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Background
Communities of microbes inhabit all areas of the environment, including the body 
cavities and exterior surfaces of larger organisms. A microbiome can be thought of 
as a community of shared genes and metabolic pathways that acts as a complex sys-
tem in ways defined in part by their composition, or which microbial taxa are present 
and in what abundance [7]. These communities vary widely in composition, and cer-
tain patterns of colonization seem characteristic across individuals—and analogously 
across environmental sites—given similar conditions. In fact, mounting evidence 
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suggests that micro-organisms comprising the gut microbiome interact with host sys-
tems in myriad ways, and that understanding these associations could have profound 
implications for our ability to predict, diagnose, or treat pathologies [6, 31, 39, 41]. 
Similarly, the environmental microbiota, such as the communities characterizing a 
particular stratum of the soil or a particular water column, have enormous influence 
on local physiochemical conditions with far-reaching implications for ecology, agri-
culture, fisheries, and biotechnology. Moreover, the study of micro-organisms, their 
community dynamics, and their interactions with the cellular systems of their hosts 
continues to help researchers elucidate the origin of life on Earth.

Both 16S rRNA gene sequencing (be it in the form of operational taxonomic units 
or amplicon sequence variants) and metagenomic sequencing are the two most com-
mon high-throughput next-generation sequencing technologies, followed by bioin-
formatic algorithms that allow researchers to ultimately obtain counts of the observed 
representatives of each microbial taxon in each sample to characterize the compo-
sition of the microbiome. Regardless of sequencing protocol, the output comprises 
sequences of base pairs from a random sample of the total collection of genes in the 
community. This means that we only observe a count of each taxon in a sample, and 
not its true abundance in the community (sampling errors). In addition, the “depth” of 
sequencing, or the average number of reads in a sample that align to a known refer-
ence, varies significantly by sample and is thus a source of multiplicative error on the 
counts. Since many short fragments of a sequence have to be read and aligned with 
each other in order for that sequence to be recognizable, samples with lower sequenc-
ing depth have lower observed counts and more uncertainty (sequencing depth 
issues). A common practice to deal with the sequencing depth issue is to use the rela-
tive abundance or proportions of taxa in a sample for statistical analysis, which causes 
the problem of spurious correlations when distributions of taxa are unbalanced (com-
positional effects) [2]. Furthermore, thousands of microbial taxa can be present in a 
single sample, many of which are present in extremely low numbers, while the num-
ber of samples is—as in any experiment—limited by practical constraints such as cost 
and participation. As a result, each dataset has far more features than samples [24], 
and in a given sample there will be zero instances of many taxa (high dimensionality 
and sparsity), and the marginal distributions of most of the taxa are very skewed (long 
tailed distributions). These difficulties invalidate most existing data exploration meth-
ods, such as principal component or factor analysis, for inferring factors associated 
with large variation among conditions [37]. Despite the promise held by microbial 
abundance data, analysis is so statistically challenging [43] that scope for application 
is currently limited.

For sequencing depth issues, microbial abundances have often been modelled as if 
they were continuous by computing proportions of observed counts to the read depth of 
the sample (we will call this “relative abundance” data). Some workflows instead rarefy 
counts, which sacrifices observed data in order to equalize read depth. Hence, two gen-
erally acknowledged (but not necessarily enacted) recommendations for better statistical 
treatment of abundance data are 1) that an appropriate discrete generating distribution 
be used to model the sampling of counts, such as Poisson, negative binomial, or multino-
mial, and 2) that sequencing depth error be treated within a statistical framework [29]. 
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Additionally, it is well supported in all fields of ecology that the logarithmic scale can be 
useful when modeling populations of organisms in a community [33].

There are two available approaches—each of which assumes that the observations are 
conditionally Poisson-distributed—that can address all the above data issues and provide 
a good variance estimator. The first approach is the Poisson log-normal PCA (PLNPCA) 
[11], a fully parametric model in which the latent log Poisson means are assumed to 
follow a multivariate normal distribution, and the observed counts are—given the log 
means—independently Poisson-distributed. Sequencing depth can be treated as an off-
set in this model. The second approach is Poisson measurement error-corrected PCA 
(PoissonPCA) [22], which also assumes that the observed counts are—given the latent 
Poisson means—independently Poisson-distributed, but estimates an unbiased covari-
ance matrix non-parametrically for any nonlinear transformation of the latent means, 
including the log-transformed case. The sequencing depth is dealt with by assuming a 
nuisance additive random variable on the log-scaled Poisson means. Both approaches 
model the counts by a mixture of Poisson distributions, where for PLNPCA the mixing 
distribution of the Poisson means is log-normal, and for PoissonPCA it is unspecified. 
Because the Poisson means vary between samples, the marginal distributions of counts 
are both over-dispersed and sparse to a similar extent to real data (detailed compari-
sons between the simulated data and the real data are given by Kenney et al. [22] in Sec-
tion 7.3 and Supplementary Appendix F.4).

However, as it happens, further complications arise when genomic samples from dif-
ferent studies are compared with one another. In order to sequence DNA, it first has 
to be isolated from a sample, fragmented, and potentially amplified. Each of these pro-
cesses requires a number of laboratory techniques and reagents, and procedures vary 
substantially between labs. Sequencing platforms also differ, and presumably there are 
also machine calibration differences between two sequencers of the same model. The 
result is that when two studies of similar design look at samples of similar origin, or even 
when identical samples are sent to two different labs for sequencing, the signal patterns 
are very different due to dominating “batch effects”. This noise persists even under highly 
controlled conditions [34] and can obscure the signal of interest: for example, machine 
learning classifiers enjoying good within-study performance may become grossly inac-
curate when applied cross-study [38]. Batch effects impair our ability to determine 
whether results generalize to other cohorts, and preclude meaningful validation and 
meta-analysis [8, 26, 30].

In the RNA microarray literature, several approaches to correcting batch effects have 
been proposed [9]. The most popular of these, ComBat [21], performs gene-wise Bayes-
ian location-scale adjustment. Several methods that combine regression and singular 
value decomposition have also been proposed, such as surrogate variable analysis [25] 
and RUV-4 [17], aiming to project away noise, which is identified as such based on gene 
expression signatures gleaned from regression. However, microarray data are very differ-
ent from microbial abundance data; critically, we have no equivalent of “housekeeping 
genes” with which to base inferences about signal source. With the goal of pooling data 
across case–control microbial abundance studies, Gibbons et al. [18] proposed a within-
study non-parametric normalization technique in which abundance of taxa in case sam-
ples are converted to percentiles of the abundance of equivalent taxa in control samples. 
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However, their results are based on naive relative abundance models, which were run 
on a subset of taxa chosen in an ad hoc fashion (i.e., those that occurred in at least 
one third of case samples or one third of control samples). Multi-study factor analysis 
(MSFA) [12] and Bayesian MSFA [13] extend classical factor analysis to multiple groups 
to decompose features into factors that reflect shared vs. group-specific variability. How-
ever, like classical factor analysis, these methods decompose the naive sample variances 
of the observed data, which cannot capture the covariance structure of microbial abun-
dances. Argelaguet et  al. [5] proposed MOFA+, a multi-group multi-omics Bayesian 
factor analysis method that can consider multiple data types simultaneously in addition 
to multiple studies or sample groups with potential applications on assaying cells from 
multiple samples or conditions. But MOFA+ (like its predecessor, MOFA [4]) is unsuit-
able for microbial abundance data due to the use of a transformation in the Poisson case 
( �(x) = log(1+ exp(x)) ). This transformation is approximately linear when the Poisson 
mean is large, and thus the distribution is still long-tailed after the transformation. Most 
recently, Liu et al. [28] performed multi-group decomposition of correlations estimated 
by latent Gaussian copula models, but again this method lacks the machinery to address 
count data with multiplicative error.

This brings us to our purpose, which is to address the broadly meta-analytic difficul-
ties presented by batch effects or technical variation in high-throughput microbial abun-
dance data. We propose using a two-step ensemble method, with the first step obtaining 
estimated covariance matrices for each dataset by PoissonPCA or PLNPCA, and the sec-
ond step to simultaneously decompose them to find a q-dimensional basis that is com-
mon to all groups, by common principal components analysis (FCPCA) [15], stepwise 
CPCA (SCPCA) [42], and MSFA [12]. This paper compares a number of ensemble meth-
ods on both simulated and real data and makes recommendations on the best candidate 
methods. In cases where the shared common signals across multiple data sets mainly 
represent biological variation, the proposed ensemble methods provide a better chance 
than existing methods of uncovering the underlying biological signals from the noisy 
data.

Results and discussion
Simulation study

We performed simulation studies of two synthetic groups of multivariate Poisson log-
normal observations across several scenarios. These scenarios differed on the true signal 
(including the number—q—of eigenvectors that were common to both groups’ variance-
covariance matrices, and whether the eigenvalues of the variance-covariance matrices 
were simultaneously decreasing), the sample sizes n1 and n2 , whether or not the sample 
sizes were balanced, and whether or not sequencing depth correction was performed in 
the variance estimation stage. For each scenario, we report the average results over 100 
replicate data sets. Our simulation methods could generate data very similar to the true 
observed microbiome data according to the sparsity, skewness and marginal distribu-
tions. See the Methods section for more details of the simulation design and simulation 
method.

We now describe the results of the candidate ensemble methods listed in Table  1 
and some single-group alternatives, which we ran on the simulated data. The 
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single-group methods were all run on the data from the two groups concatenated 
together, and these methods comprised PoissonPCA, PLNPCA, naive PCA on counts, 
naive PCA on log counts, naive PCA on relative abundances, and naive PCA on log 
relative abundances. Representative results of the simulations are given by Fig.  1 
through Fig. 5, where in each plot the true eigenvalues are given in black. We show 
here results for small, unbalanced sample sizes ( n1 = 200 , n2 = 100 ) only, which have 
the most relevance for real studies, while some results for larger sample sizes and bal-
anced sample sizes are provided in the Additional file 1.

Table 1 The twelve candidate ensemble methods

Ensemble methods

PoissonPCA + SCPCA PLNPCA + SCPCA

No SDC PoissonPCA + FCPCA PLNPCA + FCPCA

PoissonPCA + MSFA PLNPCA + MSFA

PoissonPCA + SCPCA PLNPCA + SCPCA

SDC PoissonPCA + FCPCA PLNPCA + FCPCA

PoissonPCA + MSFA PLNPCA + MSFA

Fig. 1 Simulation results for decreasing eigenvalues and one common eigenvector, with no sequencing 
depth correction; p=50, n1 = 200 , n2 = 100 . “None” as a common basis label means that Group 1 and Group 
2 data were concatenated prior to variance estimation. The true common variances are in solid black; the true 
unique variances are in black outline-only
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We first show the results for all methods under simulation conditions in which the 
variance-covariance matrices of Group 1 and Group 2 share only the first eigenvector 
and their eigenvalues are decreasing. In Fig. 1, the methods were run with no sequencing 
depth corrections applied: since all results without sequencing depth correction show 
similar patterns, we report this case only. The abbreviation “SDC” in tables and figures 
henceforth refers to “sequencing depth correction”. In Fig. 2, all methods were run under 
the same simulation conditions as the aforementioned but with sequencing depth cor-
rections applied: that is, PoissonPCA with its compositional correction, PLNPCA with 
observed read counts as offsets, and the synthetic counts were transformed to synthetic 
relative abundances before application of the naive PCA methods. Figure 3 shows the 
results of the analogous scenario except that �1 and �2 shared the first five principal 
eigenvectors instead of only the first.

Then, Fig. 4 shows the results of the methods applied with sequencing depth correc-
tion to synthetic data for which the variance-covariance matrices of Group 1 and Group 
2 shared one eigenvector, but with non-decreasing eigenvalues (i.e., the eigenvalues on 
the shared eigenvector are not the largest eigenvalues). Figure 5 shows the results for the 
analogous case except with �1 and �2 sharing five common eigenvectors instead of one. 
In each of these figures, the true variances (the eigenvalues used to simulate the data) 

Fig. 2 Simulation results for decreasing eigenvalues and one common eigenvector, with sequencing depth 
correction; p=50, n1 = 200 , n2 = 100 . “None” as a common basis label means that Group 1 and Group 2 
data were concatenated prior to variance estimation. The true common variances are in solid black; the true 
unique variances are in black outline-only
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associated with the q shared eigenvectors were plotted with solid black points, and sub-
sequently the true variances associated with their unique eigenvectors were plotted with 
outline-only points.

From Fig. 1, we see that without sequencing depth corrections, all methods failed to 
capture the shared true variance on the first common principal component (CPC), and 
instead that axis captured the unique variation from sequencing depth. The second CPC 
then usually explained a large proportion of common variance. This was a typical pattern 
for all simulation scenarios when no sequencing depth correction was applied, which 
showed it is important to adopt methods with the sequencing depth correction in real 
data analysis, especially if there is obvious large variation in sequencing depth across 
samples.

Through Figs. 1, 2, 3, 4 and 5, we see both the naive PCA methods on relative abun-
dances or raw counts for concatenated data were not able to find good rotations for 
the data. As a result, these methods showed very slow increases in their cumulative 
explained variance, with no improvement even as the number of shared eigenvectors 
increased. It is also obvious that the results of these two methods were much worse than 
the naive PCA methods on their corresponding log-transformed data. This is not sur-
prising, because the true shared CPC directions should be calculated on the log scale 

Fig. 3 Simulation results for decreasing eigenvalues and five common eigenvectors, with sequencing depth 
correction; p=50, n1 = 200 , n2 = 100 . “None” as a common basis label means that Group 1 and Group 2 
data were concatenated prior to variance estimation. The true common variances are in solid black; the true 
unique variances are in black outline-only
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instead of the original data scale. This misspecification of the model had a large impact 
on the resulting principal component directions. This also showed that the methods 
based on the covariance matrix estimated directly on the original microbiome data can 
fail badly in capturing the signals in the data, because microbiome data are very far from 
being normally distributed. See Additional file 1: Figs. S22 to S25 for comparisons of the 
PCA analyses based on covariance matrices obtained on the original scale versus the 
logarithmically transformed scale on real metagenomic data.

Compared to the naive PCA method on log relative abundances, Poisson PCA and 
PLNPCA applied alone on the concatenated data (labeled as “None” in all figures) 
showed much better results. This difference reflects the different treatments to the 
sequencing depth correction, zero counts, and Poisson measurement errors. The 
naive PCA method on log relative abundances is a method popularly used in micro-
biome data analysis. It usually first changes the zero counts to a small ad hoc num-
ber before taking the logarithm, which can generate bias. It then ignores the Poisson 
measurement errors, which typically leads to the estimated principal directions being 
far from the truth (see detailed comparisons of these three methods in Kenney et al. 
[22]). The simulations showed generally better performance by some ensemble meth-
ods based on PoissonPCA or PLNPCA, and by PoissonPCA or PLNPCA alone. This 

Fig. 4 Simulation results for non-decreasing eigenvalues and one common eigenvector, with sequencing 
depth correction; p=50, n1 = 200 , n2 = 100 . “None” as a common basis label means that Group 1 and Group 
2 data were concatenated prior to variance estimation. The true common variances are in solid black; the true 
unique variances are in black outline-only
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suggests that methods tailored to deal with Poisson measurement error should be the 
first choice among the different options.

PoissonPCA or PLNPCA alone on the concatenated data generally tended to cap-
ture a very small amount of common signal on the first CPC, but showed good recov-
ery on the second or the third CPC. This is because the log Poisson means for the two 
groups of data each follow a multivariate normal distribution but with different mean 
vectors for the two groups. A common mean vector was estimated and subtracted 
in estimating the covariance matrix for the concatenated data. The first PC direction 
largely captured this mean difference, and thus when projecting the true variance of 
the data on this direction, it showed very small values.

Between PoissonPCA and PLNPCA, PoissonPCA is seen here to have consist-
ently outperformed PLNPCA in terms of the reconstruction of the dominant sig-
nal in each group, despite the fact that the data were simulated under PLNPCA’s 
generative model. One possible explanation for this is that PoissonPCA’s moment-
based variance estimator may be less sensitive than PLNPCA’s variance estimator to 
the outliers that arise from the Poisson log-normal generating process. Interestingly, 
the difference in performance between PoissonPCA and PLNPCA is negligible with-
out sequencing depth correction, which suggests that PoissonPCA’s compositional 

Fig. 5 Simulation results for non-decreasing eigenvalues and five common eigenvectors, with sequencing 
depth correction; p=50, n1 = 200 , n2 = 100 . “None” as a common basis label means that Group 1 and Group 
2 data were concatenated prior to variance estimation. The true common variances are in solid black; the true 
unique variances are in black outline-only
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correction to the variance estimate may be superior to PLNPCA’s use of observed 
read count as a model offset. Incidentally, PoissonPCA was also an order of magni-
tude faster to run in our simulations.

The ensemble methods dramatically outperform PoissonPCA or PLNPCA alone 
and the naive PCA methods on the concatenated data, especially on the estima-
tion of the first eigenvector, and when some of the large eigenvalues are not associ-
ated with the shared eigenvectors. When the variance estimates from PoissonPCA 
or PLNPCA are decomposed using SCPCA, FCPCA, or MSFA, we observe highly 
desirable dimension reduction behavior. This provides evidence that our ensem-
ble method holds value for extracting signal and biological insight from collections 
of noisy metagenomic and 16S datasets, which may well possess extensive unique 
variation.

For the estimation of the low-dimensional basis, the two CPCA methods are very 
similar and both did well. SCPCA appeared to outperform FCPCA when the signal was 
more difficult to resolve, such as when there were very few shared eigenvectors and the 
true cumulative variance increased slowly (e.g., Group 2 with one shared eigenvector). 
While technically SCPCA, FCPCA, and MSFA are all designed for positive-definite sym-
metric matrices, in practice SCPCA performed well even when the covariance matrix 
was indefinite, which occasionally occurred in the PoissonPCA case (see Methods sec-
tion for details on how the PoissonPCA variance estimates were reconstructed to be 
positive-definite before running FCPCA and MSFA). MSFA, which assumes that only q 
axes are common among the S groups (unlike CPCA, which assumes that all p axes are 
common), performed well in some cases, with the caveat that we were only able to spec-
ify the true q because this was a simulation. However, when common signal was very low 
(q=1), MSFA struggled to capture any variation on the first axis for Group 2 compared 
to SCPCA. Moreover, the MSFA optimization routine sometimes failed, and the simula-
tion results for MSFA had to be averaged over the successful replicates (typically around 
90%, depending on the simulation scenario). In addition, MSFA had by far the slowest 
run-time—on the order of minutes, as compared to seconds for all others—and so from 
these simulations it would appear that the CPCA approaches have more practical utility, 
especially SCPCA.

Figures S1 through S8 show more scenarios, including balanced design with small 
sample sizes, and both balanced and unbalanced designs with large sample sizes. 
Across all scenarios, the figures clearly show that the PoissonPCA combined with 
SCPCA outperformed all other methods and would be the suggested choice. This 
result is especially clearly confirmed by the large sample simulations shown in Addi-
tional file 1: Figs. S1, S2, and S5 to S8.

finally, Fig. 6 contains scree plots for the estimated eigenvalues from PoissonPCA 
followed by SCPCA for each group, where �1 and �2 share either 5 or 10 common 
eigenvectors and the true eigenvalues are simultaneously decreasing. These plots 
show that the differences between successive estimated eigenvalues drop to near 
zero when the number of CPCs is larger than the true number of shared eigenvec-
tors, which provides evidence that we will be able to make a good choice of q when 
applying the method to real data for which we cannot know the true number of 
shared eigenvectors.
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Colorectal cancer data analysis

It is not surprising that many studies have found links between the gut microbiota 
and cancer of the colon. To investigate the performance of our candidate ensemble 
methods on real data, we re-analyzed metagenomic datasets from Feng et al. [14] and 
Zeller et  al. [47], each consisting of fecal samples from participants diagnosed with 
colorectal carcinoma (CRC) or non-malignant colorectal adenoma and from controls 
(study and participant characteristics are summarized in Table 2).

Figure  7 depicts selected score plots for each candidate ensemble method with 
sequencing depth corrections applied (see Additional file  1: Fig. S9 for the equiva-
lent plots with no sequencing depth correction), which show participants with CRC 
clustering distinctly from participants without CRC on the common axes, with the 

Fig. 6 Scree plots of estimated eigenvalues from PoissonPCA and SCPCA for each group with 5 or 10 shared 
eigenvectors

Table 2 Comparison of Zeller et al. [47] and Feng et al. [14]

Zeller et al. [47] Feng et al. [14]

Number of samples 199 154

Country of origin France, Germany Austria

Sequencing technology Illumina HiSeq Illumina HiSeq

Number of CRC samples 91 46

Number of adenoma samples 42 47
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best performance given by PoissonPCA and SCPCA. This is consistent with the simu-
lations, which provides some evidence that our simulated data are highly similar to 
real metagenomic data. From Fig. 8, which shows the data projected on several Pois-
sonPCA and SCPCA CPCs for each dataset separately, we can see that the Feng et al. 
[14] data seem to be better behaved than Zeller et al. [47] in terms of the separation of 
CRC patients from others. From Figs. 7 and 8, the best clustering of control vs. CRC 
samples is shown by CPC 4 and CPC 3 (and hence these are the CPCs that we will be 
analyzing later in order to gain biological insight into the relationships between taxa 
and disease state). Figure 9 shows the score plots for CPC 1 to CPC 6 by PoissonPCA 
and SCPCA for both data sets, with the study of origin color-coded: it can be seen 
that in all CPC directions except CPC 1, study-specific information is not apparent, 

Fig. 7 Scores from ensemble methods with SDC by disease state
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which is the desired result of a common factor method. The reason that CPC 1 shows 
some separation between study of origin is mainly because this direction is also a 
good direction to separate the CRC patients from the control and adenoma patients 
in the Feng et al. [14] data, as shown in Fig. 8. The fact that there is very little separa-
tion by data source suggests that these axes indeed correspond to common, gener-
alizable, CRC-related signal. In contrast, although PoissonPCA alone with SDC on 
the concatenated data does show clustering by disease state on the selected PCs in 
Fig. 11, the score plots in Fig. 10 show clustering by study of origin on these and most 
other PCs. This illustrates how without using a common basis, biological interpre-
tation can become extremely challenging: the single-group PCs that best distinguish 
disease state in these data also contain signals that are relevant to the exact condi-
tions of one study but are not necessarily relevant to disease state in general, and it 
will be unknown which taxa are implicated in which. Of the naive PCA methods, 
each one shows some clustering by disease state (Fig.  11). Figures  S10 through S20 
show score plots for the rest of the ensemble methods colored by study of origin, with 
Figures  S21 through S25 containing those for the single-group and naive methods. 

Fig. 8 Score plots by disease state (PoissonPCA with SDC and SCPCA)
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Figures  S22 through S25 of the naive methods do not suggest pervasive clustering 
by study of origin, although this is expected since the data were individually mean-
centered by study.

To confirm that the information captured by CPCs does include the crucial sig-
nal that distinguishes CRC patients from others, we next investigated the predictive 
ability of these scores. Since we, like Zeller et  al. [47], found that samples positive 
for colorectal adenoma tended to cluster with control samples, we collapsed the two 
groups together. As a benchmark of the discriminating signal present in the data, we 
performed 10-fold CV using random forest models on the full genus-level concat-
enated data (see Methods for details). We predicted disease state on each test fold, 
and consider the performance of this powerful nonlinear classifier to represent the 
realistic upper limit of the extent to which the signal in these data can be used to 
discriminate CRC samples. This allows us to compare these benchmark results to the 
classification performances of simple, interpretable generalized linear models on our 
dimension-reduced CPC scores to determine whether our ensemble method success-
fully captures relevant biological signal. To this end, we trained and tested logistic 
regressions on the first five or ten common scores estimated by each method using 
the same CV folds. The results are summarized in Table 3; entries with mean test-fold 

Fig. 9 Scores by study of origin (PoissonPCA with SDC and SCPCA)
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values of area under the receiver operating curve (AUC) and accuracy that were not 
significantly different from the corresponding random forest results are presented in 
bold.

First, the naive methods did not perform optimally, although like in the simulation, 
PCA on the log-counts works the best among them. In general, the ensemble methods 
perform well, with many obtaining high accuracy using only five CPCs, although ten 
CPCs provide even better results. In fact, the linear classifier using just 5–10 ensem-
ble method scores as predictors often performed as well (at the 5% significance level) 
as the random forest classifier using all genus-level taxa, which suggests that the log 
transformation used in PoissonPCA and PLNPCA is suitable for microbial abundance 
data, and that virtually all of the important shared signal characterizing CRC samples 
was successfully captured during dimension reduction. Also, almost all of the ensemble 
methods work slightly better (although mostly non-significant at the 5% level) with SDC 
than without, which shows that sequencing depth correction is important in real data 
analysis.

The results also show that methods using PoissonPCA’s variance estimator consist-
ently perform better in prediction than those employing PLNPCA, regardless of whether 
sequencing depth correction is applied and regardless of which common factor method 

Fig. 10 Scores from PoissonPCA alone with SDC by study of origin
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is applied. The best-performing methods were PoissonPCA with FCPCA, and Poisson-
PCA with SCPCA, so our recommendation is to use PoissonPCA with SCPCA because 
SCPCA is robust to slight indefiniteness in �s . MSFA was tested using q values from 1 to 
5, and performed fairly well with PoissonPCA, but for q = 4 and q = 5 MSFA was either 
very slow to converge (using PoissonPCA) or failed to converge at all (using PLNPCA).

PoissonPCA alone on the concatenated data also performed well. Figure  8 (and the 
fact that the Zeller dataset contains more observations than Feng) suggests that the 
ability to discriminate disease state in Zeller samples may be the biggest determinant 
of classification performance, and so the success of PoissonPCA alone on the concat-
enated data may be due to some unique biological signal that is relevant to CRC status 
in the Zeller data but missing or undetectable in the Feng data, which would naturally 

Fig. 11 Scores from single-group and naive methods (with SDC for PoissonPCA/PLNPCA) by disease state
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give the single-group procedures an edge over the ensemble methods for prediction. In 
general, unique signal could be helpful or unhelpful for predicting a given response, but 
in either case it could potentially obstruct meaningful interpretation of the predictors. 
The results in Table 3 support our hypothesis that the proposed ensemble methods—
especially those that use PoissonPCA followed by a CPCA approach—are able to find a 
low-dimensional representation of the data that retains virtually all of the discriminating 
biological signal that is shared among groups, which is our main interest.

To choose the optimal number of common principal components to describe the com-
mon signal on CRC status, we can choose q using scree plots of the estimated eigenval-
ues or by prediction such that the average test fold misclassification error is lowest. For 
example, using PoissonPCA followed by SCPCA, scree plots in Fig. 12 suggest that the 
Feng data have a pronounced elbow, while the eigenvalues level off more slowly in the 
Zeller data. However, in both datasets, the last large difference between successive eigen-
values occurs by about q = 11 . In Fig. 13, which shows the cross-validation accuracies, 
it appears that the classification accuracy reaches near its optimum around 10 CPCs and 
tends to decrease from that point on, so we might choose q = 10 . The prediction results 
in Table 3 corroborate that in general, such parsimonious models perform well.

Finally, we turn to biological interpretation of the common loadings, wherein lies 
the strength of the ensemble method. Even assuming that single-group methods 
were able to resolve some common underlying variation patterns, the resultant PCs 

Table 3 Mean test fold AUC and accuracy from 10-fold CV (standard errors in parentheses) for 
classification of colorectal cancer samples

First 5 CPCs First 10 CPCs

Scores AUC Accuracy AUC Accuracy

No SDC PoissonPCA + SCPCA 0.803 (0.025) 0.728 (0.022) 0.804 (0.027) 0.762 (0.022)

PLNPCA + SCPCA 0.752 (0.033) 0.723 (0.020) 0.751 (0.032) 0.714 (0.025)

PoissonPCA + FCPCA 0.801 (0.024) 0.739 (0.022) 0.809 (0.026) 0.757 (0.019)

PLNPCA + FCPCA 0.662 (0.036) 0.677 (0.032) 0.687 (0.042) 0.697 (0.024)

PoissonPCA + MSFA, q = 4 0.781 (0.027) 0.725 (0.027) 0.758 (0.028) 0.725 (0.027)

PLNPCA + MSFA, q = 2 0.748 (0.032) 0.674 (0.021) 0.750 (0.028) 0.705 (0.022)

PoissonPCA Alone 0.811 (0.021) 0.742 (0.022) 0.817 (0.021) 0.751 (0.028)

PLNPCA Alone 0.741 (0.018) 0.700 (0.025) 0.765 (0.021) 0.705 (0.019)

SDC PoissonPCA + SCPCA 0.806 (0.026) 0.759 (0.023) 0.815 (0.026) 0.771 (0.021)

PLNPCA + SCPCA 0.773 (0.033) 0.748 (0.020) 0.790 (0.033) 0.751 (0.031)

PoissonPCA + FCPCA 0.802 (0.025) 0.754 (0.025) 0.822 (0.022) 0.762 (0.016)

PLNPCA + FCPCA 0.635 (0.028) 0.609 (0.021) 0.785 (0.031) 0.756 (0.025)

PoissonPCA + MSFA, q = 4 0.794 (0.027) 0.742 (0.018) 0.782 (0.030) 0.748 (0.019)

PLNPCA + MSFA, q = 3 0.669 (0.027) 0.637 (0.025) 0.701 (0.029) 0.696 (0.034)

PoissonPCA alone 0.800 (0.025) 0.742 (0.025) 0.822 (0.024) 0.745 (0.022)

PLNPCA alone 0.753 (0.019) 0.723 (0.023) 0.768 (0.020) 0.708 (0.017)

Naive PCA of relative abundance 0.677 (0.015) 0.637 (0.023) 0.670 (0.023) 0.654 (0.024)

PCA of log relative abundance 0.674 (0.031) 0.638 (0.022) 0.686 (0.031) 0.646 (0.033)

PCA of counts 0.659 (0.013) 0.637 (0.023) 0.653 (0.020) 0.640 (0.018)

PCA of log-counts 0.793 (0.027) 0.719 (0.020) 0.798 (0.026) 0.756 (0.02)

AUC Accuracy
Random forest (all features) 0.853 (0.019) 0.773 (0.012)



Page 18 of 31Hayes et al. BMC Bioinformatics          (2023) 24:380 

reflecting this would be indistinguishable from those capturing within-study varia-
tion or contrasts between studies. However, we have been assured by our simulation 
results and assessment of the CPC scores that the ensemble methods can yield q << p 
common axes that load on fully shared factors with strong signal. Furthermore, since 
our estimated loadings are related to the decomposition of variance on the log scale, 
we can interpret the values given by these loadings as log ratios of geometric means 
between groups of taxa with large-magnitude values in opposite directions. The fol-
lowing was observed from the common loadings estimated from SCPCA on the Pois-
sonPCA sequencing depth-corrected variance estimate.

Within our two CRC datasets, we found that on the two estimated common load-
ing vectors that appeared to differentiate between samples with and without CRC, 

Fig. 12 Scree plots of PoissonPCA followed by SCPCA on the Zeller and Feng data
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taxa with loading coefficient magnitudes in the 90th or greater percentile were 
often described in other studies of CRC-associated microbiota. Peptostreptococcus, 
Butyrivibrio, Phascolarctobacterium, Fusobacterium, and Porphorymonas genera 
were identified by our common loadings as well as by the analyses of Zeller et  al. 
[47], while Acidaminococcus, Parvimonas, Gemella, and Peptostreptococcus were 
found in common with Feng et  al. [14]. Genera we identified that have been pre-
viously associated with CRC in additional studies include Fusobacterium [10, 36], 
Porphorymonas [10, 36], Acidaminococcus [3], Phascolarctobacterium [44], Entero-
coccus [23], Gemella [23], Klebsiella [10], Prevotella [36], Solobacterium [46], and 
the Siphoviridae viruses [19]. Of those highlighted by our analyses, only Dialister 
[44], Butyrivibrio [47], and Flavonifractor [1] have been reported to be protective. 
Lastly, our loadings suggest that Adlercreutzia contributes to distinguishing CRC 
samples, but this genus has not yet been implicated in the literature, although it has 
been observed to participate in the metabolism of flavonoids [27], which are antioxi-
dants generally known to be anti-inflammatory and anti-tumorigenic. Moreover, on 
the loading in which Butyrivibrio (a genus of butyrate producers) and Adlercreut-
zia have large negative coefficients, all other large magnitude coefficients are posi-
tive. Flavonoids, along with dietary fibre, are linked to butyrate production, all of 
which have been linked to metabolic health and decreased risk of cancer [20, 32, 45], 
although little is known about how flavonoids are metabolized. This loading vec-
tor may then represent a contrast between these genera—which may be involved in 
some protective pathway related to the metabolic intermediates of flavonoids—and 
the other genera dominating the loading. This is an insight that neither Zeller et al. 
[47] nor Feng et al. [14] were able to resolve from their single-group analyses.

0 20 40 60 80 100

0.
60

0.
65

0.
70

0.
75

0.
80

CV Accuracy by Number of CPCs

Number of CPCs

C
V 

Ac
cu

ra
cy

Fig. 13 Cross-validation accuracy of logistic regression models by number of CPC scores used (scores 
obtained from PoissonPCA and SCPCA on the Zeller and Feng datasets)
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Conclusion
We have demonstrated that by appropriate modeling of microbial abundance count 
datasets so as to estimate their respective variances first, followed by estimation of a 
basis for a common low-dimensional subspace for the true underlying abundances, 
we can remove unwanted variation while retaining shared variation patterns. Through 
simulation studies and real data analysis, we can make a recommendation on the best 
ensemble method among 12 ensemble methods: PoissonPCA (with sequencing depth 
correction) and SCPCA ensemble performs the best. The similarity of the simulated data 
to the real data provides a basis for us to make this general conclusion that the proposed 
ensemble method will be applicable to real microbial abundance data, which is further 
confirmed by our real data analysis.

While we have demonstrated the method on data from two studies, it can be readily 
applied to any number of datasets. PoissonPCA and SCPCA, the constituent methods 
showing the best performance, computation speed, and robustness, can scale up to han-
dle estimation of a common basis for many groups. Because of the abundance of bio-
medical and clinical data available from studies of human and animal gut microbiota that 
tend to investigate similar themes, our method already has a solid basis of applicability 
based on our results. In addition, since taxonomic abundance data from 16S sequencing 
and metagenomic sequencing each pose similar obstacles to classical statistical analyses, 
the exploratory methods we propose apply to both.

Since the proposed method is only a data exploration tool, like other exploratory 
analysis methods it relies on further interpretation, modelling, or experiments to judge 
whether the common directions found represent biologically meaningful signal. In real-
ity, it is possible that the “common factors” found could be due to either biological or 
technical common signals, or just a mathematically optimized direction without clear 
meaning. To support our simulation study findings that the proposed ensemble method 
can faithfully reconstruct the true shared variance, in the real data analysis example we 
were able to accurately classify metagenomic samples based on a logistic regression 
model using 5–10 CPC scores, which confirmed that the discrimination signal is con-
tained in the information captured by the CPC scores. We established this by comparing 
the results of logistic regression on 5–10 scores to the results from a state-of-the-art 
machine learning method trained on all taxa, since the latter provides an indication of 
the realistic classification accuracy limit of the dataset. Because the linear classifiers 
trained only on the first several scores performed as well as a far more flexible method 
on the full data, we were able to conclude that the CPC directions and scores contain 
almost all relevant signal that distinguishes CRC patients from normal controls. This in 
turn suggests that our analysis of the loadings is likely to implicate taxa that reliably dis-
tinguish disease state across studies. With more groups of data obtained under different 
technical settings, under the condition that there should be some common true biologi-
cal signal hidden in all groups of data sets, shared large variance more likely represents 
biological signals. As a data exploration tool, the method can also be used for data vis-
ualization and provides some insight for further statistical modelling. For example, we 
can decide if linear methods or nonlinear methods are needed based on the principal 
scores or the reconstructed log-scale microbial abundance data in a regression or clas-
sification problem.
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It is also straightforward to extend our method to detect both common and unique 
signals among different microbial abundance data sets. This can be realized by two steps: 
the first step is to run our ensemble method to find q and compute the first q CPCs; then 
in the second step, by subtracting the covariance extracted by the CPCs from the esti-
mated covariance matrix for each group, we obtain for each group a covariance matrix 
spanning the space orthogonal to the space spanned by the CPCs, and separately eigen-
decomposing each of these resultant matrices can extract the large unique biological or 
technical variation. In this way, the scope of our method could be extended to explor-
ing commonalities in community structure that are conserved across a diverse range of 
communities.

In conclusion, the study of microbiota poses a number of challenges, including het-
erogeneous signal-obstructing noise. In this paper, we addressed the lack of methods for 
cross-study generalization in microbial abundance data, and proposed a framework to 
“remove” some of the observed within-study variation by seeking the latent structure 
that provides a scaffold for the common variance. We found that our two-step ensemble 
approach—first estimating the variance of the underlying abundances on the log scale 
for each group by PoissonPCA, and then decomposing the variances with a multi-group 
method (SCPCA)—faithfully captured shared signal in our simulation scenarios, even 
when the groups had significant unique signal. The analysis of the Feng and Zeller colo-
rectal cancer datasets demonstrated the excellent dimension reduction and signal reten-
tion capabilities of the ensemble methods, and moreover the ease with which biological 
interpretations can be drawn from the common loadings.

Methods
We will operate under the assumption that signal shared among S different datasets on 
the same p variables is likely to represent biological variability of interest, whereas dis-
parate signal likely reflects variability attributable only to irrelevant differences in experi-
mental conditions. We propose using a two-step ensemble method, with the first step 
obtaining estimated variance-covariance matrices for each dataset by PoissonPCA or 
PLNPCA, and the second step to simultaneously decompose them to find a q-dimen-
sional basis that is common to all groups. For the second step, we compare two general 
approaches: one possible approach is a multi-group extension of PCA called common 
principal components analysis (CPCA), first described by Flury [15], which assumes 
that there exists an orthogonal matrix that can approximately diagonalize the covariance 
matrices of all S groups simultaneously. We test two algorithms for CPCA: Flury’s CPCA 
(FCPCA) and stepwise CPCA (SCPCA) [42]. The other model under consideration is the 
previously mentioned MSFA [12], which is an extension of classical factor analysis. Both 
CPCA and MSFA require Wishart or multivariate normal assumptions, which our vari-
ance estimates approximately satisfy for real microbiome data due to the log transforma-
tion. After estimating the common loadings, the final step of our proposed ensemble 
method is to express the underlying abundances in each multivariate observation with 
respect to our new common basis, which we will do by projecting the estimated latent 
Poisson means from each group into a common subspace spanned by the loadings using 
a quasi-likelihood procedure that Kenney et al. [22] developed for the single-group case.
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To provide insight into why the ensemble method can eliminate most unshared 
technical noise while retaining shared biological signal and facilitating novel explora-
tory findings, we will review the main ideas of each method first and then introduce 
our simulation schemes.

Estimation of variance

Before we can estimate the common signal among several datasets, we first have to 
deal with the Poisson error in each dataset individually. In this work we will con-
sider two approaches, each of which assumes that the observations are conditionally 
Poisson-distributed. Since our application is the analysis of microbiome composi-
tion, we are primarily interested in treating the means on the logarithmic scale, which 
arises naturally in the first method via the canonical link function, and in the second 
method can be achieved by a transformation.

Poisson log‑normal PCA

The Poisson log-normal PCA (PLNPCA) [11] is a fully parametric model that extends 
the probabilistic PCA of Tipping and Bishop [40] such that the emission layer is Pois-
son (or any natural exponential family distribution) rather than normal. Let Xi ∈ N

p , 
i = 1, . . . , n , be a random vector of which we have observed n realizations. PLNPCA 
assumes that the Xi are conditionally independently Poisson-distributed given the log 
Poisson means log�i , where log is assumed to be applied element-wise. In the param-
eter space dwells log�i ∈ R

p , log�i = ξi + µ+ βwi for i = 1, . . . , n , where wi are iid 
N (0ℓ, Iℓ) . That is, log�i is a latent variable and follows a multivariate normal distri-
bution with mean ξi + µ and variance � = ββT ∈ R

p×p . No uniqueness constraints 
are put on β . Using this framework one has the option of introducing row-wise sums 
as an offset to treat sequencing depth as observed sampling effort by ξi ∈ R

p (i.e., 
ξi1 = ξi2 = · · · = ξip ). In the microbiome setting, we choose these offsets to corre-
spond to log-total read count, which is the closest we have to an observed value for 
sequencing depth. Should we wish not to apply a sequencing depth correction, the 
following results hold as written for ξi = 0p.

Because the marginal likelihood isn’t analytic for the Poisson case, the authors 
integrate out w under a variational approximation of p(w|X), and maximize the vari-
ational lower bound for the marginal log-density of X instead of maximizing the mar-
ginal log-likelihood. An estimate of the variance-covariance matrix of the log means 
( � = Var(log�) ) can be obtained using variational inference.

PLNPCA also provides the opportunity to estimate a low-rank covariance matrix 
depending on the dimension chosen for the latent space, but for our ensemble 
method we wish only to reduce dimension based on the common variation across all 
S datasets, so we will be using the rank-p estimate. Also, we wish to avoid disrupt-
ing signal in a supervised fashion so we will not include any covariate effects in the 
model. Details of this process and the resultant variance estimator can be found in 
their paper.

PLNPCA is implemented in the R package PLNmodels [11].
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PoissonPCA

PoissonPCA [22] also assumes that conditional on the latent Poisson means �ij , 
the Xij are independently distributed as Poisson with parameter �ij . In contrast to 
PLNPCA, the distribution of � itself is not parameterized. The authors derived an 
unbiased variance estimate using method of moments for any nonlinear transforma-
tion of the latent means, in particular for estimating � = Var(log�) , which we use in 
this paper.

The main idea of PoissonPCA is to look for an element-wise transforma-
tion f for the data, f(X), such that conditionally on � , the mean of f(X) is 
log� . Accordingly, substituting log� for E[f (X)|�] in the total variance 
Var(f (X)) = E[Var(f (X)|�)] + Var(E[f (X)|�]) , we get

Estimating the conditional variance Var(f (X)|�) is achieved in PoissonPCA by find-
ing a function k(X) such that the average conditional mean of k(X) is approximately 
Var(logX |�).

PoissonPCA accounts for sequencing depth by introducing a random variable ξi ∈ R
p 

such that Xij|(�ij , ξij) ∼ Poisson(ξij�ij) , where Xi1, . . . ,Xip are independent given �i and 
ξi . Unlike in PLNPCA, ξi is not considered to be observable, so under this model we end 
up estimating � = Var(log�) = Var(log(ξ ◦�∗)) , where ◦ is the element-wise product, 
when in fact what we want is �∗ = Var(log�∗) . Thus, in order to account for sequencing 
depth error, PoissonPCA adds constraints to the variance estimator given above in order 
to get the desired estimator �∗ . Two methods were developed in [22] for sequencing 
depth correction. The one we implement in the present study, the compositional correc-
tion, assumes that �∗ should be symmetric and contained in the orthogonal complement 
of the vector 1, which leads to the sequencing depth-corrected variance estimate as

They also developed a semi-parametric method for estimating the scores of the trans-
formed means, which we adapt for use in our ensemble method.

Note that the construction of these estimators makes no guarantee about the 
definiteness of the matrices, and in practice there can be several negative terminal 
eigenvalues. Since we found that the multi-group methods FCPCA and MSFA (to be 
described in the following sections) were sensitive to whether or not input variance-
covariance matrices were positive-definite, if any �̂s , s = 1, . . . , S computed from 
PoissonPCA in our analyses was indefinite, we eigen-decomposed it, replaced the 
negative eigenvalues with small decreasing positive values, and then used the eigen-
vectors to reconstruct the variance before running FCPCA or MSFA.

PoissonPCA is implemented in the R package PoissonPCA [22].

Multi‑group analysis

We are ultimately interested in estimating the loadings that are common to all 
groups, and projecting the estimated latent Poisson means from each group into a 

� = Var(log�) = Var(f (X))− E[Var(f (X)|�)]

�∗ = � − (pIp + 1p1
T
p )

−1�1p1
T
p − 1p1

T
p �(pIp + 1p1

T
p )

−1.
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common space spanned by the loadings. To achieve this, the natural choice would 
be to apply multi-group extensions of PCA or of factor analysis to the Poisson-cor-
rected estimates from each group, since by dealing with abundance on the log scale 
we are able to decompose our variance estimates under Wishart/multivariate normal 
assumptions. Both PCA-based and factor analysis-based approaches allow us to find a 
common space of low dimension, but the latter is prescriptive in this sense while the 
former inherits the exploratory nature of PCA.

Common principal components analysis

Perhaps the most direct multi-group generalization of PCA is Flury’s common principal 
components (FCPCA) [15], which assumes that there exists an orthogonal matrix that 
can approximately diagonalize the covariance matrices of all S groups simultaneously. 
Using a generalized PCA approach, the dimension of the common space can be chosen 
after estimating the full loadings matrix, based on which q loading vectors are associated 
with the largest variances for all groups simultaneously. Unlike the usual PCA, FCPCA 
assumes that the sample covariance matrices follow a Wishart distribution, and so the 
common loadings matrix is estimated in a maximum likelihood framework.

Let �s ∈ R
p×p be symmetric and positive definite and assume that each (ns − 1)�̂s 

is independently distributed as Wp(ns − 1, �s) , s = 1, . . . S , where Wp is the p-variate 
Wishart distribution. If there is a rotation matrix V ∈ O(p) (where O(p) denotes the set 
of orthogonal p× p matrices) for which

for all s, where Ds = diag (ds1, . . . , dsp) , then the subspace spanned by the columns of 
V is common to all groups; the assumption in FCPCA is that V exists as such. Hence, 
FCPCA comes down to simultaneous diagonalization (or an approximation thereof ) 
of the S sample covariance matrices. Fortunately, for �̂1, . . . , �̂S positive-definite, their 
quadratic forms are strictly convex, and so the optimization problem posed in FCPCA 
is highly tractable; see [16] for details of the algorithm. Using FCPCA we can reduce the 
basis to v1, . . . , vq only provided that the last p− q eigenvalues are small for all S groups.

More recently Flury’s algorithm was revisited by Trendafilov [42], who criticized the 
fact that FCPCA does not constrain the eigenvalues of each group to be simultane-
ously decreasing, which in some cases could disallow its use as a dimension reduction 
strategy. Instead, Trendafilov [42] suggested the stepwise algorithm (which we will call 
SCPCA), which finds the common loadings sequentially in order of variance explained. 
SCPCA [42] starts with the same objective function as FCPCA, but performs minimiza-
tion to find the optimal axes sequentially based on the fact that if covariance matrices 
C1, . . . ,CS share a common eigenvector e, then e is also an eigenvector of the average of 
C1, . . . ,CS weighted by their unique eigenvalues associated with e. If the eigenvalues esti-
mated by FCPCA for each estimated covariance matrix are all simultaneously decreas-
ing, then it can be shown that SCPCA yields the same result as FCPCA. However, if the 
FCPCA eigenvalues are not simultaneously decreasing in all S groups, then the stepwise 
approach will not solve the minimization problem. Trendafilov [42] argues that despite 
this, the stepwise solution is useful because it can always be used to find a set of q ≤ p 
common principal component vectors forming a basis for Rq , such that their variances 

(1)VT�sV = Ds
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ds1, . . . , dsq are approximately simultaneously decreasing for all s = 1, . . . , S , and all 
d1j , . . . , dSj are as similar as possible for a given j, j = 1, . . . , q.

In the present study, we compared the performance of FCPCA and SCPCA for simul-
taneously decomposing the S covariance matrices that have been estimated using 
either PoissonPCA or PLNPCA. Our FCPCA and SCPCA were implemented using 
code adapted and modified from source code in the R packages multigroup and cpca 
respectively.

Multi‑study factor analysis

Multi-Study Factor Analysis (MSFA) [12] is an extension of classical factor analysis and 
likewise assumes that the latent variables and measurement error are multivariate nor-
mal and hence that the observations have a multivariate normal marginal distribution. 
However, in MSFA, there are q latent common factors and ℓ1, . . . , ℓS latent unique fac-
tors, and so S + 1 loadings matrices have to be estimated by maximum likelihood, which 
is a much more difficult optimization problem than that posed by classical factor analy-
sis. Also, as with any factor analytic approach, dimensions of the latent subspaces must 
be considered a hyperparameter of the generative model.

Let Xis ∈ R
p , i = 1, . . . , ns , s = 1, . . . , S be a random vector with ns realizations in 

the sth group. MSFA assumes that there exist iid latent variables fis ∈ R
q and wis ∈ R

ℓs , 
which generate Xis by

for i = 1, . . . , ns , s = 1, . . . , S , where µs ∈ R
p is the mean vector, ǫis are iid with 

ǫis ∼ N (0p,�s) , where �s = diag (ψs1, . . . ,ψsp) , and ǫis is independent from the latent 
factors fis and wis . � is a p× q matrix of common loadings, and βs is a p× ℓs matrix of 
group-specific loadings, which provide structure to the latent factors. Alternatively, we 
can say that each Xis is conditionally independent given the latent variables fis and wis as 
follows:

Since there is a multivariate normal distribution for Xis conditional on the multi-
variate normal latent variables, Xis has a multivariate normal marginal distribution 
Xis ∼ N (µs,�s = ��T + βsβ

T
s +�s) . Hence, the log-likelihood is given by

From this we see that even though MSFA is designed for normally distributed data, 
we can use it as the multi-group step in our ensemble method because its likelihood 
depends only on the estimated variance-covariance matrices for each group.

As identifiability constraints, the authors impose that � , β1, . . . ,βS all be lower trian-
gular matrices, which is typical of classical factor analysis and forces the first loading 

Xis = �fis + βswis + µs + ǫis, with fis ∼ N (0q , Iq), wis ∼ N (0ℓs , Iℓs)

Xis|fis,wis ∼ N (�fis + βswis + µs,�s) with fis ∼ N (0q , Iq), wis ∼ N (0ℓs , Iℓs).

L(�,βs,�s) = log

S

s=1

ns

i=1

p(Xis|�,βs,�s)

∝

S

s=1

−
ns

2
log |�s| −

ns

2
tr(�−1

s
O�s) .
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to correspond only to the first axis of the factor space, the second loading to the first 
and second axes, and so on and so forth. The authors further note that an additional 
constraint—that rank

(

[� β1 . . . βS]
)

= q +
∑S

s=1 ℓs—is needed to ensure uniqueness of 
the solution, since we have to estimate S group-specific loadings plus the common load-
ings from the S covariance matrices. �̂ , β̂1, . . . , β̂S , and �̂s are estimated by expectation-
conditional maximization (ECM). Of course, we are interested only in �̂ , the matrix that 
describes how the latent factors characterizing the common signal are weighted to gen-
erate the observed data.

MSFA was implemented using the source code from the R package msfa [12], modi-
fied so as to use �̂1, . . . , �̂S estimated from PoissonPCA/PLNPCA instead of from the 
standard sample covariance matrices. Additionally, for our method we require a sub-
space spanned by a set of orthonormal vectors in order of the variance on the common 
factors, and so what we seek are actually the rotated loadings v1, . . . , vq , or the first q col-
umns of V ∈ O(p) computed from �̂�̂T by the following spectral decomposition:

where A is the diagonal matrix of eigenvalues.

Computing scores

Finally, after estimating the common loadings with either SCPCA, FCPCA, or MSFA, 
we want to express the underlying abundances in each sample with respect to our new 
common basis, and we will refer to these quantities as the scores.

Since, in all cases, for any given multivariate observation we are interested in the 
scores of the unobserved log�is rather than the scores of the observed Xis , we adopt 
the following procedure from Kenney et  al. [22]. To apply the classical PCA criterion 
of minimizing the squared reconstruction error between the original points and their 
projections onto principal component space, we minimize the squared reconstruction 
error between log�is and its projection Pq

is onto the q-dimensional common subspace 
spanned by the orthonormal vectors v1, . . . , vq that we estimated using CPCA or MSFA. 
Since �s is the variance of log�s , this error is given by the squared distance

where, because the vj ’s are orthonormal, the projection is Pq
is =

∑q
j=1 vjv

T
j (log�is − µs) . 

At the same time, since log�is is unobserved, we should still seek to maximize the 
likelihood of the observed data. Whether we use PoissonPCA or PLNPCA to estimate 
�s = Var(log�) , the underlying assumption is always that Xijs was generated by a Pois-
son distribution with mean �ijs . So as in the single-group case in Kenney et al. [22], by 
combining the Poisson log-likelihood and equation (3), we arrive at an objective func-
tion of the form

This is optimized by Newton–Raphson iteration in the PoissonPCA R package, and we 
implement the procedure using adapted portions of this code.

(2)�̂�̂T = VAVT ,

(3)D2 = (log�is − µs − P
q
is)

T�−1
s (log�is − µs − P

q
is),

L(�is) =

ns
∑

i=1

(

XT
is log�is − 1T�is − (log�is − µs − P

q
is)

T�−1
s (log�is − µs − P

q
is)
)

.
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Ensemble method

We have reviewed two very different ways of estimating the full- (or near full-) rank var-
iance-covariance matrix from a set of conditionally independent realizations of Poisson 
sampling in which the Poisson means are subject to additional multiplicative noise: Pois-
sonPCA and PLNPCA, each of which can either be performed with a sequencing depth 
correction or without. These methods are applied to each data set X1, . . . ,XS individu-
ally. We went on to explore two distinct methods that can take a set of S estimated vari-
ance-covariance matrices and estimate a set of q < p common vectors forming a shared 
orthogonal basis for a common q-dimensional subspace of Rp : CPCA (for which we have 
a choice of two algorithms, SCPCA and FCPCA) and MSFA. The twelve possible com-
binations of variance estimation and common factor extraction techniques are given in 
Table 1.

Simulation study

We performed simulation studies of two synthetic groups of multivariate Poisson log-
normal observations across several scenarios. These scenarios differed on the true signal 
(including the number of eigenvectors that were common to both groups’ variance-
covariance matrices, and whether the eigenvalues of the variance-covariance matrices 
were simultaneously decreasing), the sample sizes n1 and n2 , whether or not the sample 
sizes were balanced, and whether or not sequencing depth correction was performed in 
the variance estimation stage. For each simulation experiment, the process of simulating 
Poisson log-normal data and applying each method was performed 100 times.

For each of the 100 replicates, synthetic data for two “groups” were simulated as fol-
lows. Synthetic eigenvectors E1 were constructed for Group 1 by spectral decomposition 
of a synthetic covariance matrix FFT where each column Fj , j = 1, . . . , p was a normal-
ized length-p vector of standard normal variates. We then constructed the eigenvectors 
E2 for Group 2 so as to share the first q columns of E1 for several values of q, while the 
remaining columns e2,q+1, . . . , e2,p were replaced by the normalized residuals of vec-
tors of standard normal variates regressed on the preceding q columns. These eigen-
vectors, along with a pre-determined set of eigenvalues for each group, were used to 
construct variance-covariance matrices �1 and �2 . Note that with decreasing eigenval-
ues, for q << p , by this construction each shared eigenvector will be a principal eigen-
vector of the two covariance matrices, whereas with non-decreasing eigenvalues some 
of the large variances will not be associated with the shared axes: we performed simula-
tion experiments for both these scenarios. Next, these covariance matrices �1 and �2 
in turn were used to simulate the transformed latent Poisson means log�1 and log�2 
using the multivariate normal, with mean vectors for each group consisting of p nor-
mal random variates (see Table  4) such that the means differed between simulation 
replicates only. We then performed scalar multiplication of �1 and �2 respectively by 

Table 4 Distributions used to simulate Poisson log-normal data

Group 1 Group 2

log�is ∼ N (µis ,�s) µij1 ∼ N (4, 32) µij2 ∼ N (3, 22)

Xijs ∼ Poisson(γis�ijs) γi1 ∼ Gamma(7, 1) γi2 ∼ Gamma(10, 1)
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length-n1 and length-n2 vectors of gamma random variates to simulate sequencing depth 
error, and finally these means were used to generate n1 × p and n2 × p synthetic data 
matrices of Poisson random variates for each group respectively (see Table 4). Note that 
since the columns of �1 and �2 are all samples from log-normal distributions, they are 
mostly long-tailed. Because the Poisson means vary between samples, the marginal dis-
tributions of counts are both over-dispersed and sparse to a similar extent to real data. 
Detailed comparisons between the simulated data and the real data are given in Sec-
tion 7.3 and Supplementary Appendix F.4 of Kenney et al. [22].

Then, the candidate ensemble methods listed in Table 1 and some single-group alter-
natives were performed on the synthetic data. The single-group methods were all run 
on the data from the two groups concatenated together, and these methods comprised 
PoissonPCA, PLNPCA, naive PCA on counts, naive PCA on log counts, naive PCA on 
relative abundances, and naive PCA on log relative abundances. Before log-transform-
ing count or relative abundance data for naive PCA, zero values were first imputed with 
0.001.

In the case of SCPCA and FCPCA, the explained variances (eigenvalues) for each esti-
mated orthogonal loading vector were computed by

where �s is the true variance-covariance matrix of log�s . Cumulative sums of 
d̂11, . . . , d̂1p and d̂21, . . . , d̂2p were divided by the true eigenvalues 

∑p
j=1 d1j and 

∑p
j=1 d2j 

respectively to find the proportion of the true variance explained by each method.
In the case of MSFA, as the common loadings are not constrained to orthogonality, 

the variance �̂�̂T of the common factors was computed and then eigen-decomposed as 
described in equation (2). The resultant v̂1, . . . , v̂p (of which only the first q contain sig-
nal, but all p are retained in this case for ease of visibility in plots) were used to compute 
the estimated eigenvalues and the proportion of true variance explained as according to 
equation (4).

Real data analysis

Zeller et  al. [47] and Feng et  al. [14] collected fecal samples and processed them as 
described in their respective publications. Although each team had their own bioinfor-
matic pipeline to process the raw reads, the taxonomy tables used for our data analy-
sis were obtained from the R package curatedMetagenomicData [35], whose authors 
applied a standard pipeline for assembly, gene prediction, and taxonomic assignment to 
the raw files from each study.

The taxonomic abundance tables for each dataset included strain-level taxa 
from all three domains of life, as well as viruses. Since our candidate methods do 
not involve any regularization, we separately collapsed the data to the genus level 
and removed features with near-zero variance to reduce the number of taxa to 
p = 104 < min(nZ = 199, nF = 154) . We then subsetted the features to include only 
those common to the two datasets, and ran the twelve candidate combinations of meth-
ods listed in Table 1 just as we did for the simulation experiments. We then computed 
the scores by projecting the latent means into the common space.

(4)d̂sj = v̂j
T
�sv̂j , j = 1, . . . , p, s = 1, 2
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For disease state prediction, we collapsed colorectal adenoma labels together with 
control labels. We used the R package caret for data splitting and model training. As a 
benchmark of the discriminating signal in the data, we trained and tested random for-
est models (using the method implemented in the R package randomForest) on the full 
genus-level concatenated data using 10-fold cross-validation (with folds stratified by dis-
ease state). We fit 5000 trees and tuned the hyperparameter mtry with internal 10-fold 
CV based on classification accuracy. We predicted disease state for each test fold and 
computed mean AUC and mean accuracy. We consider the performance of this non-
linear classifier to represent the extent to which the signal in these data can be used to 
discriminate CRC samples. We then trained and tested logistic regressions on the first 
5 or 10 common scores for each exploratory method using 10-fold CV (using the same 
folds as for random forest) and similarly computed mean AUC and accuracy over the 
test folds.
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