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T Division of Applied Regulatory Background: During drug development, it is essential to gather information

Science, Office of Clinical about the change of clinical exposure of a drug (object) due to the pharmacokinetic

Z??gif;:gggl g’;ﬁecrfces (PK) drug-drug interactions (DDIs) with another drug (precipitant). While many natural

Center for Drug Evaluation language processing (NLP) methods for DDI have been published, most were designed

and Research, Food and Drug to evaluate if (and what kind of) DDI relationships exist in the text, without identify-

;‘g;g'q'égg;'i‘”év\’vvgaidé:ﬁjge ing the direction of DDI (object vs. precipitant drug). Here we present a method

Silver Spring, MD 20993, USA for the automatic identification of the directionality of a PK DDI from literature or drug
labels.

Methods: We reannotated the Text Analysis Conference (TAC) DDI track 2019 corpus
for identifying the direction of a PK DDI and evaluated the performance of a fine-tuned
BioBERT model on this task by following the training and validation steps prespecified
by TAC.

Results: This initial attempt showed the model achieved an F-score of 0.82 in iden-
tifying sentences as containing PK DDI and an F-score of 0.97 in identifying object
versus precipitant drugs in those sentences.

Discussion and conclusion: Despite a growing list of NLP methods for DDI extrac-
tion, most of them use a common set of corpora to perform general purpose tasks
(e.g. classifying a sentence into one of several fixed DDI categories). There is a lack

of coordination between the drug development and biomedical informatics method
development community to develop corpora and methods to perform specific tasks
(e.g., extract clinical exposure changes due to PK DDI). We hope that our effort can
encourage such a coordination so that more “fit for purpose”NLP methods could be
developed and used to facilitate the drug development process.
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Background and significance

Over the past decade, there has been a surge of interest in developing natural language
processing (NLP) methods to automatically extract and process information from bio-
medical literature (including regulatory drug labels). One such NLP application under
active research is the automatic identification of drug-drug interactions (DDIs) [1]. This
is driven by the high prevalence of potential DDIs that may lead to significant adverse
events in clinical settings, and the rapid expansion of biomedical documents containing
established DDI information in natural language format [2]. Recent advances in machine
learning techniques, especially deep learning/neural networks, have made it possible to
extract DDIs from biomedical documents automatically [2].

One clear example demonstrating the need for automatic methods for NLP of DDI
information is the identification of the change in clinical exposures of an object drug
due to other precipitant drugs (Fig. 1). This kind of pharmacokinetic (PK) DDI infor-
mation is not only important in a clinical setting when prescribing medications [3], but
also critical during drug development: for example, in evaluating a drug’s potential to
cause QT prolongation or proarrhythmic adverse events, clinical and nonclinical studies
are required by international regulatory guidelines [4] to cover the so-called high clini-
cal exposure scenario (defined as the expected exposure when the drug is used in the
presence of intrinsic or extrinsic factors, such as impaired renal function, PK DDI etc.).
Given a specific drug of interest (the object drug), gathering information from exist-
ing biomedical literature and regulatory labels about all other drugs (precipitant drugs)
that could change the object drug’s clinical exposure through DDI is an important step
towards establishing its high clinical exposure.

There have been several initiatives that aimed at encouraging and evaluating NLP
techniques to extract DDIs from biochemical literature and regulatory drug labels, for
example the DDIExtraction Shared Tasks in 2011 [5] and 2013 [6], and the Text Analysis
Conference (TAC) DDI tracks 2018 [7] and 2019 [8]. Various NLP methods, including
traditional machine learning methods based on syntactic and lexical features, and deep
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Fig. 1 An example pair of sentences about pharmacokinetic (PK) drug-drug interaction (DDI) involving
verapamil. For the left sentence, verapamil is the precipitant. For the right sentence, verapamil is the object.
Our method (the BioBERT_directionalDDI model) can automatically distinguish the two sentences and label
the precipitant vs object drugs
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learning methods based on neural networks, have been evaluated under these initiatives
with varying degrees of success. However, it is difficult to apply these existing methods
to the problem of automatic extraction of clinical exposure changes for object drugs due
to DDI with precipitant drugs. For example, given the task of “identify all DDIs where
clinical exposure of verapamil is changed by another drug from natural language text’,
most published methods can only finish the first step of sentence classification: screen
all sentences in literature or product labels and identify those that describe DDI rela-
tions involving verapamil. Because verapamil is both an inhibitor of cytochrome P450
enzymes and P-glycoprotein [9], and a substrate of CYP3A4 [10], there will be a large
pool of sentences identified from the first step where verapamil can be either the object
or precipitant drug. Consequently, in the second step most of these sentences need to
be filtered out, leaving only a small subset of DDI sentences with the “correct” direction:
those that describe verapamil as an object drug whose clinical exposure can be altered
by other (precipitant) drugs (Fig. 1). This second step belongs to the typical NLP task of
Named Entity Recognition (NER).

To the best of our knowledge the only time the task of identifying the directionality
of a PK DDI was addressed was in tasks 3 and 4 of the TAC 2019 DDI track. Of the four
teams that submitted methods, only one team attempted task 4 [8]. However, it does not
appear that these methods were made publicly available. As such, currently there does
not appear to be any published NLP method to automatically identify the direction of a
PK DDI from natural language text.

Objective

Here we report the development of a complete solution to finish both steps through
NLP. Our method is based on the state-of-the-art pre-trained neural network language
model BERT (Bidirectional Encoder Representations from Transformers) [11]. We
manually annotated a corpus to label object versus precipitant drugs, and then fine-
tuned a previously published BERT model that was pre-trained on biomedical literature
(BioBERT, see [12]). We have named the resulting model BioBERT _directionalDDI, and
it is designed to finish the two steps sequentially: first identify a sentence that involves
PK DDI, and then label the object drug versus precipitant drug in that sentence. Of
note the first step of our procedure classifies sentences into one of the relation catego-
ries without identifying which entities in the sentence have such a relation. In compari-
son, relation extraction (RE) tasks in the literature usually identifies relation categories
associated with entities in sentences, with the entities pre-identified and anonymized [2,
12-14]. This makes our sentence classification task (1st step of our procedure) similar to
the RE tasks in the sense that a relation category is identified, but identifying which enti-
ties are involved in this relation is not part of the task. The 2nd step of our procedure will
complete this NER task.

Our model has enabled the efficient evaluation of high clinical exposures for some ref-
erence drugs during the development of international guidelines for cardiac safety [4],
and is expected to play an important role in drug development activities where gathering
information about specific drugs’ clinical exposure changes due to DDI with other pre-
cipitant drugs is necessary.
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Methods

Datasets

The TAC 2019 DDI track [8] provided 4 training datasets: (1) 22 FDA labels fully anno-
tated and used for TAC 2018 training, (2) Additional 180 FDA labels reannotated
according to the TAC 2018 guideline, (3) 57 FDA labels used for TAC 2018 testing, (4)
Additional 66 FDA labels with only the Drug Interactions and Clinical Pharmacology
sections annotated. The labels were provided as Structured Product Labeling (SPL)
documents in XML format, where sections and sentences were annotated according to
prespecified guidelines (https://bionlp.nlm.nih.gov/tac2019druginteractions/). The com-
bined set of training data has 21,593 sentences, each annotated as one of the 4 catego-
ries: no DDI, PK DDI, PD (pharmacodynamic) DD], or unspecified DDI. For the purpose
of our model, the no DDI, unspecified DDI, and PD DDI categories were combined into
a single category of “other or no DDI" These sentences labeled as two categories (“PK
DDI” vs. “other or no DDI”) were used as training data for the first step (PK DDI sen-
tence classification). On top of sentence-level annotations, each of these sentences also
has entity-level annotation. The original XML files annotated entities of Precipitant,
Trigger, and SpecificInteractions. For our model, we need Precipitant and Object entities
annotated. Of note the original XML files used a definition of Precipitant that is differ-
ent from ordinary DDI definitions: any drug X involved in a DDI with the labeled drug
(the drug the XML file is a SPL document for) was annotated as Precipitant, even if the
labeled drug actually affects drug X’s PK or PD (i.e. drug X is actually the Object drug).
The third task of TAC 2019 DDI was the normalization of sentences involving PK DDI
to National Cancer Institute (NCI) Thesaurus codes. Hence each PK sentence contains
an NCI code label from which the correct object and precipitant drugs can be identified.
We have reannotated the entities in each sentence so that the correct definition of object

325 Structured Product labels

(Pre-specified by TAC2019 for training) BioBERT model pre-

trained with PubMed

21593 annotated Fine tuning
sentences Model Training

BioBERT_directionalDDI model

10592 unannotated
sentences

>

81 Structured Product labels
(Pre-specified by TAC2019 for testing) Predict precipitantand object drugsin | Model Validation
pharmacokinetic DDIs

Evaluate Performance
Fig. 2 Training and validation procedure. 325 and 81 FDA labels prespecified by TAC DDI 2019 [8] were used
for model training and validation, respectively. These labels were provided as Structured Product Labeling
(SPL) documents as XML files. Sentences were extracted from the XML files and re-annotated to fit the
purpose of the two steps of our model (DDl relation extraction to identify PK DDI sentences, and precipitant/
object entity recognition in those sentences). This training/validation procedure was applied twice, each for
one step of the model
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and precipitant is used, without having to refer to NCI codes. The resulting dataset is
marked following Inside-Outside-Beginning2 (IOB2) format to indicate the boundaries
of object and precipitant drugs in each sentence and used as the training data for the
second step (identifying precipitant and object drugs).

Separately, the TAC 2019 DDI track provided 1 dataset containing 81 FDA labels as
testing/validation data. Following the steps above, 10,592 sentences were extracted and
reannotated from the XML files and used as independent validation to check the perfor-
mance of our model for both steps. A diagram of the training and validation procedure
can be found in Fig. 2.

Transformer-based large language model

BERT is a recently proposed pre-training language representation model with a trans-
former-based large language model architecture that has demonstrated state-of-the-
art results on a series of NLP tasks [11]. Building on top of BERT, Lee et al. developed
BioBERT, a BERT model retrained on large scale biomedical corpora [12]. We used
BioBERT-Large v1.1, which was developed by pre-training BERT-large architecture (24
layers of neural networks, 340 million parameters) on PubMed abstracts (4.5 billion
words, letter case preserved) for 1 million steps, with a custom 30,000 word vocabulary
(https://github.com/dmis-lab/biobert). The pre-trained BioBERT weights in the format
of TensorFlow version 1 (https://www.tensorflow.org/) were downloaded from the above
GitHub repository. To convert TensorFlow version 1 weights to version 2, a tf1-tf2 con-
vert script from https://github.com/tensorflow/models/tree/r2.1.0/official/nlp/bert was
used. These converted weights were loaded into an in-house developed TensorFlow ver-
sion 2 implementation of BERT, modified from https://github.com/kamalkraj/BERT-
NER-TF. The preloaded model was then trained (fine-tuned) to finish the two steps of
the task: relation extraction (RE) to identify PK DDI sentences and named entity rec-
ognition (NER) to identify precipitant and object drugs in each PK DDI sentence. This
trained neural network, referred to as BioBERT _directionalDDI, and its performance
was subsequently evaluated using validation data.

For the first step of the task, the BioBERT_directionalDDI model was fine-tuned on
the training data containing sentences in two categories (PK DDI and other or no DDI;
see Datasets section above) with epoch size 2 and max_seq_len 128. For the second step
of the task, the model was fined-tuned on the training data where precipitant and object
drugs are labeled as named entities (see Datasets section above) with epoch size 50 and
max_seq_len 128. Generally, we used the same hyperparameters as given in the BioBERT
GitHub repository. The only difference is that we found that 2 epochs for the first step
was sufficient (instead of 3 epochs as originally used in the BioBERT repository). For
both steps, multiple independent models were run from random seeds to ensure that
the model performance was not an outlier. It was found that the model performance was
stable and so the results from a single model are presented.

In addition to using traditional classification performance metrics like precision,
recall, and F score to evaluate model performance, we also performed a systematic error
analysis by manually going through each wrongly predicted sentence (for step 1) or pre-
cipitant/object entity (for step 2) as an attempt to understand why the model makes a
mistake. Although there were no pre-defined error categories, we noticed that most
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mistakes can be categorized to one of a few reasons. And we have listed a few example
mistakes for each error category to facilitate discussion (see Discussion section).

Using the model to scan all FDA prescription drug labels

The set of all human prescription drug labels was downloaded from the NIH web-
site  (https://dailymed.nlm.nih.gov/dailymed/spl-resources-all-drug-labels.cfm) on
3/15/2023 in XML format and then processed to extract all sentences. Note that the
majority of text is drawn from the lists and paragraph nodes in the XMLs, however
text occurring in tables is not included. Any text that is contained inside of an image
was likewise not extracted. Finally, some post-process cleaning of the extracted sen-
tences was performed, for example removal of special characters like bullet points,
concatenating items in lists into a single sentence, and removing hyperlinked
references.

After processing, we extracted all sentences containing one of the 28 drug names
of interest (see Results) and created a data set of sentences for each drug. Then we
ran our model on each drug’s data set and found all sentences that contain PK DDI
information as well as all sentences where that drug appears as the object in the PK
DDI. Lastly some custom scripts were used to delete redundant sentences and iden-
tify those sentences where some quantitative information were mentioned as the con-
sequence of the PK DDI (e.g., the Cmax of a drug of interest was increased by X%

when co-administered with drug Y).

Results

Model development using pre-specified training and validation datasets

We followed the pre-specified data split for training and validation from TAC 2019
DDI track (see Methods). Three hundred and twenty-five annotated FDA drug labels
were used for model training, and 81 labels were set aside for model validation. In
total there are 21,593 and 10,592 sentences for training and validation, respectively
(Fig. 2). As the BioBERT_directionalDDI model contains two sequential sub-models
for the two steps (relation extraction RE followed by named entity recognition NER),
the performance evaluation (using the 10,592 sentences in the validation dataset) also
has two sequential steps: first evaluate the accuracy of classifying all sentences into
PK DDI and other or no DDI categories, then evaluate the accuracy of classifying
object and precipitant drug entities in the PK DDI sentences. We report the preci-
sion, recall and F-score for both steps.

Table 1 Performance of the 1st step (sentence classification to identify PK DDI)

Recall 80.6%
Precision 82.7%
F-score 81.6%
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Model performance of the first step (identifying PK-DDI sentences)

For the sentence classification task, our BioBERT _directionalDDI model resulted in a
precision of 82.7%, a recall of 80.6% and an F-score of 81.6% (Table 1). This suggests
that, for all sentences that actually carry PK DDI information, about 81% will be cor-
rectly classified by the model while the remaining 19% will be mistakenly classified as
other or no DDI (meaning either no DDI information or DDI of other types such as
pharmacodynamics).

Model performance of the second step (identifying object vs precipitant drugs in PK-DDI
sentences)

For the second step (identifying object vs precipitant drugs in PK DDI sentences) our
BioBERT_directionalDDI model resulted in a precision of 100% for both object and
precipitant entities (there were no false positives). The recall for object entities was
93.7% and for precipitant entities it was 94.6%. The F-score for object entities was
96.7% and for precipitants entities it was 97.2% (Table 2). Therefore about 94% of all
entities (object and precipitant combined) are correctly identified by the model. Such
high precision and recall suggest that, given a PK DDI sentence, it is very likely that
this model will correctly identify the object and precipitant drugs.

Model application to identify clinical exposure changes due to DDI

Next, we applied the model to a specific use case: identify DDI-mediated clinical
exposure changes of some reference drugs that were proposed to support the devel-
opment of new cardiac safety regulatory guidelines [15]. The results for each of the
28 reference drugs after scanning all FDA labels for prescription drugs are shown in
Table 3. The number of sentences mentioning the reference drugs ranges from around
150 (Bepridil) to over 30,000 (Quinidine). After applying the two-step approach with
the model, most of the reference drugs have anywhere between a few to over a hun-
dred unique sentences identified where the drug appears as the object in a PK DDI.
These sentences form the knowledge base that was used to provide evidence and
facilitate discussion for the high clinical exposure scenario of the drug.

Discussion and conclusion

Background of project initiation

In this paper we reported the development of a transformer-based large language
model to automatically identify precipitant and object drugs involved in a PK DDI
relation. This project was started during the development of international cardiac

Table 2 Performance of the 2nd step (named entity recognition to identify precipitant and object

drugs)

Object (%) Precipitant (%)
Recall 937 94.6
Precision 100 100

F-score 96.8 97.2
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safety regulatory guidelines where the change of clinical exposure of a drug (object)
due to DDI with another drug (precipitant) needs to be considered to assess the “high
clinical exposure” of the object drug. We were surprised by the lack of automatic
solutions (either commercial or open source) to this important task, and decided to
develop the current model (BioBERT_directionalDDI) by manually annotating a cor-
pus and then fine tuning the state-of-the-art language model BERT [11].

A comprehensive and properly annotated corpus to identify precipitant and object drugs

To identify the clinical exposure change due to PK DDI from a sentence there are natu-
rally two steps: first to identify those sentences that carry DDI information in the PK
category, then to identify the precipitant and object drugs in those sentences. Almost all
published NLP methods were designed to finish the first step only. The lack of existing
methods to tackle the second step of identifying the directionality of the PK DDIs could
be due to the lack of a large and properly annotated corpus for this task. It’s worthwhile
to acknowledge that creating such a corpus is not a simple task as it may require dealing
with sentences where the PK DDI is bi-directional or is ambiguously worded and the
annotator will have to deal with these cases in a consistent manner. To the best of our
knowledge there are only two corpora with the proper annotations of object and precipi-
tant in the context of PK DDIs: the PK DDI corpus from Boyce et al. [16] and TAC 2019
DDI corpus (after translating the associated NCI codes). However, the Boyce corpus was
based on only 64 product labels, and only 1 to 2 selected sections from each label were
extracted and annotated. In contrast, the TAC 2019 DDI corpus we re-annotated was
from 406 product labels (training and validation combined), and for most of these labels
the entire documents were annotated. Probably because of the small amount of data
available for training, even though their corpus contains the annotations of object and
precipitant for PK DDIs, Boyce’s methods were only built to detect PK DDIs and their
“modality” but not identify the objects or precipitants [16]. Another well-known DDI
corpus from Herrero-Zazo et al. [1] identifies DDIs of the PK category (through the type
“mechanism”) and annotates the entities involved in this PK DDI. However, the entities
are labeled in the sequence they appear in the sentence, not for their functionality in the
DDI (i.e. not as precipitant or object). We decided to re-annotate the TAC 2019 DDI
corpus with the entities of precipitant and object readily identified (without recourse to
NCI codes) for ease of use in our method. This corpus was then used in our training and

validation process.

Fine-tuning existing BERT-based language models achieved reasonable performance

In the beginning of our project we searched for available methods that can identify PK
DDI sentences and the associated precipitants/objects. The only published method that
can potentially finish both steps is from the Human Language Technology Research
Institute (HLTRI) at the University of Texas at Dallas (UTD) as a participating team for
TAC 2019 [17]. However, their method predicts NCI codes, which will need to be fur-
ther translated to precipitant/object relationships. And to the best of our knowledge, the
method is not open sourced, making it hard to reapply their method to our corpus to
evaluate or compare performance. In the absence of state-of-the-art or reference solu-
tions, we fine-tuned the pretrained model BioBERT-Large v1.1 [12] on our annotated
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training datasets directly, without trying to modify the model structure to further
improve the performance. We used traditional classification performance metrics like
precision and recall, as well as F score, to assess the accuracy of the model. Based on the
validation datasets prespecified by the TAC 2019 DDI track (and newly annotated by us,
see above and Methods), our model has an F-score of 0.82 in identifying PK DI sentences
(first step) and an F-score of 0.97 in identifying object vs precipitant drugs (second step).
Of note the last layer of our neural network is a softmax layer that will produce the prob-
ability of the input sample being in each of the categories. For example, after the 1st step,
each sentence will be assigned a probability X (0<X <1) to be in “PK-DDI” category and
1-X to be in “other or no DDI” category. Since X is a continuous variable, in theory one
could use Receiver Operating Characteristic (ROC) curves to illustrate the performance
over the whole range of possible classification thresholds (which is the range of X) and
pick a threshold for maximum performance. We used a simpler “maximum argument”
approach that essentially fix the classification thresholds of X to be 0.5, as this approach
is widely used in the machine learning literature adopting neural networks for classifica-
tion [2, 11, 12].

Error analysis
For the first step, a detailed investigation into the false negatives revealed several reasons
for missing some of the PK DDI sentences.

Sometimes the sentence itself does not contain enough information to be classified
as PK DDI (Table 4A). For example, the sentence “Griseofulvin decreases the activity of
warfarin-type anticoagulants so that patients receiving these drugs concomitantly may
require dosage adjustment of the anticoagulant during and after griseofulvin therapy”
was manually annotated as (and hence has a true label of) PK DDI in the validation
dataset. Although it is generally accepted that griseofulvin decreases warfarin activities
through PK mechanisms such as inducing metabolizing enzymes and interfering with
absorption [18], such information is not contained in the sentence above that was pre-
sented to the model. This explains why the model misclassified it as other or no DDI.

Another reason is unique to some documents in the validation dataset: each docu-
ment is the label of a specific FDA-approved drug (which is referred to as “label drug”
hereafter), and in some sections of some old labels the name of the label drug is omitted
from a sentence (Table 4A). For example, the sentence “Elimination can be accelerated
by the following procedures: 1) Administer cholestyramine 8 g orally 3 times daily for 11
days” does convey the DDI information between cholestyramine and some other drug.
The other drug is leflunomide (Arava), which is the label drug and hence is omitted from
the sentence. Consequently, the model did not classify it as a PK DDI sentence. This kind
of sentence is a unique feature of old drug labels and is unlikely to be encountered when
examining more recent drug labels or literature in scientific journals.

We also performed a similar error analysis for false positives (Table 4B). Some sen-
tences were mistakenly classified as PK DDI because they contain information about
interaction between a drug and a non-drug factor (e.g. body weight or smoking). This
can be seen from the sentence “Smoking: Following oral rivastigmine administration (up
to 12 mg/day) with nicotine use, population pharmacokinetic analysis showed increased
oral clearance of rivastigmine by 23% (n=75 smokers and 549 nonsmokers)”. In addition,



Zirkle et al. BMC Bioinformatics (2023) 24:413

Page 13 of 17

Table 4 Representative false negative (A) and false positive (B) sentences for the first step (relation
extraction to identify PK DDI sentences)

Sentence in Validation Dataset True Label Predicted Reason for Wrong Prediction
Label
A
Griseofulvin decreases the activity of 1 0 Sentence does not contain information to
warfarin-type anticoagulants so that be classified as PK DDI
patients receiving these drugs concomi-
tantly may require dosage adjustment
of the anticoagulant during and after
griseofulvin therapy
Barbiturates usually depress griseofulvin 1 0 Sentence does not contain information to
activity and concomitant administration be classified as PK DDI
may require a dosage adjustment of the
antifungal agent
Elimination can be accelerated by the 1 0 The name of the drug for the drug label
following procedures: 1)Administer is omitted from the sentence in some old
cholestyramine 8 g orally 3 times daily drug labels
for 11 days
There may be competition for elimina- 1 0 The name of the drug for the drug label is
tion with other compounds that are also omitted from the sentence
renally eliminated
B
The glucose lowering effect of ADMELOG 0 1 Sentence contains information to be classi-
may be decreased when co-administered fied as DD, but not enough information to
with corticosteroids, isoniazid, niacin, distinguish PK vs non-PK mechanisms
estrogens, oral contraceptives, pheno-
thiazines, danazol, diuretics, sympathomi-
metic agents (e.g., epinephrine, albuterol,
terbutaline), somatropin, atypical antip-
sychotics, glucagon, protease inhibitors,
and thyroid hormones
Compared to a patient with a body 0 1 Sentence contains information about an
weight of 65 kg, the rivastigmine steady- interaction between drugs and non-drug
state concentrations in a patient with a elements (body weight)
body weight of 35 kg would be approxi-
mately doubled, while for a patient with
a body weight of 100 kg the concentra-
tions would be approximately halved
Smoking Following oral rivastigmine 0 1 Sentence contains information about an
administration (up to 12 mg/day) with interaction between drugs and non-drug
nicotine use, population pharmacoki- elements (smoking)
netic analysis showed increased oral
clearance of rivastigmine by 23% (n=75
smokers and 549 nonsmokers)
Intervention: Dose reductions and 0 1 Sentence contains information to be classi-

increased frequency of glucose monitor-
ing may be required when BASAGLAR is
co-administered with these drugs

fied as DD, but not enough information to
distinguish PK vs non-PK mechanisms

there are also some sentences that do not carry enough information to be classified as

PK DDI or other or no DDI by themselves, such as “Intervention: Dose reductions and

increased frequency of glucose monitoring may be required when BASAGLAR is co-

administered with these drugs” Overall, we calculated the specificity of the model on

the sentence classification step and found that it was extremely high; about 0.99, this

indicates that the fraction of other or no DDI sentences that are wrongly classified as PK

DDI is small.

Error analysis of the second step (Table 5) suggests that some object/precipitant

classifications were wrong because the corresponding drug names appear in the
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sentence in a complex way. For example, in the sentence: “In patients taking ARAVA,

exposure of drugs metabolized by CYP1A2 (e.g., alosetron, duloxetine, theophylline,
tizanidine) may be reduced’, the model correctly identified that ARAVA is the pre-
cipitant drug while alosetron, duloxetine, theophylline, and tizanidine are the object

drugs. However, the original sentence also labeled “drugs metabolized by CYP1A2”

as a general term to cover object drugs, which the model missed. Notice that this

example shows that the model can handle situations where there are multiple entities

Table 5 Representative examples where precipitant and/or object drugs were missed by the model
during validation of the 2nd step (named entity recognition to identify precipitant and object drugs)

Sentence

True label

Predicted label

Reason for wrong
prediction

Barbiturates usually
depress griseofulvin
activity and concomi-
tant administration may
require a dosage adjust-
ment of the antifungal
agent

Potent inhibitors of
CYP3A4 can increase the
plasma concentrations of
budesonide

In patients taking ARAVA,
exposure of drugs
metabolized by CYP1A2
(e.g., alosetron, duloxetine,
theophylline, tizanidine)
may be reduced

Intervention: Mycophe-
nolate mofetil (MMF):
Co-administration of PPIs
in healthy subjects and
in transplant patients
receiving MMF has been
reported to reduce the
exposure to the active
metabolite, mycophenolic
acid (MPA), possibly due
to a decrease in MMF
solubility at an increased
gastric pH

Caution should be
exercised when consider-
ing the coadministra-
tion of ASMANEX HFA
with ketoconazole, and
other known strong
cytochrome P450 (CYP)
isoenzyme 3A4 (CYP3A4)
inhibitors (e.g., ritonavir,
cobicistat-containing
products, atazanavir,
clarithromycin, indinavir,
itraconazole, nefazodone,
nelfinavir, saquinavir,
telithromycin) because
adverse effects related

to increased systemic
exposure to mometasone
furoate may occur

Precipitant: Barbiturates
Object: griseofulvin

Precipitant: Potent inhibi-
tors of CYP3A4
Object: budesonide

Precipitant: ARAVA

Object: drugs metabolized
by CYP1A2, alosetron,
duloxetine, theophylline,
tizanidine

Precipitant: PPIs
Object: Mycophenolate
mofetil, mycophenolic
acid

Precipitant: ketoconazole,
ritonavir, cobicistat-
containing products,
atazanavir, clarithromycin,
indinavir, itraconazole,
nefazodone, nelfinavir,
saquinavir, telithromycin
Object: ASMANEX HFA,
mometasone furoate

Precipitant: None
Object: griseofulvin

Precipitant: inhibitors of
CYP3A4
Object: budesonide

Precipitant: None

Object: ARAVA, alosetron,
duloxetine, theophylline,
tizanidine

Precipitant: PPIs
Object: Mycophenolate
mofetil

Precipitant: missing keto-
conazole, ritonavir, and
itraconazole

Object: missing ASMANEX

HFA

Missing precipitant: reason
unknown

For precipitant, missing the
adjective “potent”

ARAVA (a precipitant) is mis-
labeled as object: reason
unknown

Missing “drugs metabolized
by CYP1A2"as object: not a
specific drug name

Missing one object:
mycophenolic acid is a
metabolite

Unknown

Page 14 of 17
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of the same class; in this case there are multiple object drugs. There are also other
object/precipitant drugs that were misclassified without obvious reason (Table 5).
But overall, the high precision and recall (both>0.9) indicate that these wrongly
classified directional DDI entities are relatively rare.

Potential model application use cases

As mentioned earlier this model was developed to facilitate the gathering of high clinical
exposure information for reference drugs during the discussion of cardiac safety regula-
tory guidelines [4]. In addition, our model could be used in specific drug development
program when the drug of interest has relevant information in other drug labels or sci-
entific literature. For example, a comprehensive scanning of all drug labels and/or lit-
erature to gather information about DDI-associated clinical exposure increase of a drug
of interest could potentially be used to help the selection of a target clinical exposure
for this drug in a first-in-human QT assessment to fulfill the International Council for
Harmonisation (ICH) E14 Q & A 5.1 requirement [4]. And natural text mining using
the model could be used for post marketing pharmacovigilance surveillance for specific
drugs [19].

Limitations

A few limitations of our method should be noted. First, there is potentially useful PK
information contained in tables and figures in drug labels that our method currently
cannot use. Extraction of information in these forms can be challenging, however there
has been some recent work in the area [20]. Another limitation is that our method ana-
lyzes each sentence individually; whereas sometimes contextual knowledge from sur-
rounding sentences can be useful in determining whether a sentence contains PK DDI
and also its directionality. Lastly, we mention that after annotating our corpus and train-
ing our model that they are fixed in time, and may need to be updated; for instance, if
changes are made to how drug interaction information is recorded.

Potential next steps

As stated above, some classification errors are attributed to a lack of information con-
tained in the sentence. This may require new generations of Al methods that enquire
external sources during the classification steps. For example, in the case of sentences
from drug labels that allude to the label drug, without explicitly naming it in the sentence,
we could pull the label drug name from other parts of the drug label or from a database
such as RxNorm [21]. For other classification errors where the relevant information is
contained in the sentence already, they may be resolved by improving the existing BERT-
based pipelines, such as supplementing the pre-training materials (which are mostly bio-
medical literature) with FDA drug labels, adjusting the number of layers, etc.

Even though general DDI corpora may exist, these usually can only be used to develop
methods for general purpose DDI extraction (e.g., classifying a sentence into one of sev-
eral DDI categories). Hence it is important that once users have defined a more spe-
cific task (e.g., identifying clinical exposure changes of object drugs due to PK DDI with
precipitant drugs), they provide a specific corpus that can support the development of
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NLP methods to perform the task. Here we hope our model provides a temporary solu-
tion to the task of automatic identification of directional DDI from biomedical literature
and drug product labels. More importantly, we hope our initial attempt can encourage
the biomedical informatics method development community to engage the drug devel-
opment community more to develop “fit for practical purpose” methods, and the drug
development community to annotate and release high quality corpora for specific tasks
they are facing in the drug development process.
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