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Abstract 

Background: Metagenomic sequencing is an unbiased approach that can poten-
tially detect all the known and unidentified strains in pathogen detection. Recently, 
nanopore sequencing has been emerging as a highly potential tool for rapid pathogen 
detection due to its fast turnaround time. However, identifying pathogen within spe-
cies is nontrivial for nanopore sequencing data due to the high sequencing error rate.

Results: We developed the core gene alleles metagenome strain identification 
(cgMSI) tool, which uses a two-stage maximum a posteriori probability estimation 
method to detect pathogens at strain level from nanopore metagenomic sequencing 
data at low computational cost. The cgMSI tool can accurately identify strains and esti-
mate relative abundance at 1× coverage.

Conclusions: We developed cgMSI for nanopore metagenomic pathogen detection 
within species. cgMSI is available at https:// github. com/ ZHU- XU- xmu/ cgMSI.

Keywords: Pathogen detection, Strain identification, Nanopore sequencing, 
Metagenomic data

Background
Infectious disease is one of the leading causes of death worldwide. In many cases, timely 
and accurate identification of the exact types of pathogenic microbes is a prerequisite 
for effective clinical treatment. Traditional clinical pathogen detection relies on culture-
based techniques, which are time-consuming and do not meet the need for rapid diag-
nosis. For this reason, more attention has been paid to the direct detection of pathogens 
from metagenomic samples recently [1]. Rapid metagenomic testing has been recog-
nized as a promising tool for the diagnosis of unknown infections from body fluids [2]. 
Recent work showed that it is possible to detect bacterial of lower respiratory infection 
with high sensitivity on metagenomic samples in 6  h from sample to result based on 
nanopore sequencing [3].

Genomes of different strains within species are highly similar [4], but subtle differ-
ences in genes may manifest as important phenotypic differences relevant to human 
health. For example, Escherichia coli strain O57: H7 is pathogenic, whereas Escheri-
chia coli Nissle strain is probiotic. Many tools have been developed to identify the 
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precise strain information from metagenomic data, which include three main categories. 
Assembly-based methods, e.g., BHap [5], STRONG [6] and inStrain [7], can identify new 
isolates but require a high sequencing depth to ensure the assembly accuracy and are 
not suitable for low abundance cases. K-mer-based methods, including MetaOthello [8], 
strainGE [9], Kraken [10] and Kraken2 [11], pre-compute an index of k-mers for each 
reference genome to classify sequence reads for efficient searching. Mapping-based 
methods, including MIST [12], snipe [13] and Centrifuge [14], identify specific strains by 
mapping the reads against an established reference genomic database and evaluate the 
alignment results.

Next generation sequencing (NGS) typically requires a run time of more than 16 h for 
most metagenomic studies. In contrast, nanopore sequencing (MinION sequencer by 
Oxford Nanopore Technologies) can detect microbes within minutes after sequencing 
starts and has a turnaround time of less than 6  h [15]. Therefore, nanopore sequenc-
ing has been considered as a highly potential tool for genomic surveillance of emerg-
ing viruses [16–18]. Several tools have been used to analyze nanopore sequencing data, 
including ORI [19], Centrifuge, MetaMaps [20] and Kraken2. ORI identifies strains from 
whole genome sequencing (WGS) samples. It only requires a small sequencing depth 
and achieves good results on samples containing multiple strains. Centrifuge is a rapid 
and memory-efficient metagenomic reads classifier. It splices different parts of multiple 
genomes of the same species or genus to form a large genome to alleviate the alignment 
bias. Unfortunately, it is not able to perform strain level identification. MetaMaps is a 
reads classifier that identifies strains by mapping the reads to all the reference genomes 
and analyzing the mapping scores. Kraken2 is a k-mer based method that is not specifi-
cally designed for strain level classification. The classification results of Kraken2 rely on 
the NCBI classification tree. However, most of the genomes do not have independent 
taxonomy identifiers. Therefore, Kraken2 does not provide satisfactory results at strain 
level.

A critical step in mapping-based approaches is the alignment of the reads to an estab-
lished reference genome database. A read may align to multiple reference genomes with 
a same alignment score due to the high similarity and duplications between strains. In 
such cases, mapping algorithms may randomly select one as the best result and the rest 
as secondary alignments [21], which, may lead to incorrect statistical results. This prob-
lem is more challenging for nanopore sequencing data due to their high sequencing error 
rates. To overcome this issue, Bracken [22] counts only the unique reads information of 
the alignment to improve the accuracy of species-level abundance estimation. Salmon 
[23] uses the expectation maximization (EM) algorithm to estimate the sequencing level 
of homologous templates from mappings generated by traditional mappers. KMA [24] is 
specifically designed for this type of multi-mapping situation. KMA uses k-mer to speed-
up mapping and the Needleman–Wunsch algorithm to accurately align extensions from 
k-mer. Multi-mapping reads are resolved using a novel sorting scheme to ensure an 
accurate assignment. As metagenomic sequences of different strains from the same spe-
cies are highly similar, sequencing errors could reduce the accuracy of low abundance 
pathogen detection from metagenomic samples. To the best of our knowledge, currently 
there is no tool available to accurately identify strains from nanopore metagenomic data 
with low sequencing depths, e.g., less than 5× coverage. In addition, mapping nanopore 
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reads is challenging under limited computational resources due to their long read length. 
For example, MetaMaps requires a long processing time, e.g., over 10 h for 74,000 reads. 
For these reasons, clinical applications of nanopore sequencing in pathogen detection 
are still limited.

To overcome these limitations, we developed cgMSI that formulates strain identifi-
cation as a maximum a posteriori (MAP) estimation problem to take both sequencing 
errors and genome similarity between different strains into consideration for accurate 
strain-typing at low abundance. To reduce the computational load, cgMSI adopted a 
two-stage approach. In the first stage, cgMSI uses the core genome, which is the set of 
gene alleles shared by all strains of a given species of prokaryotes [25], as a substitute 
for the whole genomes to quickly identify candidate genomes. The full alignment on 
the whole genomes is only performed on the selected candidate genome in the second 
stage for the final strain calling result. We evaluated the performance of cgMSI on syn-
thetic Klebsiella pneumoniae datasets and a real sequencing dataset. The results showed 
that cgMSI can perform accurate strain typing and abundance estimation even at 1× 
coverage.

Results and discussion
Overview of cgMSI and evaluation datasets

Figure 1 shows the workflow of cgMSI. cgMSI identifies the target strain by a two-stage 
MAP estimation method. Firstly, the input nanopore raw reads are mapped to a pool of 
core gene alleles from the target species to calculate the probability that a read originates 
from different strains per locus. The aligned reads are selected, and candidate strains are 
identified using the first-stage MAP estimation. Then, cgMSI maps the selected reads 
against the reference genomes of the candidate strains and obtains the final calling result 
in the second-stage MAP estimation. We used minimap2 [26] as the default aligner in 
both stages. Finally, the abundance of the target strain is estimated using the Monte 
Carlo (MC) sampling method.

We evaluated cgMSI on both simulated and real nanopore metagenomic datasets. 
We first generated simulated samples with different levels of interference to pathogen 
detection. We randomly selected 100 strains from the 930 Klebsiella pneumoniae strains 
(available online at the National Center for Biotechnology Information (NCBI) RefSeq 
[27]) as target strains for synthetic mNGS datasets. For each target strain, simulated 
reads were generated at different coverage levels (0.1×, 0.5×, 1× and 5×) using Nano-
Sim (version 3.0) [28] with sequencer error profile metagenome_ERR3152366_Log.tar.
gz (simulating Flowcell chemistry R9.4) provided by NanoSim and genome mode (-min 
1000 -k 6 -b guppy). The simulated reads from target strains were then mixed respec-
tively with simulated reads from four background strains selected from different species 
under Klebsiella at different ratios (1:1 or 1:5) to create the testing samples (Fig. 2).

To simulate mNGS samples of different difficulty levels, we analyzed the genomic 
similarity of different species under the genus Klebsiella and selected four species (KA: 
Klebsiella aerogenes, KM: Klebsiella michiganensis, KQ: Klebsiella quasipneumoniae, 
KV: Klebsiella variicola) of different Average Nucleotide Identity (ANI) [29] scores 
ranging from 85 to 95% to the K. pneumoniae strains in the database as our back-
ground strains. Note that a cut-off ANI score of > 95% between a given pair of genomes 
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is usually considered that they belong to the same species [30]. All ANI values in this 
paper were obtained using the FastANI tool (version 1.33) [31]. In addition, to evaluate 
the computational performance of cgMSI, we generated four simulated mNGS samples 
with different sizes range from 1 to 1000 MB. For each sample, we added one Klebsiella 
pneumoniae strain as the target strain and one Klebsiella quasipneumoniae strain as 
the background strain with the same target strain abundance (20%) for different sample 
sizes. Here, abundance is defined as the ratio of the number of reads from the target 
strain to the total number of reads.

To evaluate the performance of cgMSI on complex metagenomic samples, we 
downloaded 100 nanopore sequencing datasets (NCBI Project ID: PRJNA820119) 
sequenced from healthy human gut metagenomic samples, and generated simu-
lated samples based on this data. Firstly, we mapped the obtained samples to the 

Fig. 1 The cgMSI workflow for strain identification on nanopore metagenomic data using two-stage MAP 
estimation. cgMSI starts by mapping the core gene alleles of the target species to raw reads (using reads 
as reference) and selects candidate strains using MAP probability estimation. After that, cgMSI maps the 
aligned reads to the full reference genomes of the candidate strains and identifies the target strain using the 
second-stage MAP probability estimation. The Monte Carlo method is used to estimate the proportion of the 
target strain reads containing a complete allele of a core gene, which is further used to estimate the coverage 
of the target strain
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high-quality human gut microbiome reference set WIS [32], and removed all reads 
that mapped to Klebsiella pneumoniae, since the human gut was an important res-
ervoir of Klebsiella pneumoniae. After filtering, we obtained 100 negative sam-
ples. To obtain positive samples, we spiked simulated Klebsiella pneumoniae reads 
into these negative samples. From the available 930 reference genomes of Kleb-
siella pneumoniae, we randomly selected one strain (RefSeq Assembly Accession: 
GCA_000240185.1) as the target strain. The simulated reads were generated using 
NanoSim software (version 3.0) with the same settings as described above. To simu-
late pathogen strains at different sequencing depths, we spiked each negative sample 
with simulated reads at 0.1×, 1×, and 10×, and obtained a total of 300 simulated 
positive samples.

For the real dataset, we used the ZymoBIOMICS dataset [33], which contains 8 
bacteria and 2 yeasts with equal abundance and was generated on a GridION using 
the R9.4.1 chemistry for evaluation. Experiments were performed separately on 6 
bacterial species with core genes available. For each of the 6 species, we constructed 
the pool of core gene alleles and reference genome databases, and the corresponding 
read data were downsampled to simulate coverage levels of 0.1×, 0.5×, 1× and 5× 
according to the given sequencing depths for each strain. Additional file 2 provides 
more pathogens information used in simulated dataset.

Fig. 2 Illustration of the generation of simulated samples with different levels of interference. Each sample 
contains a random Klebsiella pneumonia genome as the target strain and a decoy strain genome. A total 
of four decoy strains were selected from the Klebsiella genus. The pair ANI of the target strain and the 
background strain was divided into two levels: 85% and 95%. The coverage ratio of the target strain and the 
decoy strain was divided as 1:1 and 1:5. A total of 3200 samples were generated
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Sensitivity of the filtering operation of cgMSI

The first stage of the MAP estimation in cgMSI identifies the candidate strains using 
core gene alleles. In this filtering operation, we selected the top K  strains with the maxi-
mum probability as candidate strains. Here, we evaluated the filtering performance with 
the number of candidate strains K  ranging from 5 to 40 on samples with different dif-
ficulty levels separately.

Overall, cgMSI correctly identified candidate strains in its first-stage filtering opera-
tion in simulated datasets when K  was 10 and above (Fig. 3). We noticed that the sen-
sitivity of cgMSI is almost saturated when we identified 40 strains as candidate strains. 
For each K value, the sensitivity was also affected by the coverage, the ratio of the target 
strain to the background strain (hereafter referred to as the target-to-background ratio), 
and the difficulty level of the samples as measured by the genomic similarity between the 
target and the background strains (Fig. 3).

For K  greater than or equal to 10, cgMSI correctly identified all candidate strains in 
KA and KM samples when the target-to-background ratio was 1:1 and the coverage ratio 

Fig. 3 The sensitivity of cgMSI to identify candidate strains using synthetic mNGS datasets. cgMSI identified 
candidate strains at different coverage ratios ranging from 0.1× to 5×, four different background strains (KA: 
Klebsiella aerogenes, KM: Klebsiella michiganensis, KQ: Klebsiella quasipneumoniae, KV: Klebsiella variicola) and 
two ratios of target strain to background strain (1:1 and 1:5). Top 5 to Top 40 indicate different numbers of 
candidate strains identified by cgMSI in the filtration operation. Error bar indicates 95% CI. When the set of 
candidate strains contains the target strain in a sample, we consider the filtrating operation as correct
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was 1× and above. For more challenging samples (KQ, KV), cgMSI achieved a sensitivity 
greater than 95% when K ≥ 10 , the target-to-background ratio was 1:1 and the coverage 
ratio was 1× and above. When the target-to-background ratio was 1:5, cgMSI achieved 
similar sensitivity performances at 1× and 5× coverage levels, and slightly lower sensi-
tivities at lower coverage levels. However, in the worst case cgMSI still achieved a sensi-
tivity greater than 80% for KQ at 0.1× coverage when identifying 10 or more candidate 
strains.

cgMSI identifies strains in synthetic mNGS datasets with interference

We evaluated the strain-level pathogen detection performance using simulated data-
set with different levels of interference. For comparison, we used minimap2 + ORI as a 
benchmark which provided strain-level results in a reasonable timeframe. More specifi-
cally, for each sample, we mapped the simulated reads to all K. pneumoniae genomes in 
the reference database by minimap2 to preliminarily filter the reads of the target species, 
and input these reads to ORI. When ORI outputs multiple predicted strains with cor-
responding probabilities, we selected the strain with the highest probability as its calling 
result. We also tried to include MetaMaps in our benchmark test but were not successful 
due to its slow computational speed at the “map” stage and execution errors at the “clas-
sify” stage. In the filtering operation stage, we identified 10 candidate strains which was 
the default value in cgMSI. Additional file 1: Table S1 provides more information on the 
software used in the performance comparison experiments.

Figure  4 shows the results of cgMSI and ORI for strain-level pathogen detection in 
synthetic mNGS datasets. Similar to the results for candidate strains identification, it 
can be seen that the strain typing sensitivity was also affected by the coverage, the tar-
get-to-background ratio, and the difficulty levels of the samples (Fig. 4A). Particularly, 
cgMSI achieved a sensitivity greater than 90% at 1× and 5× coverage when the target-
to-background ratio was 1:1. In contrast, the strain typing result showed 40% sensitivity 
improvement over ORI for all test cases.

For samples whose target strains were not accurately detected, we used the pair ANI 
value between the actual target strain and the predicted strain to further estimate the 
typing accuracy. A higher ANI value indicates more accurate strain identification. 
Note that all samples where target strains were not correctly detected were also typed 
as strains that were extremely close to the actual strains (Fig. 4B). cgMSI identified all 
samples with ANI values greater than 0.997. At coverage of 5×, cgMSI achieved an ANI 
value greater than 0.999. Although the pair ANI value from ORI improved with decreas-
ing task difficulty, there were still some predicted strains far away from the actual target 
strains (pair ANI < 0.99). The predicted coverage result demonstrated the effectiveness 
and accuracy of cgMSI for abundance estimation (Fig. 4C).

cgMSI identifies strains in synthetic human gut metagenomic sequencing data

cgMSI determines whether the target pathogen species is present in the sample by the 
maximum number of matched core genes among all strains in the first MAP stage, as 
described in the Methods section. The results showed that cgMSI had a high speci-
ficity of 95% for the detection of Klebsiella pneumoniae on simulated gut metagen-
omic samples (Fig.  5A). This indicates that it is more feasible to map sample reads 
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Fig. 4 Performance evaluation of pathogen identification using synthetic decoy mNGS datasets. A 
Identification results of cgMSI and ORI from 3200 simulated samples at different coverage ratios ranging from 
0.1× to 5×, different background strains and two target-to-background ratios. Error bar indicates 95% CI. B 
The box plots show the pair ANI values of the actual target strain and the predicted strain corresponding to 
the samples in (A). The pair ANI value is used to further assess the accuracy of the prediction. A higher ANI 
value indicates a more accurate prediction. C Coverage estimated by cgMSI at four different coverage levels. 
Each dot represents a single sample. Colors represent different target strain coverage ratios in the samples
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to core gene alleles than to large reference genomes for pathogen identification. The 
sensitivity of cgMSI was much higher than that of ORI, and both algorithms are 
strongly influenced by the sequencing coverage of the pathogen strains in the samples 
(Fig. 5B). On the most challenging samples (coverage of 0.1×), cgMSI had a sensitiv-
ity of 77%, which was much higher than the result of ORI (28%). At coverage of 1×, 
the sensitivity of cgMSI reached 98%, which was close to saturation. For all simulated 
samples, the pair ANI values of predicted strains and actual strains from cgMSI were 
greater than 0.999 (Fig. 5C). Among these samples, we randomly selected ten of them 

Fig. 5 Performance of pathogen identification using synthetic human gut genome datasets. A Maximum 
number of loci mapped in all strains. If the number of loci is less than β times the total core locus number 
of the target species (2358 for K. pneumoniae), the sample is considered to be free of the target pathogen. 
Here, β uses the default value of 0.08. B Identification results of cgMSI and ORI from 300 simulated gut 
metagenomic positive samples at different coverage ranging from 0.1×, 1× and 10×. C The box plots show 
the pair ANI values of the actual target strain and the predicted strain corresponding to the samples in (B)
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to perform Salmonella detection using cgMSI. Additional file 1: Fig. S2 shows that the 
maximum number of mapped loci in all samples is significantly below the threshold. 
Furthermore, there is no significant variation in the maximum number of mapped 
loci for detecting Salmonella enterica as the level of spiked-in Klebsiella pneumoniae 
increased.

cgMSI identifies strains in mock microbial community data

For all species, cgMSI performed well at 0.5×, 1× and 5× coverage ratios. The sensi-
tivity of pathogen strain identification increased with increasing coverage (Table 1). 
For all samples at coverage 0.5×, 1× and 5×, the average pair ANI of the actual strain 
and the predicted strain were higher than 0.999. Among the 6 species, cgMSI per-
formed best on P. aeruginosa and identified target strains correctly for all samples.

cgMSI reduces strain level pathogen detection time

We evaluated the computational performance of cgMSI, ORI, minimap2 and Meta-
Maps using four different simulated nanopore metagenomic samples of 1 Mb, 10 Mb, 
100 Mb and 1000 Mb. For fairness, all tools used the same reference genomes. mini-
map2 outputs all secondary alignments by control parameter (–N 1000). For Meta-
Maps, we only counted the CPU time of the “map” stage due to the execution error of 
the “classify” stage.

Results show that cgMSI outperformed ORI, minimap2 and MetaMaps for all sam-
ple sizes range from 1 to 1000 Mb (Fig. 6). MetaMaps took much longer CPU time 
than the other tools at each size level. When the sample size was 1000 Mb, the CPU 
time required for cgMSI was 1/2, 1/6 and 1/39 of ORI, minimap2 and MetaMaps, 
respectively. The fast detection speed mainly comes from the cgMSI strategy of using 
core genome to identify candidate strains. For the sample sizes of 1  M and 10  M, 
cgMSI, ORI and minimap2 run with similar time. With the increase of the sample 
size, the run time increment is much smaller for cgMSI compared to that of ORI, 
minimap2 and MeteMaps.

Table 1 Performance evaluation using down-sampled ZymoBIOMICS-EVEN dataset

Species Sensitivity Average pair ANI of target strain and 
predicted strain

0.1× 0.5× 1× 5× 0.1× 0.5× 1× 5×

E. coli 0.7 1.0 1.0 1.0 0.9986 1 1 1

E. faecalis 0.6 0.8 1.0 1.0 0.9995 0.9999 1 1

L. monocytogen 0.4 0.7 0.8 1.0 0.9976 0.9999 0.9999 1

P. aeruginosa 1.0 1.0 1.0 1.0 1 1 1 1

S. aureus 0.9 0.9 1.0 1.0 0.9992 0.9992 1 1

S. enterica 0.8 1.0 1.0 1.0 0.9984 1 1 1
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We further compared the peak memory used by the four tools (Table  2). cgMSI 
used the least peak memory for all sample sizes. The peak memory used by minimap2 
(–N 1000) increased rapidly with sample size. In contrast, the peak memory used by 
MetaMaps did not change much file.

Conclusions
We presented cgMSI, an efficient method to identify low abundance strains in nano-
pore sequenced metagenomic data. cgMSI mitigate the problem of high sequencing 
error rate of nanopore data by formulate the strain identification as a MAP estima-
tion problem to take full advantage of the information contained in a sample. Fur-
thermore, cgMSI relies on the core genome of a species to filter the candidate 
genomes and the raw reads containing the core gene before performing full align-
ment to reduce the computational load of mapping-based strain-typing on nanopore 
read data. The performance of cgMSI was demonstrated on both synthetic and real 
datasets. cgMSI software can be used for strain identification withexisting cgMLST 

Fig. 6 Runtime of different tools at different sample sizes. Runtime performance was evaluated on the 
simulated metagenomic datasets at different sample sizes with the same abundance of target strain spike-in. 
Note that the run time of cgMSI consists of three parts, namely, identifying candidate strains, MC sampling, 
and final result calling. Among them, the process of identifying candidate strains takes the most time. For 
ORI, we first mapped the samples to reference database using minimap2 to preliminarily filter the reads of 
the target species, and input these reads to ORI. Minimap2 outputs all secondary alignments by control 
parameter (–N 1000). For MetaMaps, we only counted the CPU time of the “map” stage due to the execution 
error of the “classify” stage

Table 2 Peak memory consumption for four tools at different samples sizes

Tool Peak memory at different sample sizes (GB)

1 M 10 M 100 M 1000 M

cgMSI 2.14 3.45 9.54 37.14

minimap2 + ORI 0.32 21.23 25.25 1.0

minimap2 (–N 1000) 24.54 25.76 40.43 123.91

MetaMaps 34.37 34.38 36.37 39.87
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scheme, or customized cgMLST scheme generated using software tools such as Seq-
Sphere + (https:// www. ridom. de/ seqsp here/). Based on its good strain identification 
performance and fast processing speed, cgMSI can be used to provide valuable refer-
ence information in a clinic setting for detecting and managing outbreaks, monitor-
ing pathogen populations, informing treatment decisions, and guiding public health 
policies, etc. The source code of cgMSI is publicly available and can be downloaded 
from https:// github. com/ ZHU- XU- xmu/ cgMSI.

Methods
Reference database preparation

We obtained the list of alleles for all the core genes of seven common pathogens from 
cgMLST.org Nomenclature Server (https:// www. cgmlst. org/ ncs) to create an allele pool 
of the core genes for each species. The reference genomes for each species were down-
loaded from the National Center for Biotechnology Information (NCBI) RefSeq [27] 
(retrieved in December 2021). All genomes are fully sequenced assemblies. More details 
of the data are given in Table 3.

Select candidate strains by the first‑stage MAP estimation

We mapped the allele pool of target species to raw reads of the sample under test using 
minimap2, and identified a set of reads (r) that can be successfully mapped. Then, the 
MAP probability of strain Si is calculated as

For read j , we can calculate the probability that it originates from strain Si as

Here P rj|aik  is the probability that read j originates from allele aik , calculated as

(1)argmax
Si

P(Si|r) ∝ argmax
Si

∏

rj

P
(

rj|Si
)

P(Si)

(2)P
(

rj|Si
)

=
K
∏

k=1

P
(

rj|aik
)

.

(3)P
(

rj|aik
)

= C
NMjik

|rj|
eNMjik (1− e)|rj|−NMjik

Table 3 The statistical information of the reference core genes and related genomes

a Plasmid size is not considered when calculating the proportion of core genes in the genome
b We downloaded all the complete genomes of a species from NCBI RefSeq as reference for cgMSI

Species name No. of core genes Ratio of core genes in the 
 genomea

No. of  genomesb

K. pneumoniae 2358 0.42 930

E. coli 2513 0.48 1858

E. faecalis 1972 0.47 68

L. monocytogenes 1701 0.52 262

P. aeruginosa 3867 0.54 345

S. aureus 1861 0.62 671

S. enterica 3002 0.59 1021

https://www.ridom.de/seqsphere/
https://github.com/ZHU-XU-xmu/cgMSI
https://www.cgmlst.org/ncs
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where NMjik is the editing distance (NM score) of read j to allele aik , 
∣

∣rj
∣

∣ represents the 
length of read rj and e denotes the sequencing error rate. Here, we selected the top K  
strains (default 10) with the maximum probability as candidate strains for further iden-
tification. During the first-stage MAP, the number of core loci matching the sample is 
counted for each strain. If the maximum number of core loci matched across all strains 
is less than β times the total number of core loci of the target species, the sample is 
considered to be free of the target pathogen. Here, β is a modifiable parameter and its 
default value is set to 0.08.

Identify the target strain by the second‑stage MAP estimation

Since the length of a nanopore read is typically much longer than the length of a core 
gene, we mapped the high-quality aligned reads from the previous stage to the complete 
genomes of the candidate strains using minimap2 to fully utilize the information con-
tained in the reads. The second-stage MAP probability of candidate strains is calculated 
by

Here P
(

rj|Ci

)

 is the probability of read j mapped to candidate strain Ci , which can be 
estimated by [21]

where MapScoreij is the alignment score (AS) given by minimap2 and m is the number of 
strains that read rj can be mapped to. P(Ci) is estimated using the posteriori probability 
of Ci obtained from the previous stage, i.e.,

The strain with the maximum probability is then identified as the target strain.

Coverage estimated by MC

The coverage of the target strain in the sample is calculated as

where avgLength denotes the average length of the sample reads and L denotes the 
genome length. The number of selected reads that mapped to the candidate strains is 
denoted as N  , and p is the probability of a read containing a complete core gene. We 
estimate p using the Monte Carlo method. In each trial, a simulated read is generated at 
a random position with a length randomly sampled from length of the raw reads. Let M 
be the total number of Monte Carlo trials and C be the number of trials where the simu-
lated read covers a complete gene, p is then estimated by

(4)argmax
Ci

P(Ci|r) ∝ argmax
Ci

∏

rj

P
(

rj|Ci

)

P(Ci).

(5)P
(

rj|Ci

)

=
exp (MapScoreij)

∑m
i exp (MapScoreij)

,

(6)P(Ci) = P(Si|r).

(7)Coverage =
avgLength∗N

p∗L

(8)p = C
M .
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Data preprocessing

Before the experiments, we performed a quality control on the samples. In this stage, we 
removed the reads with a length less than 2000 bp or a quality less than 7 using NanoFilt 
(version 2.6.0). Additional file 1: Fig. S1 shows the results of the quality control, plotted 
using NanoPlot (version 1.24.0) [34].
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