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Abstract 

Background:  Identifying variants associated with complex traits is a challenging task 
in genetic association studies due to linkage disequilibrium (LD) between genetic 
variants and population stratification, unrelated to the disease risk. Existing methods 
of population structure correction use principal component analysis or linear mixed 
models with a random effect when modeling associations between a trait of inter-
est and genetic markers. However, due to stringent significance thresholds and latent 
interactions between the markers, these methods often fail to detect genuinely associ-
ated variants.

Results:  To overcome this, we propose CluStrat, which corrects for complex arbitrarily 
structured populations while leveraging the linkage disequilibrium induced distances 
between genetic markers. It performs an agglomerative hierarchical clustering using 
the Mahalanobis distance covariance matrix of the markers. In simulation studies, we 
show that our method outperforms existing methods in detecting true causal variants. 
Applying CluStrat on WTCCC2 and UK Biobank cohorts, we found biologically relevant 
associations in Schizophrenia and Myocardial Infarction. CluStrat was also able to cor-
rect for population structure in polygenic adaptation of height in Europeans.

Conclusions:  CluStrat highlights the advantages of biologically relevant distance 
metrics, such as the Mahalanobis distance, which captures the cryptic interactions 
within populations in the presence of LD better than the Euclidean distance.
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Background
The basic principle underlying Genome Wide Association Studies (GWAS) is a test for 
association between genotyped variants for each individual and the trait of interest. 
GWAS have been extensively used to estimate the signed effects of trait-associated alleles 
and also map genes to disorders. Over the past decade, about 10,000 strong associations 
between genetic variants and one (or more) complex traits have been reported  [1–3]. 
One unambiguous conclusion from GWAS is that for almost any complex trait that has 
been studied so far, genetic variation is linked with many loci contributing to the poly-
genic nature of the traits. Hence, on average, the proportion of variance explained at the 
single marker is very small [2].
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One of the key challenges in GWAS are confounding factors, such as population 
stratification, which can lead to spurious genotype-trait associations  [4, 5]. In subdi-
vided populations, linkage disequilibrium (LD) is captured in two ways: the average LD 
in sub-populations owing to migrations and the covariance between concerned genetic 
loci capturing epistatic interactions  [6]. Natural selection also plays a crucial role in 
association studies where in some cases selection can lead to allele frequencies being 
almost perfectly correlated with population structure [7]. Admixture of genetically dis-
tinct populations can generate LD throughout the genome  [6] and hence it can lead 
to cause genuine genetic signals associated with a complex trait be mired in LD with 
related spurious loci. A related phenomenon, the so-called cryptic relatedness, is caused 
by individuals who are closely related and often grouped together by standard popula-
tion structure correction strategies, and poses a serious confounding problem [8]. Two 
popular approaches for stratification correction while building the so-called Genetic 
Relationship Matrix (GRM) [9, 10] involve (i) including the principal components of the 
genotypes as adjustment variables [4, 11], and (ii) fitting a Linear Mixed Model (LMM) 
with an estimated kinship or GRM from the individual’s genotypes [1].

Recently, three independent studies [12–14] failed to replicate the previously reported 
signals of directional selection on height in European populations, as seen in the GIANT 
consortium (253,288 individuals [15]) in the independent and more recent UK Biobank 
cohort (500,000 individuals [16]). They further showed that the GIANT GWAS is con-
founded due to stratification along the north to south axis, where strong signals of 
selection were previously reported. These recent studies highlight the need for more 
sophisticated tools for correcting for population stratification.

Our work proposes a simple clustering-based approach to correct for stratifica-
tion better than existing methods. As discussed above, it is important to consider the 
covariance matrix of genetic variants while constructing the GRM to account for the LD 
between genetic variants and synthetic LD due to population structure as potential con-
founders while performing association studies. This method takes into account the link-
age disequilibrium while computing the distance between the individuals in a sample. 
Our approach, called CluStrat, performs Agglomerative hierarchical clustering (AHC) 
using a regularized Mahalanobis distance-based GRM, which captures the population-
level covariance (LD) matrix for the available genotype data. We test CluStrat on large-
scale simulated data of discrete and admixed, complex-structured populations with over 
one million genetics markers (Single Nucleotide Polymorphisms or SNPs for short). 
We observe that our approach identifies more less frequent variants at causal loci while 
maintaining low spurious associations when compared to standard stratification correc-
tion strategies across varying thresholds of significance. Computing the GRM by low-
rank Mahalanobis distance, we apply CluStrat to large cohorts such as Wellcome Trust 
Case Control Consortium 2 (WTCCC2) and UK Biobank  (UKBB) to find biologically 
significant associations in two complex diseases, namely Schizophrenia (SCZ) and Acute 
Myocardial Infarction (AMI) with potential variants implicated in the disease of interest 
which are often overlooked by GWAS. CluStrat also corrects for the uncorrected popu-
lation structure in polygenic adaptation of height in Europeans, as highlighted in previ-
ous studies [12, 13]. Of independent interest is a simple, but not necessarily well-known, 
connection between the regularized Mahalanobis distance-based GRM that is used in 
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our approach and the leverage and cross-leverage scores of the genotype matrix (see 
Methods and Additional file 1).

Results
Simulated data

We applied CluStrat to 100 simulation scenarios, modelling proportions of true genetic 
effect and admixture using three well-known models to generate simulated data: Bald-
ing-Nichols (BN) [17]; Pritchard-Stephens-Donnelly (PSD) [5]; and the 1000 Genomes 
project (TGP). We also used a “mosaic-chromosome” simulation scheme applied to Brit-
ish and Irish populations in the UK Biobank (UKBB model). We compared CluStrat’s 
performance with standard population structure correction approaches such as Eigen-
strat [11] and PLINK2 [18]. We compared these methods on all 100 scenarios with the 
p-value threshold set to 5× 10−8 . We used GCTA tools [19] to simulate binary traits 
with 20% of the individuals as cases and enforcing 100 of the SNPs to be causal with her-
itability set to 0.5.

The BN and PSD model simulate scenarios with unrelated isolated populations. 
The PCA plot of the samples clearly show three isolated clusters with no connections 
between them in the BN model. In the PSD model, we see admixed populations between 
the clusters (see Additional file 1: Figs. S2 and S3). These data serve as our “base case” 
for arbitrarily structured populations with and without admixture. On the other hand, 
the TGP model is more realistic, drawing genotypes from allele frequency distributions 
from the 1000 Genomes Phase 3 dataset [20]. Projection of genotypes drawn from the 
1000 Genomes (TGP) dataset on the top two axes of variations shows the distribution of 
samples across the world (Additional file 1: Figure S4). Additionally, the UKBB model is 
another more realistic simulation for admixture between British and Irish populations 
(Additional file 1: Figure S5).

The Armitage trend χ2 test with no population structure correction returns many of 
the SNPs in the simulation study as true associations. This results in more spurious asso-
ciations, clearly highlighting the need for population structure correction. PCA or LMM 
based approaches return roughly the expected number of spurious associations, as also 
shown in prior work  [11]. CluStrat increases the number of detected causal variants 
over standard approaches. The Armitage trend χ2 test returns the maximum number of 
causal associations, but also results in the largest number of spurious associations. CluS-
trat outperforms all other standard methods for population stratification correction in 
this scenario, without returning any spurious associations (Fig. 1).

Correcting for population stratification in the height GWAS To assess whether CluS-
trat accurately corrects for previously found uncorrected population stratification  [12] 
in polygenic adaptation of alleles associated with height in Europeans, we applied it on 
the UKBB cohort. We assessed the singleton density scores (SDS), which use a coales-
cent approach to infer recent changes in allele frequencies from contemporary genome 
sequences [21]. SDS was combined with GWAS effect size estimates to infer polygenic 
adaptation of complex traits, generating a tSDS score [12], by assigning the SDS sign to 
the trait-increasing allele. A tSDS score larger than zero for height-increasing alleles 
implies that these alleles are increasing in frequency in a population over time due to 
natural selection [12].
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We used 18,698 highly-related individuals in the UK Biobank cohort (first degree 
or higher according to the kinship coefficient) genotyped on 44,818 SNPs, related to 
the largest effect sizes in relation to height, from summary statistics data generated 
by  [15]. We found that CluStrat corrects for underlying population structure with a 
slope between the height-increasing tSDS and the p-values of SNPs obtained from 
CluStrat close to zero (0.096). The linear regression fit for CluStrat is almost identical 
to the null-expectation. We also found that the height-increasing tSDS and the p-val-
ues from CluStrat have a negligible Spearman’s correlation coefficient ( r = −0.092 
and p = 0.664 ). Therefore, there is no monotonic association between the height-
increasing tSDS and the association test p-values obtained from CluStrat. Similar to 
the simulation scenarios, CluStrat ends up selecting a similar number of SNPs with 
other methods such as PCA-based Eigenstrat and LMM-based GEMMA (Fig.  2). 

Fig. 1  Box plots for spurious and causal associations on the PSD model using the CluStrat, PLINK2, Armitage 
trend χ2 statistic, and Eigenstrat
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However, the markers with a polygenic effect on the trait under investigation reach 
significance and are responsible for better population stratification correction.

Real data

We applied CluStrat on data from two complex diseases: SCZ data from WTCCC2’s and 
AMI data from the UK biobank. In both cases, CluStrat identified biologically relevant 
associations.

CluStrat corrected SCZ SNPs We applied CluStrat using two clusters on SCZ data and 
identified 5 variants with a p-value threshold of 5× 10−8 . These variants map to signifi-
cantly enriched pathways such as neurofibroma in the DOSE database; immunoglobulin 
isotypes (IgG) in GO (Fig. 3). These pathways are directly associated with the incidence of 
SCZ. Upon further investigation, many of these CluStrat-corrected variants mapped to 
genes relevant to SCZ including FAM83B and CABP1 (see Additional file 1 for details).

We applied CluStrat after pruning for LD in the original data with correlation ( r2 ) 
thresholds of 0.9 and 0.2, to showcase its performance in low LD scenarios. We show 
that we could replicate all 7 and 4 of the 7 top significantly associated markers when 

Fig. 2  tSDS for height-increasing alleles in the UK Biobank subset using Bonferonni corrected CluStrat, the 
PCA-based Eigenstrat method, and the LMM-based GEMMA method. SNPs are ordered by p-value (in bins of 
50 in the ’No correction’ scenario). The dashed line indicates null-expectation and the black line is the linear 
regression fit

Fig. 3  Applying CluStrat on A AMI and B SCZ data. Bar plot of significantly ( p < 5× 10
−8 ) enriched 

pathways showing cellular functions from (i) DOSE and (ii) GO databases. Bars are colored by p-values and 
the x-axis denotes the number of genes found in the pathway. (iii) Dendrogram obtained after applying 
Agglomerative Hierarchical Clustering (AHC) is colored by the number of clusters and shows the depth of the 
branches in the x-axis
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using r2 = 0.9 and r2 = 0.2 , respectively. These variants were exactly replicated when we 
applied clumping with the same r2 thresholds to the non-pruned data. We further per-
formed annotation of the associations using GWAS catalog data and obtained sporadic 
Amyotrophic lateral sclerosis as the only previously associated traits with these mark-
ers and. All of which were also replicated when we applied CluStrat on the pruned data 
(Additional file 1: Figure S8).

CluStrat corrected AMI SNPs We applied CluStrat using two clusters and identified 
26 variants with a p-value threshold of 5× 10−8 . The identified variants are significantly 
over-represented in biological pathways such as aortic diseases and aortic aneurysms in 
the DOSE database; kinase activity and cellular senescence in GO. All of these pathways 
are directly associated with the incidence of AMI. Upon further investigation, many of 
these CluStrat-corrected variants mapped to genes relevant to AMI including CDKN2B, 
ATXN2 and LDLR. (See Additional file 1 for details)

We applied CluStrat after pruning for LD in the original data with correlation ( r2 ) 
thresholds of 0.9 and 0.2, to showcase its performance in low LD scenarios. We show 
that we could replicate 16 and 3 of the 26 top significantly associated markers when 
using r2 = 0.9 and r2 = 0.2 , respectively. These variants were exactly replicated when we 
applied clumping with the same r2 thresholds to the non-pruned data. We further per-
formed annotation of the associations using GWAS catalog data and obtained coronary 
artery disease, open angle glaucoma, body mass index, systolic blood pressure, type II dia-
betes mellitus, etc. as the previously associated traits with these markers. All of which 
were also replicated when we applied CluStrat on the pruned data (Additional file 1: Fig-
ure S9).

Discussion
CluStrat provides a structure informed clustering approach to correct for population 
stratification in GWAS. In our experiments, we verified the power of our approach in a 
variety of simulated data and observed that CluStrat outperforms the widely used Eigen-
strat and PLINK2 methods in all settings, by detecting more causal SNPs and almost no 
spurious associations. This shows that structure informed clustering of the genotype data 
by using Mahalanobis distance followed by regularized association tests robustly outper-
forms genotype and phenotype adjustments using the top principal components, which 
is what PCA and LMM-based methods typically do. We chose the low-rank Mahalano-
bis distance metric in CluStrat because it captures the LD-induced structure informa-
tion in the GRM. We established a link between the low-rank Mahalanobis distance and 
the low-rank leverage/cross-leverage scores, which allows us to get around the storage 
and computational bottlenecks of Mahalanobis distance. Prior work [22] computed the 
Mahalanobis distance by randomly sub-sampling a small number of SNPs to estimate 
the covariance matrix and circumvent the computational time and space requirements. 
Mahalanobis distance is also shown to remove bias in heritability estimates in the pres-
ence of LD, therefore finding true causal variants [23]. We showed that the Mahalanobis 
distance performs better (Additional file 1: Figure S6) in capturing cryptic relatedness 
compared to the Euclidean-distance-based GRM. CluStrat is not sensitive to the number 
of clusters as we employ a five-fold cross validation scheme to obtain the optimal num-
ber of clusters for each data set. See Additional file 1 for details.
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PCA-based methods have been under scrutiny recently as independent studies [12, 
13] on the UKBB [16] failed to replicate the genetic associations of heritable height in 
Europeans, where a positive selection signal was observed in a north to south gradi-
ent [24, 25] in the GIANT [15] cohort. These studies attributed the failure to replicate 
the results to cryptic relatedness among individuals, which PCA-based approaches 
for population stratification correction do not always correct. CluStrat provides a fine 
structure-based clustering approach to tackle cryptic relatedness and ancestral differ-
ences among the individuals between and within populations. Importantly, it corrects 
for population stratification in height GWAS almost perfectly. CluStrat was applied 
on the same data set as used in previous studies showing that the polygenic adaptation 
of height along the north to south gradient in Europe was overestimated [12]. CluS-
trat has the smallest slope with the same direction as others methods in tSDS scores 
for the height-increasing alleles in the UK Biobank dataset, while selecting almost the 
same number of SNPs as Eigenstrat and GEMMA. CluStrat achieves almost perfect 
correction, with negligible correlation between the pre-computed tSDS and the actual 
p-values.

Applying CluStrat to complex diseases, such as SCZ and AMI, we found novel variants 
and replicated previously associated SNPs/genes with these diseases. In SCZ, pathways 
such as immunoglobulin isotypes (IgG) and neurofibroma were identified as significantly 
enriched enriched in the CluStrat-corrected SNPs. SCZ is characterized by an interre-
lated activation of the immune-inflammatory response system and there is established 
evidence of immunoglobulin’s role in the immune response [26]. Neurofibromatosis (NF) 
is often associated with neurodevelopmental disorders, which are more frequent in NF 
than in general population [27]. In AMI, pathways related to aortic diseases, aortic aneu-
rysms, kinase activity, and cellular senescence were shown to be significantly enriched 
in the CluStrat-corrected SNPs. Aortic aneurysms occur when the aorta weakens and 
bulges. Ruptures of this vessel can cause life-threatening bleeding. These types of aneu-
rysms can also force blood away from organs and tissues, leading to AMI. Protein kinases 
are intimately involved in different signal pathways for the regulation of cardiac function 
to maintain healthy cardiac function, but also participate in the development of cardiac 
dysfunction in AMI and heart failure  [28]. Cellular senescence has received recent atten-
tion as a potential target preventing cardiovascular diseases [29]. The amount of senes-
cent cells in an individual’s body increases with age and as the aging immune system 
becomes less efficient, senescent cells accumulate and taint healthy cells. This can affect 
a person’s ability to prevent illness such as cardiovascular diseases.

The power of CluStrat is further revealed when we pruned for LD in the genotype 
data after QC with differing r2 thresholds to reflect whether CluStrat can work in con-
ditions of low LD. We observe that both in SCZ and AMI traits, CluStrat overwhelm-
ingly recovered most significant SNPs from the pruned genotypes with r2 = 0.9 and 
a handful of the top-most significant markers with a stringent threshold for pruning 
( r2 = 0.2 ). Interestingly, it could capture almost all of the previously mapped traits 
in GWAS catalog, demonstrating that even in low LD scenarios, CluStrat correctly 
obtains the most significant markers when compared with the performance on non-
pruned genotype data providing further support for doing LD-based GRM computa-
tion and population structure correction.
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Conclusions
In summary, CluStrat highlights the advantages of biologically relevant distance metrics, 
such as the Mahalanobis distance, which captures the cryptic interactions within popu-
lations in the presence of LD better than the Euclidean distance. We evaluated CluS-
trat on multiple simulated data for arbitrarily structured populations with and without 
admixture. We concluded that CluStrat outperforms PCA or LMM based population 
stratification correction techniques in a variety of simulated datasets. CluStrat accu-
rately corrected for population stratification in height GWAS in UKBB and identified 
numerous previously annotated genes and pathways for SCZ and AMI, as well as novel 
candidate loci. Thus, structure informed clustering of genetic data can remove cryptic 
population stratification in association studies and can be used to mitigate confounding 
in polygenic risk scores and precision medicine initiatives.

Methods
Notation

Let X ∈ R
m×n denote the genotype matrix (e.g., the minor allele frequency (MAF) matrix 

on m samples genotyped on n SNPs). The matrix is appropriately normalized as is com-
mon in population genetics analyses to have zero mean and variance one (columnwise). 
The vector y ∈ R

m represents the trait of interest and its i-th entry is set to one for cases 
and to zero for controls (for binary traits). We let Xi∗ denote the i-th row of the matrix X 
as a row vector and X∗i denote the i-th column of the matrix X as a column vector. We 
represent the top k left singular vectors of the matrix X by the matrix Uk ∈ R

m×k and we 
will use the notation (Uk)i∗ to denote the i-th row of Uk as a row vector.

CluStrat

CluStrat provides an LD based clustering framework to capture the population structure 
and the tests for association within each cluster, as described in Algorithm 1.

Algorithm 1 Structure informed clustering to correct
for population stratification

1: Input: Genotype matrix X ∈ Rm×n, trait vector y ∈
Rm, p-value threshold p, number of clusters k

2: Output: Set of significantly associated SNPs M
3: D = MahDist(X)
4: C : Cluster membership vector (output of agglomer-

ative hierarchical clustering on D, k clusters)
5: for i = 1 . . . k
6: Yi = yCi

and X(Ci) = XCi∗
7: β̂i, SEi, Pi = LMM(X(Ci), Yi)
8: end for

9: Pmetal = METAL
i∈C

β̂i, SEi, Pi

10: ReturnM , set of markers corresponding to significant
p-values from Pmetal.

The algorithm computes the distance matrix D from the normalized genotype matrix 
X and performs AHC for a number of clusters k, selected using five-fold cross validation. 
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We perform the association test in CluStrat by using linear models (logistic or lin-
ear regression based on the input) on each cluster. Then, we take the results for each 
cluster and perform meta-analysis, using METAL [30], improving the power to detect 
associations.

Mahalanobis distance based GRM

We now briefly discuss the use of the Mahalanobis distance at the first step of the pro-
posed algorithm. In an arbitrarily structured breeding population, correlation between 
loci due to LD often results in block-diagonal structures in the covariance matrix of 
genetic variants. Thus, it is important to account for this LD structure in the computa-
tion of the distance matrix [22]. One way to account for the LD structure is to use the 
squared Mahalanobis distance [31, 32] (denoted as D in eqn. 1). Given a matrix G ∈ R

n×n 
which contains the covariance structure of LD (covariance due to LD between genetic 
markers), the LD-corrected GRM implementing the Mahalanobis distance is defined as

The Mahalanobis distance is useful in high-dimensional settings where the Euclidean 
distances fail to capture the true distances between observations (see Additonal File 1 
for relationships between Mahalanobis and Euclidean distances). It achieves this by tak-
ing the correlation structure between the features into account.

Computing the Mahalanobis distance

The Mahalanobis distance is known to be connected to statistical leverage [33]. We dis-
cuss the connection between a regularized version of the Mahalanobis distance and a 
regularized notion of statisical leverage scores below. We first note that the Mahalanobis 
distance is invariant to linear transformations, which means that the standard normali-
zations of the genotype matrix X do not affect the Mahalanobis distance between two 
vectors. Recall the definition of the Mahalanobis distance between samples i and j:

Now, recall that the rank-k leverage scores of the genotype matrix X ∈ R
m×n with n ≫ m 

are defined by the row norms of the matrix of its top k left singular vectors Uk ∈ R
m×k . 

Let (Uk)i∗ denote the i-th row of the matrix Uk . Then the rank-k statistical leverage 
scores of the rows of A , for i = 1, . . . , n are given by Hi = �(Uk)i∗�

2
2 . Similarly, the rank-k 

(i, j)-th cross-leverage score, Hij , is equal to the dot product of the i-th and j-th rows of 
Uk , namely

Here, H ∈ R
m×m is the matrix of all leverage and cross-leverage scores. We note that 

Hi = Hii = �(Uk)i∗�
2
2 =

(

UkU
⊤
k

)

ii
 is a special case of the dot product in eqn. 3 for the 

diagonal leverage scores. We show that the Mahalanobis distance can be written in 
terms of the rank-k leverage and cross-leverage scores (see Additional file 1 for details 
on the relationship between Mahalanobis distance and leverage scores). Indeed, the final 
formulas are:

(1)D = XG
−1

X
⊤
.

(2)D(Xi∗,Xj∗) = (Xi∗ − Xj∗)G
−1(Xi∗ − Xj∗)

⊤
.

(3)Hij = �(Uk)i∗, (Uk)j∗�.
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Thus, we show that the Mahalanobis distance between two vectors can be computed 
efficiently without storing or inverting G , by the corresponding rank-k leverage and 
cross-leverage scores. By computing the rank-k Mahalanobis distance with respect to 
the top k-left singular vectors of the genotype matrix X , we make this computation feasi-
ble for UK Biobank-scale datasets using methods such as TeraPCA [34] to approximate 
the matrix Uk accurately and efficiently.

Algorithm 2 MahDist : Compute Mahalanobis dis-
tance based GRM
1: Input: X ∈ Rm×n where n > m, k number of PCs

to retain
2: Output: Mahalanobis GRM D
3: Compute Uk, the matrix of the top k left singular

vectors of the genotype matrix X
4: H = UkU�

k

5: D(Xi∗,Xj∗) = (m− 1) (Hii +Hjj + 2Hij)
6: Return D

Agglomerative hierarchical clustering (AHC)

We performed AHC using the LD induced Mahalanobis distance with a varying number 
of clusters. We set the expected number of clusters to d + q where d is the number of 
populations in the data and q is a user-defined range. We performed a five-fold cross-
validation to choose the optimal number of clusters and retain the cluster which maxi-
mizes the intersection of associations across all the clusters. The observed number of 
clusters is obtained by the inconsistency method of pruning according to the depth of 
the dendrogram. We note that for the simple case where q is set to zero, the clustering 
essentially attempts to recover the populations. In practice, we observed that the num-
ber of qualitative clusters obtained by running PCA on the genotype data serves as a 
good heuristic for the number of user defined clusters using the AHC procedure.

Data

Simulated Data. We generated an extensive set of simulations with challenging scenar-
ios to demonstrate the robustness to different real-world scenarios and power to detect 
few spurious associations.

For the genotype data, we simulated allele frequencies using (i) Balding-Nichols (BN) 
model [17] based on allele-frequency and FST estimates calculated on the HapMap data 
set; (ii) different levels of admixture by varying the parameter α in the Pritchard-Ste-
phens-Donnelly model (PSD) [5]; (iii) structure estimated from 1000 Genomes Project 
(TGP)  [20] (see Additional file  1 for details); and a “mosaic-chromosome” simulation 
scheme applied to British and Irish populations in the UK BioBank (UKBB) [35, 36]. 
For the phenotype data, we used GCTA tools [19] that employ a simple additive genetic 

(4)Di = D(Xi∗, 0) = (m− 1)(Hi − 1/m), and

(5)Dij = D(Xi∗,Xj∗) = (m− 1)(Hi +Hj − 2Hij).
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model to create a synthetic trait based on the simulated genotype data. We also enforced 
20% of the simulated individuals to be cases and the remainder to be controls. These 
tools allow us to control heritability of liability and disease prevalence for the generated 
phenotype.

Real data To capture real world population structure, we applied CluStrat on two 
complex diseases: SCZ and AMI. SCZ data was available from the Wellcome Trust Case 
Control Consortium (WTCCC2) study containing 5893 individuals (5416 SCZ controls 
and 477 cases) with 18,683 markers after performing quality control (QC) using PLINK 
v2 [37]. We also applied on AMI data from the UK Biobank (UKBB) with 23,142 indi-
viduals (11,610 controls and 11,532 cases) and 208,337 genotypes after QC.

On the genotypes passing QC, we applied CluStrat before and after pruning for LD 
to showcase the utility of considering the genotype covariance matrix while correcting 
for LD due to population structure and epistatic effects. We used multiple correlation 
( r2 ) thresholds of 0.9 and 0.2 to compare summary statistics of a relaxed and stringent 
threshold, respectively.

Pathway analysis

We performed pathway analysis for clusterProfiler v3.10.1  [38] using pathways 
from Disease Ontology Semantic and Enrichment (DOSE), Gene Ontology (GO), and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) databases.

Variant annotation

We annotated the Clustrat-corrected variants using Ensembl Variant Effect Predictor 
(VEP)  [39]. We used LOFTEE  [40] for annotating loss-of-function (LoF) variants. We 
used the GWAS catalog [41] to map the variants to associated traits from the catalog. 
We used DisGeNET [42] to obtain the disease-gene pairs for SCZ and AMI and mapped 
them with CluStrat-corrected genes.
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