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Abstract 

Background:  Synonymous mutations, which change the DNA sequence but not the 
encoded protein sequence, can affect protein structure and function, mRNA matu-
ration, and mRNA half-lives. The possibility that synonymous mutations might be 
enriched in cancer has been explored in several recent studies. However, none of these 
studies control for all three types of mutational heterogeneity (patient, histology, 
and gene) that are known to affect the accurate identification of non-synonymous 
cancer-associated genes. Our goal is to adopt the current standard for non-synony-
mous mutations in an investigation of synonymous mutations.

Results:  Here, we create an algorithm, MutSigCVsyn, an adaptation of MutSigCV, 
to identify cancer-associated genes that are enriched for synonymous mutations 
based on a non-coding background model that takes into account the mutational 
heterogeneity across these levels. Using MutSigCVsyn, we first analyzed 2572 cancer 
whole-genome samples from the Pan-cancer Analysis of Whole Genomes (PCAWG) 
to identify non-synonymous cancer drivers as a quality control. Indicative of the algo-
rithm accuracy we find that 58.6% of these candidate genes were also found in Cancer 
Census Gene (CGC) list, and 66.2% were found within the PCAWG cancer driver list. 
We then applied it to identify 30 putative cancer-associated genes that are enriched 
for synonymous mutations within the same samples. One of the promising gene candi-
dates is the B cell lymphoma 2 (BCL-2) gene. BCL-2 regulates apoptosis by antagonizing 
the action of proapoptotic BCL-2 family member proteins. The synonymous mutations 
in BCL2 are enriched in its anti-apoptotic domain and likely play a role in cancer cell 
proliferation.

Conclusion:  Our study introduces MutSigCVsyn, an algorithm that accounts for muta-
tional heterogeneity at patient, histology, and gene levels, to identify cancer-associated 
genes that are enriched for synonymous mutations using whole genome sequencing 
data. We identified 30 putative candidate genes that will benefit from future experi-
mental studies on the role of synonymous mutations in cancer biology.
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Background
‘Driver’ mutagenic events confer a selective growth advantage to cells and contribute 
to tumorigenesis [1, 2]. Discovering and characterizing these cancer-driver genes using 
large-scale cancer genome sequencing data is a major component of modern cancer 
research [2, 3]. These drivers are typically identified through aberrantly high mutation 
rates in specific genes relative to an estimate of the background mutation rate [4–6]. 
Classic efforts have identified a “long-tail” distribution of cancer driver mutations, where 
some mutations (e.g., KRAS G12D [7]) are highly prevalent, and other mutations are 
extraordinarily rare [8, 9]. However, many tumors do not harbor any known cancer driv-
ers. A reasonable assumption is that these tumors harbor driver mutations that are rare 
enough to be undetectable in existing cohorts [10]. The unambiguous detection of these 
novel long-tail drivers is a challenge because of the underpowered sample size of many 
cohorts [11]. However, it may also be a challenge because research labs have primarily 
looked for cancer drivers involving non-synonymous mutations or non-coding muta-
tions in promoters and other regulatory regions [12, 13].

Synonymous mutations are one class of historically disregarded mutations that might 
be long-tail drivers. Synonymous mutations alter the mRNA coding sequence but not 
the encoded protein’s primary structure. In the past, these mutations were assumed to 
be phenotypically “silent” [14, 15]. Nonetheless, synonymous codons encode informa-
tion beyond amino acids. Protein structure and function can be altered by introducing 
synonymous mutations that change the rate of protein translation [16–18]. Such varia-
tion had been found to affect co-translational folding [19], translational accuracy [20], 
and posttranslational modifications [21]. Additionally, synonymous mutations also play 
a regulatory role in transcription by altering mRNA structure [22], and in some cases 
affecting the mRNA splicing process [23]. Both of these translational and transcriptional 
effects had been found to impact cell fitness in bacteria [18, 24], and are linked to a num-
ber of human diseases [25]. It is now generally accepted that synonymous mutations can 
affect subcellular processes and phenotypes  [26, 27].

Two sets of evidence indicate that selective constraints act at synonymous mutation 
positions in cancer, suggesting a functional role. First, bioinformatic analyses indicate 
a global selection for synonymous mutations in oncogenes. Supek et al. [28] found that 
the synonymous mutation rate is elevated in oncogenes, especially near exon–intron 
boundaries, regardless of local mutation rates. Analyses from Chu et al. [29] on single 
nucleotide polymorphisms (SNPs) in healthy patients suggested synonymous SNP sites 
in cancer-related genes may undergo a selection constraint, and are more conservative in 
oncogenes than in other cancer-related genes. In addition, results from Benisty et al. [30] 
suggest that the frequently mutated oncogene in oncogene families (e.g., KRAS) may 
adapt codon usage to promote cancer cell proliferation. Second, circumstantial evidence 
connects synonymous mutations and cancer. For example, synonymous mutations in the 
MDR1 gene, which encodes the efflux pump Pgp, contribute to chemotherapy resistance 
[31]. In cancer cells, synonymous SNPs in MDR1 affect P-glycoprotein substrate speci-
ficity. And synonymous mutations in BAP1 were found to cause exon11 skipping, gener-
ating a premature stop codon, and thus a complete loss of function for BAP1 [32]. These 
findings suggest that synonymous mutations are possibly cancer-associated.
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To identify cancer-associated genes that are enriched for synonymous mutations, 
one of the key aspects is a comprehensive model to estimate background synonymous 
mutation rates. Several studies have used a variety of computational approaches [28, 
33–35]. The background models in these studies have ranged in complexity and sophis-
tication. For example, in the seminal study by Supek et  al. [28], thirteen covariates at 
the gene level controlled for regional mutation variation between non-cancer genes and 
oncogenes of interest, but patient-level biases were not accounted for. In another study, 
Sharma et al. [33] examined and ranked common synonymous mutations in COSMIC 
[36] (a curated database of somatic mutations in cancer) and combined this with orthog-
onal data including mRNA secondary structural change predictions as well as evolution-
ary conservation score. However, this approach did not have a formal estimate of the 
background synonymous mutation frequency. No approach to date has accounted for 
all three levels of patient-, gene- and disease-specific mutational heterogeneity that are 
known to lead to inaccurate results in non-synonymous cancer identification [4, 37], and 
are certain to affect the identification of cancer-associated genes that are enriched for 
synonymous mutations.

Controlling for patient-, gene- and disease-specific mutation biases is exemplified by 
the MutSigCV [4] algorithm, which is the community standard for driver identification 
in non-synonymous mutations. Here, we bring this same level of background mutational 
modeling to synonymous mutations by developing an algorithm we refer to as Mut-
SigCVsyn, which allows us to detect putative synonymous candidates while controlling 
for confounding mutational biases. This approach is enabled by The Pan-Cancer Anal-
ysis of Whole Genomes (PCAWG) sequencing data [38] from which we use the non-
coding mutations within genic regions to adjust for triplet nucleotide mutation biases 
across diverse patients, tumor histologies, and genes. With this approach, we identify 30 
putative genes that are enriched for synonymous mutations across 18 histology cohorts.

Results
Synonymous mutation rate varies across patients, tumor types, and genes, impeding 

cancer‑associated gene discovery

The accurate identification of non-synonymous drivers requires explicit corrections for 
background mutation biases across patients, genes, and diseases. We first examined 
if the same should be done when identifying genes that are enriched for synonymous 
mutations because it is highly likely that there are distinct synonymous mutation rates 
across these categories.

To demonstrate this synonymous mutation heterogeneity, we collected synonymous 
mutations in 18,638 protein-coding genes across 2,572 PCAWG patients. We calculated 
the rate of synonymous substitutions per 1 Mbp synonymous site for each indication 
(see Methods Section). As expected, the synonymous mutation rate was lower than the 
total mutation rate (Fig. 1a, top). We observed that the synonymous mutation frequen-
cies vary widely across patients and histology indications. Across the indications, Skin-
Melanoma has the highest median synonymous mutation frequencies across patients at 
21.7 per Mbp. Towards the other extreme, the lowest median frequency is observed in 
CNS-PiloAstro (0 per Mbp, due to patients having no synonymous mutations) which is 
over 20 times smaller than Skin-Melanoma.
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We also observe large variations in mutation frequency within individual cancer 
indications. Except for some of the extremely small cohorts (e.g., Bone-Benign (n = 1), 
Bone-Osteoblast (n = 5), Myeloid-MDS (n = 2), Cervix-AdenoCA (n = 2)), the maximum 
mutation frequency is at least 1 order of magnitude larger than the minimum in each 
indication. The largest such variation occurs in ColoRect-AdenoCA, where the highest 
synonymous mutation frequency is 329 per Mbp, while the lowest is 0.917 per Mbp. This 
is consistent with the existence of a hypermutated microsatellite instability subpopula-
tion [39].

These variations are partly explained by mutational etiology (Fig. 1a, bottom). A typi-
cal example is Skin-Melanoma, which exhibits an enrichment of GC transition muta-
tions, consistent with the known mutational signature due to UV radiation [40]. In 
addition, the high content of GC transition in Bladder-TCC patients is likely caused by 
APOBEC protein family activity, which is a prominent mutational signature pattern in 

Fig. 1  The synonymous mutation rate in cancer varies across patients, histology types, and genes. A Box 
plot (Top) of patient synonymous mutation frequency across all histology types. Mutation frequency is 
shown as a logarithmically transformed mutation number per mega base pair. Patients that don’t have any 
synonymous mutations are set to have -2 transformed mutation frequency per mega base pair. Each dot 
represents a patient. Histology types are ordered by their median somatic mutation frequency. The relative 
percentage (bottom) of mutations falls into 6 mutation categories (see Methods Section) for all individual 
patients across the histology types. B Synonymous mutation number averaged by number of patients in 
Ovary-AdenoCA (blue), Lung-SCC (orange), and Thy-AdenoCA (green), respectively, illustrated on the entire 
chromosome 8 (top) and chromosome 18 (bottom)
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TCGA bladder tumors [41]. In Lung-SCC, we also observe signs of signatures related to 
tobacco smoke, which is characterized by G to T transversion caused by lesions when 
polycyclic aromatic hydrocarbons enter the human body [42]. Thus, as expected, known 
mutational signatures contribute to synonymous mutation heterogeneity as well.

Next, in order to illustrate the heterogeneity of mutation rate across genomes for a 
given cancer indication, we plotted the average synonymous mutation number per 
patient across chromosome 8 and chromosome 18 for 3 histology cohorts(Ovary-Ade-
noCA, Lung-SCC, Thy-AdenoCA). As shown in Fig.  1b, variation of local mutation 
numbers is observed across all 3 histology types.

These results demonstrate that there is substantial variability in the synonymous 
mutation burden at the histology, patient, and gene levels. Therefore, the assumption of 
a constant mutation rate and completely independent mutation events is not appropri-
ate for the identification of genes that are enriched for synonymous mutations in can-
cer. To accurately identify such genes, driver predictions must explicitly correct for these 
covariates.

MutSigCVsyn detects differences between observed and expected synonymous mutation 

frequencies in cancer cohorts

In order to correct for these covariates, especially the gene-specific differences in muta-
tion rate, we adopted and modified MutSigCV [4] (Fig. 2a), which corrects for variation 
by using patient-specific mutation frequencies and the 192-triplet nucleotide mutation 
context (e.g., A(A- > C)A), and gene-specific background mutation rates through the 
incorporation of expression level and chromosome replication position.

MutSigCV was originally designed for the identification of non-synonymous drivers in 
the context of exome sequencing data. To convert MutSigCV into an algorithm detect-
ing synonymous mutation enrichment, we made several modifications (Fig. 2b). The big-
gest modification is using only the non-coding mutations in our background mutation 
model. The original MutSigCV’s background model is composed of synonymous muta-
tions and non-coding mutations found in the untranslated regions of transcripts but 
with limited coverage in non-coding regions. This is because it was originally designed 
for cancer exome re-sequencing datasets. However, the high data quality and coverage in 
PCAWG Whole Genome sequencing datasets allow us to use the mutations in the com-
plete intronic region and untranslated regions for the mutational background. The two 
major reasons for using such a background are: (1) we adopted a simplifying assumption 
that on average, non-coding mutations are ‘more neutral’ than the synonymous muta-
tions. The lower rate in the intronic region than in exonic regions across species [43] 
suggests that non-coding regions of genes are under weaker selection than the coding 
region. (2) By restricting the non-coding mutations to the mutations occurring in tran-
scribed regions, we prevent bias caused by different mutation frequencies in transcribed 
versus non-transcribed regions. Specifically, the non-coding mutations in our analysis 
only include (a) intronic mutations and (b) mutations in untranslated regions.

In MutSigCVsyn, protein-coding gene coverage information for every patient in 
PCAWG is calculated. In addition, we re-annotated the gene covariate file to adapt the 
gene name annotation in PCAWG. To benefit the community, the files and scripts are 
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available publicly on GitHub. The workflow of MutSigCVsyn is shown in Fig. 2c. A more 
detailed description of MutSigCVsyn can be found in the Methods Section.

Quality control: MutSigCVsyn identifies non‑synonymous drivers with high sensitivity.

MutSigCVsyn is designed for the identification of synonymous drivers. However, if Mut-
SigCVsyn builds a valid non-coding background, MutSigCVsyn should be able to iden-
tify non-synonymous drivers as well. Therefore, as quality check for our approach, we 
applied MutSigCVsyn to 2572 donors in 39 PCAWG histology types to identify non-
synonymous drivers, using non-coding mutations as background.

MutSigCV and MutSigCVsyn

Fig. 2  Changing MutSigCV to MutSigCVsyn to identify genes that are enriched for synonymous mutations. 
A MutSigCV accounts for mutation heterogeneity across patients, diseases, and genes. B Comparison 
between MutSigCV and MutSigCVsyn: (1) MutSigCVsyn uses only non-coding mutations instead of a 
background comprised of both non-coding and synonymous mutations adopted by a majority of driver 
mutation detection algorithms. (2) MutSigCVsyn utilizes whole genome sequencing input data instead of 
whole-exome sequencing. (3) Both MutSigCVsyn and MutSigCV only utilize mutations in transcriptionally 
expressed regions. (4) MutSigCVsyn utilizes a re-annotated covariate file that was adapted to the PCAWG 
Gencode v19 annotation. (5) MutSigCVsyn patients have high-quality coverage data over non-coding 
regions, compared to limited coverage in the original MutsigCV. (6) MutSigCVsyn utilizes a non-parametric 
empirical Bayesian method to calculate the local FDR value. C The outline of MutSigCVsyn. Boxes with solid 
lines show MutSigCVsyn exclusive input/steps (see Methods section for detailed description)
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We identified a total of 133 significant genes (Additional file 1: Figure S1) across 29 
cohorts. As expected, most of the genes in the candidate gene list have been reported 
before. As the most frequently altered gene in human cancer, TP53 is the most frequently 
significant driver across all indications. It is called significant in 21 out of 39 histol-
ogy types, including ColoRect-AdenoCA, Lymph-BNHL, Liver-HCC, and Panc-Ade-
noCA. Furthermore, our significant driver list for each indication overlaps the known 
cancer drivers in that indication.  We identified candidate genes CDKN2A in HCSCC 
(Head and Neck Cancer), which is a known tumor suppressor and whose inactivation 
has been well studied in HCSCC [44]. In CRC (Colorectal Cancer), APC and SMAD4 
are also identified as the candidates. APC constitutively activates the canonical WNT 
signaling in most colorectal cancer cases, leading to cell proliferation and tumor forma-
tion [45]. Another known gene, SMAD4 [46], which negatively regulates TGF-beta, is 
also frequently found in CRC patients. Finally, our results in Breast-AdenoCA also high-
lighted some genes that are specifically known to be frequently mutated in breast cancer 
[47], including PIK3CA, CDH1, GATA3, and MAP2K4.

As a further test of our result, we compared our output to CGC (Cancer Gene Census) 
and PCAWG driver list (see Methods Section) (Fig. 3a). We observed 58.6% (78 out of 
133) of our non-synonymous list overlaps with the CGC genes. The high overlap rate 
may be due to the nearly full coverage of non-coding regions and the accurate calcula-
tion of the coverage file for the analysis. We also observe 66.2% (88 out of 133) of our 
candidate genes overlap with PCAWG drivers. Additionally, we successfully identified 
6 genes out of the 15 PCAWG exclusive drivers (Additional file 1: Figure S3), which are 
the genes identified in the PCAWG cohort for the first time. In conclusion, these results 
indicate that our modifications to MutSigCV do not dramatically affect the ability of 
MutSigCVsyn to reproduce previously known results.

The landscape of genes that are enriched for synonymous mutations in cancer

Given our ability to identify non-synonymous drivers with high sensitivity, we used Mut-
SigCVsyn to identify genes that are enriched for synonymous mutations in all 39 histol-
ogy types in PCAWG. We identified 30 putative synonymous candidates in total (Fig. 3b; 
Additional file 3: Table S6). As expected, this list is parsimonious and smaller than the 
non-synonymous driver list. Lymph-BNHL has the most significant synonymous can-
didates (n = 5), followed by Panc-AdenoCA(n = 4). In total, there are 18 distinct indi-
cations having significant genes. The variety of indications implies that MutSigCVsyn 
is not biased by histology-wise mutation frequencies. Among all candidates, 11 genes 
across 7 indications have the smallest p-values (p-value < 1.0× 10−7 ), including BCL2 
and SRSF2 (Lymph-BNHL), ITLN1 (CNS-PiloAstro), PPWD2 (Head-SCC), PURA and 
MAGEC1 (Breast-AdenoCA), SIGLEC15 and TP53I3 (Panc-AdenoCA).

Two of the top candidates, BCL-2 and SRSF2, are known to be non-synonymous 
drivers of cancer as cataloged in the Cancer Gene Census. Both genes were identified 
in the Lymph-BNHL cohort. The t(14;18) translocation in BCL-2 is critical in folli-
cular lymphoma progression [48] and SRSF2 is a global splicing regulator that binds 
to exonic splicing motifs. It is associated with hematopoietic diseases (i.e., myelod-
ysplastic syndrome [49]) but hadn’t been specifically characterized in Non-Hodgkin 
Lymphoma. In PCAWG, 3 unique Lymph-BNHL patients have 3 distinct synonymous 
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mutations in SRSF2: p.Y3Y (DO27764), p.V79V (DO52664), and p.G82G (DO52672), 
the latter 2 reside in the RNA recognition motif (RRM) of SRSF2. Though one of the 
patients (DO52664) carried a missense mutation at the Proline95 position that is 
known to alter mRNA binding affinity [50], 2 other patients only harbor SRSF2 syn-
onymous mutations. As synonymous mutations can perturb mRNA translation initia-
tion and elongation processes [51], it is possible that SRSF2 synonymous mutations 
alter RRM binding affinity and contribute to a global transcriptional profile change in 
cancer cells.

Fig. 3  MutSigCVsyn identifies non-synonymous and synonymous cancer-associated genes. A Venn Diagram 
displaying overlapped gene numbers of MutSigCVsyn significant non-synonymous drivers with Cancer 
Gene Census and PCAWG driver lists. B Heatmap shows significant synonymous candidate genes (Bayesian 
FDR < 1 × 10-2) identified by MutSigCVsyn. Genes are colored by the -log10 transformed FDR value from high 
(dark blue) to low (light yellow). A table containing the exact FDR values can be found in Additional file 3: 
Table S6
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While many of the candidate genes are poorly studied in cancer, there is evidence to 
suggest some of them could be required for tumor growth. For example, PURA, which 
encodes the nucleic acid-binding proteins Purα, is one of the significant candidates in 
Breast-AdenoCA. Studies have found that overexpression of PURA inhibits prolif-
eration and anchorage-independent colony formation of Ras-transformed NIH3T3 
Fibroblast cells, suggesting PURA acts as a potential tumor suppressor gene [52]. In 
our analysis, the PURA expression level is significantly lower (Mann–Whitney U-test 
p-value = 5× 10−3 ) in tumor samples (n = 85) than in normal samples (n = 6) (Addi-
tional file 1: Figure S2a). This low expression suggests a plausible contribution to breast 
cancer cell proliferation. Another example is the immune checkpoint gene SIGLEC15, 
the top significant gene in Panc-AdenoCA. SIGLEC15 is a well-conserved member of 
the immunoglobulin superfamily of receptor Siglecs that bind to sialic acid. In a recent 
study [53], upregulated SIGLEC15 has been widely found across different cancer types 
and had been related to a worse patient survival rate. Moreover, SIGLEC15, rather 
than other immune checkpoint genes, was found to have a positive expression correla-
tion with upregulated genes in pancreatic cancer [54]. We observe a significantly higher 
expression of SIGLEC15 mRNA expression in Pancreas exocrine lineage cancer cell lines 
than in other cell lines in DepMap [82] (Mann–Whitney U-test p-value = 5× 10−3 ) 
(Additional file 1: Figure S2b). We used DepMap data because the transcriptome data of 
PCAWG pancreatic patient normal specimens is unavailable. Combining this with the 
observation of SIGLEC15’s mutually exclusive expression with B7-H1(PD-L1)  [55] sug-
gests that SIGLEC15 levels may play a role in pancreatic cancer immune evasion. The 
role of synonymous mutations in both cases may be a fruitful area of future study.

MutSigCVsyn exclusive synonymous candidates might contribute to cancer

We expect that the significant candidates called by MutSigCVsyn have the potential to 
contribute to a cancer phenotype. We focus on one of our particular candidates, BCL-2, 
that has compelling cancer associations. BCL-2 (B cell lymphoma 2) regulates apoptosis 
by antagonizing the action of proapoptotic BCL-2 family members  [56]. It was origi-
nally identified as the proto-oncogene involved in the t(14;18) translocation in follicu-
lar lymphoma [57]. Among the BCL-2 protein motifs, the BH4 motif is essential for the 
anti-apoptotic activity of BCL-2. The deletion of the BH4 region in a human fibroblast 
cell line largely impairs cell viability under IL-3 deprivation [58] and melanoma growth 
in vitro and in vivo [59].

In our analysis, we observe 41 synonymous mutations in 26 unique patients, and 9 of 
the mutations in 9 different patients reside in the BH4 motif (Fig. 4a). Combining this 
observation with the known anti-apoptotic effect of the BH4 motif, we hypothesize that 
there may be an enrichment for synonymous mutations in the BH4 motif that might 
enhance its function and thus promote cancer cell survival. If this is true, we would 
expect to see a significant enrichment of synonymous mutations in the BH4 motif versus 
the BH1, 2, or 3 motifs. To test for enrichment, we conducted a permutation test for the 
observed number of mutations in the BH4 motif by comparing it to the 10,000 permuta-
tions where all 39 mutations are randomly assigned across all the BCL-2 coding posi-
tions. The results show that BCL-2 synonymous mutations are significantly enriched in 
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the BH4 motif (p-value = 0.032) (Fig. 4b). This indicates that synonymous mutations in 
the BCL-2 BH4 motif might be positively selected for in lymphomas.

Discussion
MutSigCVsyn controls for the patient-, histology-, and gene-specific mutation rate vari-
ations to identify genes that are enriched for synonymous mutations in cancer. What is 
novel about this approach compared to previous ones is that the background mutation 
model we constructed accounts for the covariates that are standards in identifying non-
synonymous drivers. Without adjusting for these covariates, there is a high likelihood of 
misidentifying synonymous candidates. To test this approach, we reasoned that our new 
background mutation model should still be able to identify known non-synonymous 
drivers. And indeed, we find MutSigCVsyn identifies above 60% of the drivers reported 
in the CGC. 60% is a reasonably high success rate, given that an evaluation of eight dif-
ferent driver-gene-detection algorithms [60] found that they identified between ~ 10% 
and 50% of the drivers in CGC.

By applying MutSigCVsyn to the PCAWG database, we identified 30 putative genes 
that are enriched for synonymous mutations. Among them, BCL-2 appears to be the 
most promising candidate due to the extensive literature concerning its role in follicular 
lymphoma [48, 61, 62] and the significant clustering of synonymous mutations in BCL-
2’s BH4 regulatory motif. Thus, we hypothesize that synonymous mutations in the BH4 
motif might contribute to BCL-2’s gain-of-function role in oncogenesis.  One poten-
tial argument against this hypothesis is that the enrichment of mutations in BCL-2 is 
the result of somatic hypermutation caused by activation-induced cytidine deaminase, 
which is frequent in immunoglobulin variable regions [63]. However, we find that only 
4 of the 26 patients that have synonymous mutations in BCL-2 harbor an IgG trans-
location in this gene. Further, the breakpoints of the BCL2 translocation within these 
4 patients are at least 100kbp away from the observed synonymous mutations—a dis-
tance that is not consistent with hypermutations in immunoglobulin variable regions. 
And most importantly, the background estimate of the activation-induced-cytidine-
deaminase signature is already accounted for in the MutSigCVsyn analysis by integrating 
mutational context, as well as other candidate hypermutations in lymphomas, meaning 
they are statistically excluded from our candidate list. Thus, these results suggest that the 

Fig. 4  Synonymous mutations are significantly enriched in BCL-2’s BH4 motif. A Illustration and distribution 
of all BCL-2 synonymous mutations identified in PCAWG Lymph-BNHL patients across the BCL-2 coding 
sequence. Circles represent the occurrence of each synonymous mutation. BCL-2 motifs and the 
synonymous mutation in those motifs are colored: BH4 (Orange), BH3 (Blue), BH1 (Brown), and BH2 (Bright 
Pink). No synonymous mutations were observed in BH2 motif. Synonymous mutations that fall outside 
of the motifs are colored grey. B BH4 synonymous mutation number distribution from permutation test 
(10,000 permutations). The red line shows the observed number of synonymous mutations (n = 9)
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positively selected signal of BCL-2 in our analysis is probably not confounded, and the 
synonymous mutations might be one of the significant causes that result in a gain-of-
function effect in lymphoma patients.

The divergence at nonsynonymous and synonymous sites in cancer cohorts, known 
as the dN/dS ratio, is a conventional measure of evolutionary selection pressure [64]. It 
has been applied in many somatic evolution studies [65–68] under the assumption that 
nearly all synonymous mutations are neutral [14]. A small dN/dS ratio is usually inter-
preted as a global signal of negative selection on non-synonymous mutations. However, 
the signal we observe in the analysis opens the possibility that the synonymous muta-
tions in BCL-2 challenge this interpretation. In a study by Lohr et al.  [69], a small dN/
dS ratio was found across the entire BCL-2 gene in a 50 diffuse large B-Cell lymphoma 
patient cohort. It was thus concluded that BCL-2 undergoes strong negative selection. 
Contrary to this, our study suggests that an increase in dS creates a robust positive 
selection signal of synonymous mutations in the BH4 motif of BCL-2. Thus, it may not 
entirely be that evolution is selecting negatively on the numerator dN, but rather, posi-
tively on the denominator dS. Therefore, the possibility exists that the negative selection 
pressures on BCL-2 are overestimated when only using the dN/dS ratio across the entire 
gene. More broadly, this indicates that the interpretation of the dN/dS ratio may not be 
straightforward when synonymous mutations are not neutral.

Except for BCL-2, most of the other candidate genes identified by MutSigCVsyn 
(Fig. 3b) have not been identified previously. To evaluate their functional relevance, we 
carried out a mutual exclusivity analysis, a Combined Annotation Dependent Depletion 
(CADD) [70] score prediction analysis, and a gProfiler [71] Gene Ontology Enrichment 
Analysis. Detailed rationale, methods, and results are described in Additional file 2. As 
a result, we didn’t identify any statistically significant mutual exclusive gene pairs due 
to the lack of power in the PCAWG dataset. However, we observed that the CADD 
score (p-value= 3 × 10−14, n = 137) is significantly higher for synonymous mutations 
in candidate genes compared to the ones in other genes (Additional file 1: Figure S2C), 
which indicates that the synonymous mutations in candidate genes are more likely to be 
functional.

We did a comprehensive analysis comparing our findings to previous literature on 
cancer-associated synonymous mutations, including Sharma et al. [33], Zeng et al. [72], 
and Bin et  al. [34]. Upon analysis, we discovered several overlapping genes of which 
variants were listed as potential cancer-associated genes in the other papers: Variants 
in BCL2 (Lymph-BNHL), SRSF2 (Lymph-BNHL) and TMEM129 (Thy-AdenoCA) were 
listed among top 1000 synMICdb variants, and we observed 3 exact BCL2 mutations in 
5 unique patients in our dataset were within the top 1% in synMICdb (Additional file 3: 
Table  S4). Furthermore, in Zeng et  al., besides BCL2, variants in our candidate gene 
PURA (Breast-AdenoCA) were also identified as proposed cancer-associated mutations. 
Although these variants might not have been observed within the same cohort as in the 
PCAWG dataset, they provide evidence supporting that the synonymous mutations are 
likely being positively selected in these candidate genes.

Differences in datasets and methodology are two reasons differences in the pub-
lished lists of synonymous ‘drivers’ can arise. For example, PCAWG, which we used in 
this study, is less comprehensive than COSMIC in terms of the number and source of 
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identified synonymous mutations. However, PCAWG uses a uniform mutation calling 
standard that ensures variant calling accuracy by validating calls across multiple vari-
ants calling pipelines, whereas COSMIC uses human curation of publications reporting 
somatic mutation results based on heterogeneous analysis standards (e.g., differences in 
alignments, variant callers, manual annotations) – which are known to affect accuracy 
[73].

By not accounting for covariates in a background mutation model, studies can identify 
spurious synonymous mutation candidates. In one study [34], multiple mutations in two 
extremely long human genes, which encode the muscle protein titin and neuronal syn-
aptic vesicle protein piccolo, were identified as synonymous candidates. However, these 
genes are commonly observed as false positives in non-synonymous driver identification 
studies that don’t account for gene-specific mutational biases [4]. In another study [33], 
two top synonymous candidates are present in highly mutable microsatellite regions: 
MLLT3 (c.501T > C) has the 5th highest SynMICdb score, and ARID1B (c.768C > A) has 
the 13th highest SynMICdb score. Creating an appropriate background mutation model 
minimizes such microsatellite biases. Therefore, these putative false-positive results 
highlight the importance of methodologies that utilize comprehensive background 
mutation models, especially when identifying weak and rare signals like synonymous 
mutations.

Our study has limitations. Firstly, due to the rarity and weaker signals of cancer-
contributing synonymous mutations compared to missense or nonsense mutations, 
we lack statistical power to detect synonymous candidates in smaller cohorts like bone 
neoplasm subtype cohorts (n < 10) and myeloid cohorts (n < 30). Secondly, the PCAWG 
dataset has limited transcriptome data, with only 1188 patients from 27 cohorts out of 
2572 high-quality patient samples across 39 cohorts having available transcriptome data. 
This restricts our ability to perform in-depth bioinformatic analysis on significant gene 
expression and splicing patterns. These limitations emphasize the need for larger sample 
sizes and complete RNA-seq and WGS datasets for comprehensive analysis. Moreover, 
we acknowledge the drawbacks of using non-coding mutations in the UTR and intronic 
regions to build the mutational background used in our approach. Sequences in some 
non-coding regions are under evolutionary constraints, especially regulatory elements, 
such as intron–exon junctions [74, 75]. A positively selected non-coding background 
may diminish the synonymous mutation signal and decrease the number of synonymous 
candidates. For these reasons, it would be useful in future studies to exclude specific 
background regions that are already known to be under evolutionary selection. How-
ever, principled exclusion criteria will require much larger cohorts and more complete 
knowledge of positive selection in non-coding regions of the genome.

Conclusion
MutSigCVsyn attempts to identify genes that are enriched for synonymous mutations in 
cancer using the paradigm that is commonly found in algorithms for non-synonymous 
cancer drivers. We have identified a list of 30 putative synonymous candidates that pro-
vide opportunities for future experimental research to understand how these synony-
mous mutations within the candidate genes can contribute to cancer.
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Methods
Dataset

The patient MAF (Mutation Annotation Format) files, wig coverage files, RNA-seq data, 
and cancer driver data were retrieved from the PCAWG portal (https://​dcc.​icgc.​org/​
relea​ses/​PCAWG). Driver genes in Cancer Gene Census were retrieved from the COS-
MIC website (https://​cancer.​sanger.​ac.​uk/​cosmic). Gene sequence and annotation data 
were downloaded from the Gencode Release19 website (https://​www.​genco​degen​es.​org/​
human/​relea​se_​19.​html). CERES scores were retrieved from the DepMap web portal 
(https://​depmap.​org/​portal/).

Patient and geneset

2572 PCAWG [38] patients whose SNV mutation information and wig coverage files 
both exist were selected. The selected patients are ‘white-listed’ in the PCAWG dataset. 
This means that they have met strict criteria for data quality. The patients were divided 
into 39 histology cohorts based on the PCAWG annotation. 139 patients who have a 
total mutation number > 50,000 [13] were defined as hypermutators and were excluded 
from MutSigCVsyn analysis.

Only protein-coding genes were selected for MutSigCVsyn analysis. As the PCAWG 
SNVs (Single Nucleotide Variants) were annotated based on Gencode v19, known pro-
tein-coding genes in Gencode v19 were selected based on filter “KNOWN” and “pro-
tein_coding” in the Gencode v19 gene annotation file. The ‘principal’ [76] transcript, if 
exists, was used. Otherwise, the longest transcript was used. To make sure all mutations 
were correctly accounted for in the coverage file as in the MAF file, genes of which the 
coding/intron/UTR SNV positions don’t match between the MAF files and the coverage 
files were excluded. This left a final gene set of size 18,638 for analysis.

Preprocess of MutSigCVsyn inputs

MAF file preparation

Mutations of PCAWG patients were annotated via customized script (available on 
GitHub) into 7 mutation categories based upon the mutational context as in MutSigCV 
[4]. The categories are:

1.	 Transition mutations at CpG dinucleotides
2.	 Transversion mutations at CpG dinucleotides
3.	 Transition mutations at C: G base pairs not in CpG dinucleotides
4.	 Transversion mutations at C: G base pairs not in CpG dinucleotides
5.	 Transition mutations at A: T base pairs
6.	 Transversion mutations at A:T base pairs
7.	 Null and Indel mutations

Coverage file preparation

The coverage for every single patient at every genomic position in the geneset was cal-
culated based on the wig file to ensure accurate coverage, instead of a simple full cov-
erage model. The calculation process was re-engineered as in the original MutSigCV. 

https://dcc.icgc.org/releases/PCAWG
https://dcc.icgc.org/releases/PCAWG
https://cancer.sanger.ac.uk/cosmic
https://www.gencodegenes.org/human/release_19.html
https://www.gencodegenes.org/human/release_19.html
https://depmap.org/portal/
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One covered genomic position was counted as 1. It was equally divided into 3 parts 
because the nucleotide has 13 chance to mutate to any of the rest nucleotides (i.e. A could 
be mutated to C/G/T). Each possible mutation has its consequence, which consists of 3 
mutation zones:

1.	 Synonymous
2.	 Nonsynonymous
3.	 Non-coding (Defined as intronic and untranslated regions)

and mutation categories 1 to 6 are defined above. The coverage for category 7, the null 
and indel mutation, was the coverage of the entire gene, which was the sum across cat-
egories 1 to 6. These consequences constituted 21 bins in total for each gene. For every 
position in a gene, the 13 mutation counts were assigned to the corresponding bins and 
the summed counts were the category-specific coverage for the gene. Full coverage was 
assumed for unreported positions in the wig file.

Covariate file re‑annotation

The covariate file provided for MutSigCV [4] was adopted. However, to avoid the incon-
sistency of gene naming between the BROAD Institute and PCAWG, the gene names in 
the covariate file were re-annotated in MutSigCVsyn. All synonyms of the PCAWG gene 
names were identified using the R package BiomaRt. 862 synonym names were mapped 
to the BROAD original covariate file and replaced by the new name to generate a new 
gene covariate file, while the expression, replication timing, and chromatin status data 
remained the same.

Gene dictionary file

MutSigCVsyn only takes mutations in intron and UTR (Untranslated region) into 
account to avoid transcription-associated mutation bias. Therefore, mutations in the 
regions that are not transcribed, such as intergenic, promoter, and up-/downstream 
regions, were excluded by removing the variant classification in the gene dictionary file 
and weren’t recognized in MutSigCVsyn.

MutSigCVsyn workflow

MutSigCVsyn is adopted from MutSigCV [4]. Several key changes were made to identify 
the synonymous mutations. A more detailed and technical overview of changes can be 
found in the GitHub repository (https://​github.​com/​ryy12​21/​MutSi​gCVsyn)​The work-
flow of MutSigCVsyn is as follows:

The number of synonymous, non-coding, and non-synonymous mutations for each 
gene g  , patient (p) and mutation category (c) were defined asnsynonymous

g ,c,p  ,  nnoncodingg ,c,p  
andnnonsynonymous

g ,c,p  . Similarly, the coverage was defined as N
synonymous
g ,c,p ,Nnoncoding

g ,c,p

,Nnonsynonymous
g ,c,p  . The total count of mutation/coverage across all categories was defined 

as c + 1 as in MutSigCV, whereas for mutations, it meant the sum of all mutations, but in 
coverage, it meant the sum across categories 1 to 6.

To account for the gene-specific covariates in BMR (background mutation rate), 
MutSigCVsyn finds the nearest neighbor genes, which share the closest mutational 

https://github.com/ryy1221/MutSigCVsyn)The
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property based on the covariates (expression level, DNA replication timing, and chro-
matin compartment), for each target gene.

First, as in MutSigCV, the pairwise Euclidean Distance between every gene pair 
was calculated according to the gene covariate information. For each gene g  , the raw 
background mutation number and coverage were defined as the non-coding mutation 
number and coverage(Eq. 1.1) across all patients ( p)and mutation categories ( c).

Then, MutSigCVsyn evaluates the non-coding mutation and coverage similarity 
between pairs of the closest neighbor genes ( i ) and the target genes ( g  ) using beta-
binomial distribution as in MutSigCV. All qualified neighbor genes (i = 0, 1, 2, . . . ) 
composed a ‘Bagel’ for the target gene ( ∀i ∈ Bg ). The gene’s background mutations 
and coverage were calculated by summing the mutation count and coverage (Eq. 1.2) 
across the gene itself and the other qualified genes in its ‘Bagel’.

Then, MutSigCVsyn incorporated the marginal relative rate of patient-specific and 
mutation-category-specific mutation rate calculated within each histology cohort. 
The category and patient-specific mutation rate were calculated based upon all muta-
tions (synonymous, non-synonymous, and non-coding) to obtain an accurate estima-
tion of mutational load for each gene. They were then combined with the background 
mutation count and coverage for the gene of interest to obtain the gene, patient, 
mutation category level background mutation rate ( xg ,c,p ) and coverage ( Xg ,c,p).

After that, for the gene of interest, the probability of observing 0, 1, or more synon-
ymous mutations in each mutation context and patient was calculated (Eq. 1.3). Here, 
the Nsynonymous

g ,c,p  indicates that only the possible mutations that happen in the synony-
mous positions were considered.

The mutational categories were rank ordered from high to low based on the prob-
ability of having 0, 1, or more mutations in that category. The probabilities were com-
bined and projected for each 2D combination of the mutation category of the 0, 1st, 
and 2nd mutations and then log-transformed into the scores as in MutSigCV. In addi-
tion, the ‘null score boost’, an additional score for deletion and insertion mutations, 

(1.1)

n
bkgd
g =

np∑

p=1

n
noncoding
g ,c+1,p

N
bkgd
g =

np∑

p=1

N
noncoding
g ,c+1,p

(1.2)

xg = n
bkgd
g +

∑

i∈Bg

n
bkgd
i

Xg = N
bkgd
g +

∑

i∈Bg

N
bkgd
i

(1.3)

P(0)
g ,c,p = H

(
0,N

synonymous
g ,c,p , xg ,c,p,Xg ,c,p

)

P(1)
g ,c,p = H

(
1,N

synonymous
g ,c,p , xg ,c,p,Xg ,c,p

)

P(2+)
g ,c,p = 1− P(0)

g ,c,p − P(1)
g ,c,p
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was set to 0 as synonymous mutations do not fall into this category. A background 
null distribution was then built by convoluting the mutation probabilities across all 
2D projected categories. Finally, the observed score was obtained by summing the 
scores across observed 2D projected categories of each patient. The p-value for the 
gene was obtained as the probability of observing a score at least as extreme as the 
observed score in the null distribution.

The last step was FDR calculation for multiple hypothesis testing. During the iden-
tification of genes of which synonymous mutations are significantly mutated, we were 
identifying signals of substitutions that are commonly known as ‘passenger’ mutations. 
Therefore, the false discovery rate control would be much more difficult as most of the 
genes will accept the null hypothesis, leaving a much smaller number of potentially inter-
esting genes for more intensive investigation. Thus, instead of the original Benjamini–
Hochberg FDR method, a nonparametric, empirical Bayes FDR method was employed.

Significant synonymous candidate discovery by Bayesian FDR

The Bayesian false discovery rate as described in Efron et  al. [77] was adopted. Two 
classes of genes were defined: genes of which the synonymous mutations are significantly 
mutated, and genes of which the synonymous mutations are not significantly observed. 
The p-values for each gene are S0, S1, S2, . . . , SN to avoid confusion with the probabilityp.

Let the prior probabilities and the hypotheses be:

The prior probability has corresponding density f0(s) and f1(s) for the Si of the gene. 
Therefore, the mixture density of the 2 populations is.

Define F0(s) and F(s) be the cumulative distribution functions corresponding to f0(s) 
and f (s) in (Eq. 2.2). According to the definition of Bayesian FDR, The FDR value for 
{S ≤ s} is defined as:

which is the probability of identifying genes coming from the null hypothesis, given 
p-values equal or less than s.

In MutSigCVsyn FDR calculation, a nonparametric estimate for Fdr(si) was calculated 
using the empirical CDF of S:

(2.1)

p0 = Prob
{
Not significantly mutated

}

H0 : The gene is not a significantly mutated gene

p1 = Prob
{
Significantly mutated

}

H1 : The gene is a significantly mutated gene

(2.2)f (s) = p0f0(s)+ p1f1(s)

(2.3)Fdr(s) ≡
p0F0(s)

F(s)
For S ≤ s

(2.4)F̂dr(si) =
p0F̂0(si)

F̂(si)
For S ≤ si
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where the Fdr value was calculated for every gene i with p-value < 0.05.
Note, (1) Both F0 and F   [78]were estimations. To estimate the null distribution, non-

expressed genes (FPKM < 1) across all tumor types were used as they are usually regarded 
to have no role in cancer. 1048 genes in total were used to build the empirical null distri-
bution. The kCDF function in R package sROC [79] was used for estimating the cumula-
tive distributions. The package gives asymptotically unbiased and consistent estimates 
for F(s) and F0(s) given a large number of genes [80]. (2) The conservative assumption 
that p0 = 0.99 was adopted because significant candidate genes are expected to occur at 
a very low chance. (3) As a final step of determining significant candidates, the candidate 
genes (i.e., protocadherin gene families) of which coding and intronic regions are highly 
clustered in the same genomic regions were excluded [81] to avoid ambiguity of muta-
tion annotation in overlapped gene regions.

MutSigCVsyn non‑synonymous result analysis

For the drivers in PCAWG, only drivers identified in protein-coding regions were col-
lected (‘element_type’ is ‘cds’). We collected in total 150 PCAWG coding drivers, includ-
ing drivers discovered previously and drivers discovered exclusively by PCAWG. The 15 
PCAWG exclusive drivers were identified by the ‘discovery_unique’ flag in PCAWG.

Synonymous mutational heterogeneity analysis

The synonymous mutation rate was defined as the rate of synonymous substitutions per 
1Mbp synonymous site. The synonymous sites were defined as genome positions where 
synonymous mutations were likely to occur. For every nucleotide in protein-coding gene 
sequences, there is 13 chance for it to mutate into each of the rest nucleotides. Each nucle-
otide change that caused a synonymous mutation was counted as 13 bp. For each patient, 
the number of total synonymous mutations across all synonymous positions were calcu-
lated and the synonymous mutation rate was then calculated as

Patients who have 0 synonymous mutations were set to have 0.01 synonymous muta-
tions per mega base pair. The number of synonymous mutations that fell into the 
mutation category 1–6 was collected and scaled into fractions by the total number of 
synonymous mutations for each patient.

To show local mutation rate variation, chromosome 8 and chromosome 18 were 
selected and the mutation rate of 3 histology cohorts (Ovary-AdenoCA, Lung-SCC, 
Thy-AdenoCA) across the entire chromosome were examined. Mutation number in a 
1Mbp window sliding over each base pair was collected and averaged across the patient 
number in that cohort.

BCL‑2 mutation enrichment analysis

The BCL-2 synonymous mutations were extracted from PCAWG Lymph-BNHL maf 
files. In the permutation analysis, each mutation was randomly assigned to a BCL-2 

Synonymous mutation rate =
Number of total synonymous mutations

Mega base pairs of synonymous positions sequenced
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coding position in one permutation and the number of mutations that fall into the BH4 
motif was recorded. After 10,000 permutations, the observed BH4 mutation number 
and the permuted distribution were compared. The p-value is calculated as

Gene mRNA expression analysis and CERES score analysis

Gene mRNA expression data in patient tumor sample and normal sample(if exists) were 
collected. For DepMap cell line expression analysis, the cell line lineage that matches the 
corresponding histology cohort was first retrieved. The expression of the gene in the cell 
line lineage was then extracted and compared to all other cell lines. The Mann–Whitney 
U test was then performed to determine the significance of the difference in gene mRNA 
expression.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​023-​05521-8.

Additional file 1. Figure S1. MutSigCVsyn non-synonymous cancer driver landscape: Heatmap displaying 133 sig-
nificant nonsynonymous candidate genes (Benjamini-Hochberg FDR < 1× 10-2 ) identified by MutSigCVsyn. Candi-
date genes are divided into two columns and are ranked from most frequent across all histology cohorts (left top) to 
the least frequent ones (right bottom). Candidate genes are colored by negative logarithmic transformed FDR value 
from high (dark blue) to low (light yellow). Figure S2. Potential functional role of MutSigCVsyn candidate genes: (A) 
Boxplot of Breast-AdenoCA patient PURA mRNA expression level of normal samples and tumor samples. The P-value 
is calculated by the Mann-Whitney U test. (B) Boxplot of SIGLEC15 expression data from DepMap Pancreas exocrine 
cell lines and all other tested cell lines. The P-values are calculated by the Mann-Whitney U test. (C) CADD analysis of 
synonymous mutations in synonymous candidate genes against the ones in all other genes. The P-values are calcu-
lated by the Mann-Whitney U test. Figure S3. MutSigCVsyn identifies PCAWG-exclusive drivers in non-synonymous 
analysis: PCAWG-exclusive drivers are the cancer driver genes that were first identified by the PCAWG working group. 
There are in total 15 exclusive non-synonymous protein-coding drivers in PCAWG and they are shown in the table. 
The ‘gene’ column shows the gene name. ‘cds’ in the ’Element_type’ column shows that the coding region of the 
gene is identified as a cancer driver. ‘discovery_unique’ in the ‘category’ column shows that the gene is first identified 
by PCAWG. 6 of them (highlighted yellow) were identified by MutSigCVsyn in non-synonymous mutation analysis.

Additional file 2. Detailed methods and results of mutual exclusivity and co-occurrence analysis, CADD analysis, 
and gProfiler analysis.

Additional file 3. Table S1 Synonymous candidates v.s. Non-synonymous Drivers(PCAWG) mutual exclusivity 
analysis: Columns are cohort tested, synonymous candidate gene, PCAWG driver gene, number of patients have 
mutations in both genes, number of patients only have mutations in synonymous candidate gene, number of 
patients only have mutations in PCAWG driver gene, number of patients don’t have mutations in either of the genes, 
Fisher’s exact test statistics(odds ratio), Fisher’s exact test p-value(left-tail), Benjamini-Hochberg corrected q value. 
Table S2: Non-synonymous Drivers(PCAWG) vs. Non-synonymous Drivers(PCAWG) mutual exclusivity analysis: 
Columns are cohort tested, first PCAWG driver gene, second PCAWG driver gene, number of patients have mutations 
in both genes, number of patients only have mutations in first PCAWG driver gene, number of patients only have 
mutations in second PCAWG driver gene, number of patients don’t have mutations in either of the genes, Fisher’s 
exact test statistics(odds ratio), Fisher’s exact test p-value(left-tail), Benjamini-Hochberg corrected q value. Table S3: 
Synonymous candidates vs. Non-synonymous Drivers(PCAWG) co-occurrence analysis: Columns are cohort tested, 
synonymous candidate gene, PCAWG driver gene, number of patients have mutations in both genes, number of 
patients only have mutations in a synonymous candidate gene, number of patients only have mutations in PCAWG 
driver gene, number of patients don’t have mutations in either of the genes, Fisher’s exact test statistics (odds ratio), 
Fisher’s exact test p-value(right-tail), Benjamini-Hochberg corrected q value. Table S4: Cander drivers identified in 
Tokheim et al. using different algorithms: Columns A-I are driver genes detected by Tokheim et al. with different algo-
rithms. Column J is candidate genes identified by MutSigCVsyn. For each column, genes that are overlapped with 
MutSigCVsyn candidates are highlighted in red. Table S5: BCL2 synonymous mutations in PCAWG & overlap with 
synMICdb. Table S6: gProfiler analysis on MutSigCVsyn candidate genes: output of gProfiler analysis result using all 
synonymous candidate genes. Table S7: Synonymous candidate genes and FDR q values identified by MutSigCVsyn 
in PCAWG: Detailed q-value data for figure 3C heatmap.

p-value =
Number of permutations (mutation number > observed mutation number)

Number of total permutation
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