi-
phenotype association models which can increase the statistical power of detecting 
SNPs [6, 7]. They demonstrated that genetic overlap between multiple traits can boost 
the power of weak association signals that cannot be detected by single-trait analyses. 
Additional investigations found that 4.6% of SNPs and 16.9% of genes listed in the 
National Human Genome Research Institute (NHGRI) catalog could be associated 
with multiple phenotypes [8]. Also, it suggests that 90% of trait-associated genetic 
variants could influence multiple phenotypes through analyzing 4,155 publicly avail-
able GWAS results across 2,965 unique traits [9]. Therefore, studies on genetic pleiot-
ropy are expected to advance genetic association studies which have mostly focused 
on single-trait analyses.

Many statistical methods have been proposed to identify pleiotropic variants with 
majority of them based on multivariate approaches. For instance, dimension reduction 
techniques such as principal component analysis [10] and canonical correlation analysis 
[11] were applied to multivariate traits. Both methods essentially extract weighted lin-
ear combinations of multiple quantitative trait values. One of the most straightforward 
methods is to calculate individual p-values one for association of one genetic variant on 
one phenotype with adjustment for multiple testing [12]. However, it has low power to 
detect weak association signals due to its conservative adjustment. Multivariate analysis 
of variance (MANOVA) tests were also used to detect pleiotropic variants, assuming a 
multivariate normal distribution of multiple traits [13, 14]. Also, a generalized estimat-
ing equation (GEE) [15], a generalized linear mixed model [16] and a multivariate lin-
ear mixed model controlling for population structure [17] have been proposed. These 
methods consider multiple traits as repeated measurements of each individual in order 
to account for correlations among multiple traits. However, they cannot be applied 
to mixed quantitative and qualitative traits. This is a statistically challenging problem 
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because there does not exist an appropriate multivariate distribution to model both 
quantitative and qualitative data together [15].

There have been several attempts to detect pleiotropic variants associated with mixed 
quantitative and qualitative traits. The extended GEE for bivariate traits was proposed by 
Liu et al. [18], combining two different generalized linear models one for a continuous 
trait and one for a binary trait. Similarly, Schaid et al. [19] applied GEE to the standard-
ized residuals extracted from separate generalized linear models for each trait. O’Reilly 
et al. [20] suggested to use a reverse regression, where a single variant is regarded as a 
dependent variable while multiple traits such as quantitative and qualitative traits are 
considered as independent variables. Alternatively, meta-analysis methods which inte-
grate summary statistics of individual variants associated with either a quantitative or a 
qualitative trait can be applied. Recently, many researches have suggested meta-analysis 
methods for detecting multiple phenotype associations [21–25]. However, these existing 
methods developed for mixed quantitative and qualitative traits cannot account for cor-
relations among genetic variants because genetic association of multiple traits are tested 
on individual variants one at a time.

Regularization methods based on penalized regression have been popularly applied to 
analysis of high-dimensional genomic data [26–33]. Since multiple genetic effects on a 
phenotype outcome are simultaneously estimated in one regression framework, regu-
larization methods are able to consider genetic correlations among variants. However, 
most of regularization methods are designed for a single phenotype outcome, including 
quantitative and qualitative traits. Although there exist some regularization methods for 
a multivariate response [34–36], they are all limited to only quantitative traits.

In this article, we propose a new statistical selection method based on a unified s
election score (UNISS), which linearly combines the selection probability of individual 
variants over multiple traits. The selection probability quantifies the strength of asso-
ciation between genetic variants and a phenotype outcome. Therefore, the unified selec-
tion scores of genetic variants associated with either a quantitative or qualitative trait 
tend to be high, while the scores of variants with no association are relatively low. With 
an appropriate cut off of the unified selection scores, we can select a certain number of 
pleiotropic variants. In the next section, we described our statistical selection method, 
including how to pick up the cut-off of the unified selection score. In the section of 
Results we presented simulation results, comparing selection performance of the pro-
posed UNISS to that of several competing methods under various simulation scenarios 
of pleiotropic effects on both quantitative and qualitative traits. Continuously, we also 
presented plant SNPs data application on two different datasets, one with 6 quantitative 
and 2 qualitative traits from 235 peanut accessions, and one with 2 quantitative and 6 
qualitative traits from 354 cowpea accessions. Lastly, we summarized the methods and 
discussed future directions.

Materials and methods
Elastic‑net regularization and selection probability

Suppose that we observe p genetic variants and q phenotypes from n individu-
als. We then denote the dataset of the ith individual by (xi, yi) for i = 1, . . . , n , where 
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xi = (xi1, . . . , xip)
T is the p-dimensional vector of genetic values and yi = (yi1, . . . , yiq)

T 
is the q-dimensional vector of phenotypic outcomes. A regression coefficient matrix is 
denoted by β = (β1, . . . ,βq) , where βk = (β0k ,β1k , . . . ,βpk)

T . Then, the penalized likeli-
hood of the kth phenotype outcome for the elastic-net regularization [37] is defined as

if the kth phenotype outcome is quantitative. Note that the penalized likelihood consists 
of a least square loss function and a elastic-net penalty function. The elastic-net uses 
two tuning parameters � and α in the penalty function. � > 0 controls the number of 
nonzero regression coefficients, so all coefficients can be exactly zero if � is relatively 
large. α ∈ [0, 1] is a mixing proportion between lasso regularization and ridge regulari-
zation. Friedman et al. [38] developed a cyclic coordinate descent algorithm to estimate 
the regression coefficients of elastic-net regularization for fixed values of α and � . They 
also suggested to use cross-validation for estimation of the tuning parameters. In gen-
eral, a small value of α is desirable for highly correlated variables, so we fixed α = 0.1 
which is often used for genetic association studies [30, 39].

If the kth phenotype outcome is qualitative with K levels, i.e., yik ∈ {1, 2, · · · ,K } for all 
i = 1, · · · , n , we can then replace the least square loss function by the negative logistic 
log-likelihood function

for K = 2 and the negative multinomial log-likelihood function for K > 2 . Friedman 
et  al. [38] described the explicit form of the multinomial likelihood function. For the 
sake of simplicity, we focus on K = 2 for qualitative outcomes here.

In order to perform stable variable selection in regularization methods, Meinshausen 
and Bühlmann [40] proposed to compute the selection probability of individual vari-
ables. It does not require to choose the optimal � , where cross-validation often fails to 
pick up a consistent value of � due to randomly splitting between training and validation 
sets. Selection probability essentially measures relative frequency of nonzero regres-
sion coefficients based on subsamples of the data. Shah and Samworth [41] adopted 
bootstrap resampling to compute the selection probability. If we denote the lth boot-
strap sample by bl = (x∗1, y

∗
1)

[l], . . . , (x∗n, y
∗
n)

[l]  , then the selection probability of the jth 
genetic variant and kth phenotype outcome is

where I(·) is an indicator function and B is the total number of bootstrap resampling. 
For a pre-defined value of � , the estimated regression coefficient β̂jk(bl; �) can be com-
puted by maximizing the penalized likelihood when we have the lth bootstrap sample. 
Friedman et al. [38] developed an R package ‘glmnet’ to provide the estimated regression 
coefficients of the elastic-net regularization for a grid of � values.
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Unified selection score

Let us denote the sum of the selection probabilities of the kth phenotype over p genetic 
variants by

Even though the kth phenotype outcome is not associated with any genetic variants, 
Sk(�) > 0 unless we put an extremely large value of � . Elastic-net regularization was 
designed to perform variable selection, where variables with nonzero regression coef-
ficients can be selected. But, one disadvantage is that it can choose any variables even 
when all variables are irrelevant. The number of nonzero regression coefficients gener-
ally increases as the numerical value of � decreases, regardless of association between a 
phenotype outcome and variants. In analysis of real genomic data, we cannot know how 
many phenotypes are truly associated with the genetic variants, and which phenotypes 
are associated with pleiotropic variants.

If there is no association with the kth phenotype outcome, nonzero regression coef-
ficients of elastic-net regularization among p variants should be randomly occurred each 
bootstrap sample because they are all false positives. Consequently, sjk(�) is expected 
to be uniformly distributed over p variants. In contrast, if the kth phenotype outcome 
is truly associated with the jth variant, sjk(�) > sj′k(�) for any j′ th neutral variants so 
the distribution of selection probabilities is not uniform in this case. Therefore, a rela-
tively large value of selection probability can be observed at only variant-associated phe-
notypes if the number of nonzero coefficients are all equal among q phenotypes, i.e., 
S1(�1) = S2(�2) = · · · = Sq(�q) . However, it is almost impossible to figure out �1, . . . , �q 
since bootstrap samples are random. Alternatively, we introduce new strategy for the 
sum of selection probabilities of q phenotypes to have the same quantity, while we 
weight genetic variants with a large selection probability.

For a pre-defined � , let us denote the minimum value of Sk(�) among q phenotypes 
by η� = min1≤k≤q Sk(�) . For the kth phenotype, we order p selection probabilities from 
largest to smallest such that

We define a threshold of selection probabilities of the kth phenotype by τk = s[J ],k(�) , 
where

The sum of the selection probabilities after thresholding is then
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p
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Note that S̃k(�) can be greater than η� if there is a tie score among the Jth largest selec-
tion probabilities. For instance, suppose that we have s[1],k(�) = 0.7 , s[2],k(�) = 0.2 , 
s[3],k(�) = 0.2 , s[4],k(�) = 0.1 and η� = 1 . In this situation, τk = 0.2 and S̃k(�) = 1.1 > η� . 
Therefore, we need to adjust individual selection probabilities so that S̃k(�) = η� 
for all k = 1, . . . , q . In the above example, s∗[1],k(�) = 0.7/1.1 , s∗[2],k(�) = 0.2/1.1 and 
s∗[3],k(�) = 0.2/1.1 ensure for the sum of three adjusted selection probabilities to become 
η� = 1 . Although we chose the minimum value of Sk(�) for k = 1, . . . , q to define η� , it 
can be defined in a different way such as a maximum value and a median value. If the 
maximum value is taken, i.e., η� = max1≤k≤q Sk(�) , selection probabilities of (q − 1) 
phenotypes are upweighted. That is, selection probabilities of individual variants of the 
kth phenotype outcome are increased by η�/Sk(�) which is generally tiny for a large p. 
The key idea of thresholding is that the sum of adjusted selection probabilities of q phe-
notypes to have the same quantity. So, the adjusted selection probabilities of truly asso-
ciated variants can be always higher than those of neutral variants among q phenotypes.

If the adjusted selection probability of the jth genetic variant and kth phenotype 
outcome is defined as

the unified selection score of the jth variant is then

For each genetic variant, the proposed unified selection score linearly combines the 
adjusted selection probabilities over q phenotypes. Finally, we can rank p variants based 
on their unified selection score. The selection score of variants that have a strong associ-
ation with a single phenotype as well as moderate associations with multiple phenotypes 
tend to be high, while the selection score of variants with no association will be relatively 
low.

Finally, the tuning parameter � should be determined to compute our unified selec-
tion score. It essentially controls the number of nonzero regression coefficients, 
regardless of genetic association between variants and phenotype outcomes. If we 
employ a large value of � , overall selection scores are too low to be compared with 
each other since large � leads to the small number of nonzero regression coefficients 
in elastic-net regularization. In contrast, an extremely small value of � results in 
too many nonzero coefficients, which requires explosive computational cost for the 
increasing number of coefficient estimates. An R package ‘glmnet’ [38], which esti-
mates the coefficients of elastic-net regularization, generates 100 different � values 
such that

where �max is large enough to have β̂j = 0 for all j, while �min produces the most number 
of nonzero coefficients. Our developed R package ‘UNISS’ chooses a median of 100 � 
values so that an appropriate number of nonzero coefficients can be estimated. Since the 
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selection probability essentially measures relative selection frequency among p variables, 
the ranking of p variables based on our selection score are rarely changed along with a 
different value of � as discussed by Meinshausen and Bühlmann [40]. We also conducted 
a simulation study to compare selection performance of the proposed method for a dif-
ferent value of � . We found that the median of 100 � values is adequate.

A cut‑off of unified selection scores

The unified selection score cannot select a certain number of genetic variants, but it pri-
oritizes the p variants. So, we need to determine a cut-off value of the selection score in 
order to complete variable selection. A theoretical threshold of selection probabilities 
cannot be used in high-dimensional genomic data because of correlations among vari-
ables [40]. There have been some studies for an empirical threshold of selection prob-
abilities [28, 42], but they are all limited to a single phenotype outcome. Computation of 
the empirical threshold is based on permutation, so we also employed it to find a cut-off 
value of our unified selection scores.

For an index set I = {1, 2, . . . , n} , let us denote the tth permuted index set by 
It = {σt(1), . . . , σt(n)} , where σt(m) moves an index from place m to place σt(m) in the 
tth permutation. Then, the tth permuted matrix of q phenotype outcomes can be written 
as

Note that we conducted only row-wise permutation of the phenotype matrix and did 
not permute the genetic variants of xi for i = 1, . . . , n . Therefore, permuted data basi-
cally assumes no genetic association between q phenotypes and p genetic variants.

The unified selection score of the jth variant based on the tth permutation set is then 
denoted by πj(It; �) , and they can be listed from largest to smallest such that

Finally, the cut-off value of the unified selection scores is computed by

where T is a total number of permutation and θ is a pre-defined value representing the 
number of falsely selected variants. For a given value of � and θ , the proposed method 
selects the variants j ∈ {1, . . . , p} , satisfying 

{

j : πj(I; �) > c�(θ)
}

 . Among the selected 
variants, the expected number of false positives should be around θ which plays a similar 
role as a significance level α in hypothesis testing. For example, if we choose θ = 10 , the 
average value of the tenth largest selection scores over permutation sets is our cut-off 
value c�(10) . We then select a certain number of genetic variants whose unifiend selec-
tion scores are greater than c�(10) . Among these selected variants, the expected number 
of false positives should be around 10. Kim et al. [42] have demonstrated that the cut-off 
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value of selection probabilities based on the quantile estimate of an empirical null distri-
bution is able to control the number of false positives for a single phenotype outcome.

Results
Simulation studies

In order to generate single nucleotide polymorphism (SNP) data that has genetic cor-
relations among adjacent variants, we first generated two p-dimensional vectors 
(zi1,1, . . . , zip,1)

T and (zi1,2, . . . , zip,2)T from a multivariate normal distribution N (0,�x) , 
where �x is an AR (1) covariance matrix with a correlation coefficient 0.9, i.e., the ele-
ment at the uth row and vth column of �x is equal to 0.9|u−v| for 1 ≤ u, v ≤ p . Note that 
AR(1) covariance produces highly correlated values for adjacent variables. Next, we gen-
erated a minor allele frequency (MAF) of the jth variant MAFj from an uniform distribu-
tion U(0.05,  0.5). If we define z̄ij,o = 1

n

∑n
i′=1 I(zij,o ≤ zi′j,o) for o ∈ {1, 2} , the genotype 

xij ∈ {0, 1, 2} of the i-individual and the jth variant can be generated by

for i = 1, . . . , n and j = 1, . . . , p . Using this procedure, the simulated SNP data can attain 
the Hardy-Weinberg equilibrium (HWE). It is a principle stating that the genetic varia-
tion in a population will remain constant from one generation to the next in the absence 
of disturbing factors [43]. In order to hold HWE, the genotype data should be gener-
ated based on their minor allele frequencies. For example, if the MAF of the jth SNP is 
denoted by MAFj , then the probabilities of 3 different genotypes such as AA, AC and 
CC are MAF2j  , 2MAFj(1−MAFj) and (1−MAFj)

2 , respectively. Since we hope that our 
simulation data is similar to real SNP data as much as possible, a particular data genera-
tion scheme was employed in order to hold HWE.

The phenotype outcome of the ith individual was then generated by

where an error vector ǫi = (ǫi1, . . . , ǫiq)
T follows a multivariate normal distribution 

N (0,�e) . The error covariance �e has 1 on the diagonals and ρe on the off-diagonals, 
where ρe was generated from an uniform distribution U(0, 0.2) so that we can prevent 
the correlations among q phenotype outcomes being determined by only the error term. 
We observed that the sample correlation coefficient among q phenotype outcomes 
ranges from 0 to 0.9 with an average of 0.23. Note that the sample correlation coefficient 
among 4 quantitative traits from the our peanut data ranges from 0 to 0.531 with an 
average of 0.18. In our simulation, we fixed n = 400 , p = 40, 000 and q = 8 , which are 
comparable with our real SNP data.

Next, we located pleiotropic variants associated with paired phenotype outcomes, 
using nonzero regression coefficients. We assumed that pleiotropic variants are asso-
ciated with only two phenotype outcomes. We randomly selected 16 disjoint regions 
where each region consists of 5 adjacent SNPs with either a homogeneous effect or a 
heterogeneous effect on two phenotype outcomes. For example, if the first and the sec-
ond phenotypes are associated with the first 5 variants and their effects are homogene-
ous, then

xij = I
(

z̄ij,1 < MAFj
)

+ I
(

z̄ij,2 < MAFj
)

yi = xTi β + ǫi,
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If the effects of 5 variants are heterogeneous,

The first variant with a heterogeneous effect has a weak association signal with the first 
phenotype, i.e, β11 = 0.5 , while it has a strong association signal with the second pheno-
type, i.e., β12 = 2.5 . In contrast, the pleiotropic variants with a homogeneous effect have 
the same signal strength for the two phenotypes. We assumed that 8 regions have homo-
geneous effects while the other 8 regions have heterogeneous effects. If the kth pheno-
type is not associated with the jth variant, we simply set βjk = 0 and also all intercept 
parameters β0k = 0 for k = 1, . . . , 8.

For a qualitative outcome, we binarized a quantitative outcome based on its median 
value. Among 8 phenotype outcomes, we considered 6 quantitative and 2 binary 
(Q,B) = (6, 2) , 4 quantitative and 4 binary (Q,B) = (4, 4) and 2 quantitative and 6 binary 
(Q,B) = (2, 6) . The number of phenotypes that have pleiotropic variants is either 4 
(Half ) or 8 (All). Therefore, there are a total number of 6 different scenarios in our simu-
lation study. For each scenario, the selection performance of the proposed UNISS was 
compared with that of the 4 existing methods, which include MultiPhen [20] based on 
a reverse regression and 3 meta analysis methods. They are the minimum of p-values 
(MinP) [21], a meta-analysis version of USAT (metaUSAT) [23], and an adaptive test 
(AT) [25].

Since only 80 pleiotropic variants among 40,000 have nonzero regression coefficients, 
the true positive rates (TPR) of 5 statistical methods were computed when each method 
selected the exactly same number of variants from 20 to 200 increased by 20. UNISS 
selected variants based on the ranking of the unified selection scores while the other 
4 existing methods selected variants based on their p-value ranking of 40,000 variants. 
Figure 1 displays averaged true positive rates of 5 methods over 100 simulation replica-
tions in 6 different scenarios. It appears that the proposed selection method, UNISS has 
the highest TPR in 5 scenarios. In the last scenario where 2 quantitative and 6 binary 
phenotypes are all associated with pleiotropic variants, the TPR of UNISS is very close 
to TPRs of other methods. Also, it is noticeable that UNISS shows robust selection per-
formance, regardless of the number of variant-associated phenotypes. In contrast, the 
TPR of AT was clearly dropped down when only half of phenotypes are associated with 
pleiotropic variants.

Figure 2 shows the TPRs of 4 different pleiotropic variants when top 200 ranked vari-
ants were selected by each of 5 methods. UNISS has the highest TPR for selection of var-
iants with a homogeneous effect such as (0.5, 0.5) and (1.5, 1.5). In contrast, AT has the 
lowest TPR when half of phenotypes are associated, while MultiPhen has the lowest TPR 
when all of phenotypes are associated. For pleiotropic variants with a heterogeneous 
effect of (0.5, 2.5), the selection performance of 5 methods are almost identical. Since 
the pleiotropic variant has a strong association signal with one phenotype outcome, it is 
easily detectable even if the association signal with the other phenotype outcome is very 
weak. However, for pleiotropic variants with a moderate effect size of (1.0, 2.0), the TPR 

(β11,β21,β31,β41,β51) = (0.5, 1.0, 1.5, 2.0, 2.5)
(β12,β22,β32,β42,β52) = (0.5, 1.0, 1.5, 2.0, 2.5)

(β11,β21,β31,β41,β51) = (0.5, 1.0, 1.5, 2.0, 2.5)
(β12,β22,β32,β42,β52) = (2.5, 2.0, 1.5, 1.0, 0.5)
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Fig. 1  Averaged true positive rates of the top ranked 20, 40, . . . , 200 variants selected by 5 statistical methods 
are displayed when the number of quantitative and binary phenotypes (Q, B) are (6, 2), (4, 4) or (2, 6), and the 
number of variant-associated phenotypes are either 4 (Half ) or 8 (All)

Fig. 2  Averaged true positive rates of the top ranked 200 variants selected by 5 statistical methods are 
displayed when the pleiotropic variants have four different effect sizes such as (0.5, 0.5), (1.5, 1.5), (0.5, 2.5) and 
(1.0, 2.0), and the number of variant-associated phenotypes are either 4 (Half ) or 8 (All)
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of UNISS is clearly larger that TPRs of the other methods. Although pleiotropic variants 
with 3 different effect sizes of (1.5, 1.5), (0.5, 2.5) and (1.0, 2.0) have the same total effect 
of 3.0, four existing methods have quite different TPRs to detect the corresponding plei-
otropic variants. In contrast to the exiting methods, UNISS shows consistent TPRs to 
find these variants.

Next, we investigated the numerical values of unified selection scores when the pleio-
tropic variants have 5 different effect sizes in 6 different scenarios. Figure 3 shows the 
box-plots of unified selection scores over 100 simulation replications. It appears that 
selection scores are proportional to the effect sizes of pleiotropic variants. In addi-
tion, the selection score seems to approach the number of variant-associated pheno-
types when the effect size of the variants increases. Although UNISS is not designed 
to identify which phenotype outcomes are associated with the pleiotropic variants, the 
selection scores are able to provide us with the expected number of variant-associated 
phenotype outcomes if association signals are strong enough.

Finally, we conducted a simulation study to control the number of false discoveries when 
we adopted the permutation cut-off of unified selection scores in order to select a certain 
number of variants. We focused on the scenario with 4 quantitative and 4 binary phe-
notypes (Q,B) = (4, 4) , where the number of variant-associated phenotypes is 8 (all). In 
Additional file 1, the number of true positives and the number of false discoveries were 
plotted each simulation replication when the expected number of falsely selected variants 
θ is given. The averaged number of selected variants over 100 simulation replications are 
39.0, 49.4, 62.6, 72.7, 81.7 and 90.1 for θ = 5, 10, 20, 30, 40 and 50, respectively. We found 
that the number of false discoveries can be controlled well for only large θ . We can see that 
the number of false discoveries was actually greater than θ in many simulation replications 
for small θ . We considered another situation where genetic correlation of SNP data is mod-
erate. So, we additionally generated SNP data using AR(1) covariance with a correlation 
coefficient of 0.6. In Additional file 2, we can see that the permutation cut-off of unified 
selection scores can control the number of false discoveries very well. Meinshausen and 
Bühlmann [40] have discussed the weakly independent assumption to control the number 
of false discoveries of selection probabilities. We also found that it is relatively difficult to 
control the number of false discoveries when genetic correlations are too high.

We additionally investigated the selection performance of the proposed method along 
with a different value of � . For each simulation, we first generated 100 different � values 
from an R package ‘glmnet’ [38]. Next, we chose 9 different � values in order to apply 
the proposed selection method. They are from 0.1 to 0.9 quantiles of 100 � values, i.e., 
�10 > �20 > . . . > �90 where �10 means the 0.9 quantile of 100 � values while �90 means 
the 0.1 quantile of 100 � values. Additional file 3 shows the TPRs of the proposed method 
along with different � values in 6 different scenarios. It appears that TPRs noticeably 
dropped down when a relatively large � is used. This is because the number of nonzero 
regression coefficients is too small to compute selection probability of individual vari-
ants, which can lead to inaccurate computation of unified selection scores. In contrast, 
TPRs are almost the same for all of � values from the median to the smallest. Computa-
tional cost which relies on the number of nonzero regression coefficient is increased as 
� decreases. Consequently, we chose the median of � for both accurate computation and 
computational efficiency.
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Real data analysis

In order to validate our proposed selection method in real data analysis, we applied it 
two different genotype datasets from cowpea and peanut crops. They were genotyped 
from the Illumina Cowpea iSelect consortium array and Axiom Arachis array, respec-
tively. The cowpea dataset includes 49,683 SNPs with 384 samples, while the pea-
nut dataset has 32,145 SNPs with 301 samples. The cowpea dataset has 6 phenotypes, 
including 2 quantitative and 4 binary traits [44]. 2 quantitative traits are pod length (PL) 
and seed numbers per pod (SNPP), while 4 binary traits are mature pod color (MPCOL), 
mature pod curve (MPCUV), seed density (SD) and shattering (ST). Each binary trait 
has the following categories: brown and black for MPCOL, straight and curved for 
MPCUV, low and high for SD, and shattering and no shattering for ST. The peanut data-
set also has 6 phenotypes, including 4 quantitative and 2 binary traits [45]. 4 quantitative 
traits are leaf chlorophyll (LC), leaf aspect ratio (LAR), seed area (SA) and seed sucrose 
(SS), while 2 binary traits are flowering date (FD) and seed fungi quantity grade (SFQG), 
whose categories are early and late for FD and low and high for SFQG.

Before we identify pleiotropic variants of each dataset, we proceeded the quality con-
trol steps where we removed the samples with any missing phenotype values and then 
filtered out SNPs with either a missing call rate more than 70% or a minor allele fre-
quency less than 1%. For remaining missing genotypes, we imputed the genotype values 
using an R package ‘synbreed’ [46], which imputes missing SNPs based on the posterior 

Fig. 3  Box-plots of unified selection scores are displayed over 100 simulation replications when the 
pleiotropic variants have five different effect sizes such as (0.5, 0.5), (1.5, 1.5), (2.5, 2.5), (0.5, 2.5) and (1.0, 
2.0), the number of quantitative and binary phenotypes (Q, B) are (6, 2), (4, 4) or (2, 6), and the number of 
variant-associated phenotypes are either 4 (Half ) or 8 (All)
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distribution of allele frequency. After the quality control steps, we ended up with 354 
samples and 40,603 SNPs for the cowpea dataset and 235 samples and 27,991 SNPs for 
the peanut dataset.

We first investigated genetic correlations of each dataset to compare the correlations 
of simulated SNP data. Many crops including cowpea and peanut inherently have a com-
plex population structure arising from historic inbreeding. This population structure 
often causes spurious estimation for linkage disequilibrium (LD). Alternatively, the par-
tial correlation coefficient to correct bias induced by the population structure has been 
proposed [47, 48]. Therefore, we applied the partial correlation coefficients to two data-
sets for estimation of LD. For SNP data in our simulation studies, we generated it using 
AR(1) covariance with a correlation of ρx = 0.9 , but we also generated additional SNP 
data using 4 different correlations such as ρx = 0.5, 0.6, 0.7 and 0.8. Additional file 4 dis-
plays the histogram of log2 LD estimates for both cowpea and peanut datasets as well as 
5 different simulated SNP data. Also, a sample mean and a standard deviation of log2 LD 
estimates were computed for each dataset. It appears that the distribution of cowpea 
SNP data is similar to that of simulated SNP data using ρx = 0.9 . In contrast, the dis-
tribution of peanut data is close to that of simulated SNP data using ρx = 0.6 . Based 
on these histograms, we can conclude that the genetic correlations of cowpea dataset is 
quite strong, while the correlations of peanut dataset is moderate.

Next, we conducted the k-means clustering to discover the population structure for 
both cowpea and peanut datasets. Since genomic data in crop plants are highly hetero-
geneous between populations, ignoring the population structure in genetic association 
studies may lead to spurious analysis results. The optimal number of clusters was com-
puted by the gap statistic [49], where we found that both datasets have 6 clusters. The 
scatter plot of the first two principal components colored by the population structure 
are shown in Fig. 4 for the cowpea dataset and Additional file 5 for the peanut dataset. 
The index set of the population structure was then regarded as a covariate in analysis 
of pleiotropic variants, because we assume that it can affect the phenotype outcomes. 
Note that a covariate is not penalized in the elastic-net regularization, so it always has a 
nonzero regression coefficient, regardless of the tuning parameter � . The penalized like-
lihood function including covariates is described in Friedman et al. [38].

In order to detect pleiotropic variants, we did not apply only the proposed UNISS, but 
also 3 meta analysis methods such as MinP, AT and metaUSAT used in our simulation 
study. For cowpea dataset, the number of variants selected by UNISS was 40, 46, and 68 
for θ = 30, 40 and 50, respectively. MinP selected 21, 41, and 105 variants for the sig-
nificance level of 10−12 , 10−11 and 10−10 , respectively. For the same significance levels, 
AT selected 46, 70, and 88 variants, while metaUSAT selected 73, 85, and 118 variants, 
respectively. If we apply Bonferroni adjustment for a level of 0.05, the variants with their 
p-values less than 1.2314 × 10−6 are significant, where 3 meta analysis methods selected 
hundreds of variants with this level. Since selection of too many variants can drastically 
increase the number of false positives, we just focused on top 20 ranked variants for fair 
comparison of four methods including UNISS, MinP, AT and metaUSAT. Similar to our 
simulation study, UNISS selected top 20 variants based on their selection scores, while 
three meta analysis methods selected 20 variants based on their p-value rankings.
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A venn diagram summarizing the top 20 variants selected by each of 4 methods is 
shown in Additional file 6. Surprisingly, only 1 variant is commonly selected by 4 meth-
ods. 19 variants were identified by only UNISS, while 3 variants were identified by only 
MinP. There are no variants uniquely identified by either AT or metaUSAT. 16 variants 
were commonly selected by 3 meta analysis methods. Additional file 7 shows informa-
tion of the selected variants, their unified selection scores and their p-values of 3 meta 
analysis methods. Also, we conducted a univariate test for these variants, where a gen-
eralized linear model was applied using a single trait on the response and both a variant 
and a covariate on the predictors. The variant rs_2_23708 on chromosome 3 was identi-
fied by all of four methods since the pod length trait is strongly associated with it. UNISS 
also has the largest selection score for this variant. Among the 19 variants identified by 
only UNISS, we can see that most of variants have either moderate or strong association 
with at least one of 6 traits. However, we should notice 3 variants including rs_2_35607 
on chromosome 3, rs_2_49550 on chromosome 10, and rs_2_37568 on chromosome 5. 
Their p-values of the univariate test are not small enough to detect significant associa-
tion. That is, single-trait analyses fail to identify these variants. Correspondingly, the 
p-values of 3 meta analysis methods are also relatively large for these variants. We can 
conclude that these three variants are potentially pleiotropic variants that are weakly 
associated with multiple traits. The manhattan plot of the cowpea dataset are displayed 
in Fig. 5, where the unified selection scores were replaced by − log10 p-values.

In the same way, we also identified top 20 ranked variants of the peanut dataset 
using four methods. Additional file 8 shows a venn diagram of four methods for top 
20 ranked variants. We can see that 7 variants are selected by all of 4 methods, while 
UNISS uniquely identified 13 variants. Also, we can see information of the selected 
variants, their unified selection scores and their p-values of 3 meta analysis methods in 
Additional file 9. Similar to the cowpea dataset, 7 variants commonly identified by four 
methods have extremely small p-values of the univariate test for seed area trait. There-
fore, these variants are easily detectable by single-trait analyses. However, among 13 
variants identified by only UNISS, 3 variants such as AX-176823712 on chromosome 

Fig. 4  Scatter plot of the first two principal components colored by the population structure obtained from 
the k-means clustering for the cowpea dataset
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Araip.B07, AX-176819477 on chromosome Aradu.A09, and AX-176811925 on chro-
mosome Aradu.A04 have relatively large p-values of the univariate tests. So, they can-
not be detected by single-trait analyses. We also think that these variants should be 
further investigated as potentially pleiotropic variants. Additional file 10 displays the 
manhattan plot of the cowpea dataset.

Conclusions
We have proposed a new selection method to identify pleiotropic variants associated 
with both quantitative and qualitative traits. Specifically, we proposed unified selec-
tion scores, one score for one variant and then ranked them from largest to small-
est. We also proposed a procedure to select a cut-off value of the unified selection 
scores to select a certain number of variants while controlling the number of false 
discoveries. In our simulation studies, we have demonstrated that the proposed selec-
tion method has higher true positive rates than the existing meta analysis methods 
when effect sizes of pleiotropic variants are relatively small and genetic variants are 
highly correlated with each other. In real data applications to two plant SNP datasets 
with the cowpea and peanut datasets, we have shown that our method can identify 
potentially pleiotropic variants weakly associated with multiple traits, which cannot 
be detected by single-trait analyses.

Although unified selection scores are computed based on coefficient estimates of an 
elastic-net regularization, we can easily extend to other regularization methods. For 
example, sparse group lasso regularization combines the lasso penalty and the group 
lasso penalty, encouraging a group effect of variants [50]. Network-based regulariza-
tion utilizes genetic network information such as gene regulatory networks and protein-
protein interaction networks into genetic association studies. It has been demonstrated 
that using genetic networks in association studies can improve true positive selection 
[51–53]. Since the unified selection score essentially combines the number of nonzero 
regression coefficients of individual variants, it can be directly extended to other regu-
larization methods.

Our method was applied to both quantitative and binary traits from two plant SNP 
datasets in this article. For other types of traits, we can simply replace the likelihood 
part of the penalized regression. For instance, a conditional logistic likelihood function 
can be used for 1:1 matched case–control outcome [30]. Also, a partial Cox likelihood 

Fig. 5  Manhattan plot of the unified selection scores for the cowpea dataset. Top 20 ranked variants 
uniquely identified by UNISS are colored by red and variants commonly identified by three meta analysis 
methods are colored by blue
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function can be replaced for a survival time outcome [54]. Therefore, the proposed uni-
fied selection score is flexible and can be readily extended to other types of traits other 
than quantitative and qualitative traits we focused in this work. Additionally, the pro-
posed method is not limited to analysis of SNP data. Since the elastic-net regularization 
method can estimate the regression coefficients of quantitative predictors, the unified 
selection score can be applied to different kinds of genomic data such as gene expression 
data and DNA methylation data.

Note that the current method is computationally intensive due to bootstrap and 
permutation procedures. Bootstrap sampling is necessary to compute selection prob-
abilities and permutation procedures are to find a cut-off value of the unified selection 
scores. Although this is feasible with current computation technology, new computa-
tional strategy should be developed to further reduce the computational cost. In our 
analysis with the peanut dataset, UNISS requires around 428 s to compute the unified 
selection scores of 27,991 variants for a single � . Similarly, it takes approximately 986 s 
for UNISS to compute the selection scores of 40,603 variants from the cowpea dataset. 
The machine we used for computational time is Intel(R) Xeon(R) E5-2640 v4 @ 2.40GHz 
processor with 128 GB memory.
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