
G‑Aligner: a graph‑based feature alignment
method for untargeted LC–MS‑based
metabolomics
Ruimin Wang1,2,3, Miaoshan Lu2,3,4, Shaowei An1,3,5, Jinyin Wang3,4,5 and Changbin Yu3* 

Abstract 

Background:  Liquid chromatography–mass spectrometry is widely used in untar-
geted metabolomics for composition profiling. In multi-run analysis scenarios, features
of each run are aligned into consensus features by feature alignment algorithms
to observe the intensity variations across runs. However, most of the existing feature
alignment methods focus more on accurate retention time correction, while underes-
timating the importance of feature matching. None of the existing methods can com-
prehensively consider feature correspondences among all runs and achieve optimal
matching.

Results:  To comprehensively analyze feature correspondences among runs, we pro-
pose G-Aligner, a graph-based feature alignment method for untargeted LC–MS data.
In the feature matching stage, G-Aligner treats features and potential correspondences
as nodes and edges in a multipartite graph, considers the multi-run feature matching
problem an unbalanced multidimensional assignment problem, and provides three
combinatorial optimization algorithms to find optimal matching solutions. In compari-
son with the feature alignment methods in OpenMS, MZmine2 and XCMS on three
public metabolomics benchmark datasets, G-Aligner achieved the best feature
alignment performance on all the three datasets with up to 9.8% and 26.6% increase
in accurately aligned features and analytes, and helped all comparison software obtain
more accurate results on their self-extracted features by integrating G-Aligner to their
analysis workflow. G-Aligner is open-source and freely available at https://​github.​com/​
CSi-​Studio/​G-​Align​er under a permissive license. Benchmark datasets, manual annota-
tion results, evaluation methods and results are available at https://​doi.​org/​10.​5281/​
zenodo.​83130​34

Conclusions:  In this study, we proposed G-Aligner to improve feature matching accu-
racy for untargeted metabolomics LC–MS data. G-Aligner comprehensively considered
potential feature correspondences between all runs, converting the feature matching
problem as a multidimensional assignment problem (MAP). In evaluations on three
public metabolomics benchmark datasets, G-Aligner achieved the highest alignment
accuracy on manual annotated and popular software extracted features, proving
the effectiveness and robustness of the algorithm.

Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Wang et al. BMC Bioinformatics (2023) 24:431
https://doi.org/10.1186/s12859-023-05525-4

BMC Bioinformatics

*Correspondence:
yu_lab@sdfmu.edu.cn

1 Fudan University,
Shanghai 200433, Shanghai,
China
2 School of Engineering, Westlake
University, Hangzhou 310030,
Zhejiang, China
3 Shandong First Medical
University and Shandong
Academy of Medical Sciences,
Jinan 250021, Shandong, China
4 Zhejiang University,
Hangzhou 310058, Zhejiang,
China
5 School of Life Sciences,
Westlake University,
Hangzhou 310030, Zhejiang,
China

https://github.com/CSi-Studio/G-Aligner
https://github.com/CSi-Studio/G-Aligner
https://doi.org/10.5281/zenodo.8313034
https://doi.org/10.5281/zenodo.8313034
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05525-4&domain=pdf

Page 2 of 17Wang et al. BMC Bioinformatics (2023) 24:431

Keywords:  LC–MS, Feature alignment, Multidimensional assignment problem,
Combinatorial optimization

Background
Liquid chromatography–mass spectrometry (LC–MS) is widely used in the discovery
of unknown compounds in untargeted metabolomics [1, 2] In an analysis of multiple
LC–MS runs, features of each run are first detected and quantified from raw data by
feature extraction algorithms, and features of multiple related LC–MS runs are then
combined into one consensus result map by feature alignment algorithms [3]. The
accuracy of feature alignment directly determines the rationality and credibility of
subsequent statistical and biological analysis. However, features have nonlinear reten-
tion time (RT) drifts between runs due to unavoidable slight changes in chromato-
gram conditions [4], such as column temperature, column aging and contamination,
which greatly increases the difficulty of aligning consensus features.

To perform accurate feature alignment, researchers have proposed dozens of meth-
ods in the last decades [3, 5]. The feature alignment methods can be divided into two
categories according to the alignment steps, retention time alignment and feature
matching. Retention time alignment methods, such as DTW [6], PTW [7] and GTW
[8], align retention times of multiple runs to a common space by fitting linear or non-
linear warping functions between runs to correct retention shifts and make features
of the same analyte have closer elution time. Feature matching methods group fea-
tures of different runs to consensus feature groups by distances in m/z and RT dimen-
sions. Each consensus feature group represents the predicted corresponding features
of the same analyte.

Most existing methods rely heavily on retention time alignment and only use naive
nearest neighbor search in feature matching. The representative one is MZmine2 [9].
After aligning retention time with RANSAC [10], MZmine2 selects a reference run
and performs pairwise nearest matching to match features of other runs to the refer-
ence. However, retention time alignment methods can only describe the drifting trend
between runs but cannot accurately correct the retention time of each feature. The
retention time of analytes has different drift trends and offsets according to different
physical and chemical properties, and elution order may swap when features of different
analytes are sufficiently close. To perform more accurate feature matching, LWBmatch
[11, 12] considers feature matching between runs as an unbalanced weighted bipartite
matching problem and solves the multi-run feature alignment problem by pairwise fea-
ture matching. To solve the feature matching problem more comprehensively, OpenMS
[13] and XCMS [14] consider the multi-run feature matching problem a clustering prob-
lem. OpenMS finds a cluster of the nearest features for each feature among all runs and
then chooses the tightest cluster iteratively to get the feature matching results. XCMS
first separates features of all runs by m/z bins, then calculates the feature density curve
in RT dimension for each bin, and groups the features according to the RT ranges of
peaks in the density curve. However, the OpenMS method uses centralized nearest
matching, which is prone to fall into local optimum, and the XCMS grouping is only
based on dimensionality reduced RT distribution of features, which leads to lower accu-
racy and limited performance on feature matchings of close analytes.

Page 3 of 17Wang et al. BMC Bioinformatics (2023) 24:431 	

To improve feature matching performance, in this paper, we propose G-Aligner
(Fig. 1), a graph-based feature alignment method for untargeted LC–MS-based metabo-
lomics. G-Aligner is the first method enabling non-centric comprehensive analysis of all
potential feature correspondences among multiple LC–MS runs. In the retention time
alignment stage, G-Aligner uses the existing RANSAC [10] and OBI-Warp [15] algo-
rithms to perform stable coarse registration between runs. In the feature matching stage,
G-Aligner formats the potential correspondences between all features as a multipartite
graph, and solves the multi-run feature matching problem as an unbalanced multidi-
mensional assignment problem [16] with three combinatorial optimization methods.
In comparison with feature alignment methods in OpenMS, MZmine2 and XCMS,
G-Aligner showed significant improvements in feature alignment accuracy and helped
all comparison software obtain more accurate results by integrating G-Aligner into their
workflow.

Methods
Evaluation datasets

We used the two public metabolomics benchmark datasets in [17], named as the Tri-
pleTOF 6600 dataset and the QE HF dataset. Both datasets were acquired with the full-
scan method. The TripleTOF 6600 dataset was acquired by AB SCIEX TripleTOF 6600
interfaced with Shimazu L30A UPLC, and the QE HF dataset was acquired by Thermo
Q Exactive HF with Dionex UltiMate 3000 HPLC. A pair of standard mixtures (SA, SB)
were prepared for both datasets, which were composed of seven differential groups of
drugs and metabolites (Gd1, Gd2, Gd3, Gm, Gd4, Gd5, Gd6) prepared at different rela-
tive concentration ratios of (1/16, 1/4, 1/2, 1/1, 2/1, 4/1, 16/1) in SB: SA. The TripleTOF
6600 dataset had four replicates for each mixture, with a total of eight runs. The QE HF
dataset had five replicates for each mixture, with a total of ten runs. Benchmark libraries
were provided along with the datasets, containing 970 and 836 analytes in the TripleTOF
6600 and the QE HF datasets. We further screened the benchmark libraries to remove

Retention Time Alignment

RANSAC

OBI-Warp

Feature Matching

Feature List Input

Graph building Split to connected subgraphs

RT coarse alignment

Gurobi Solver

Greedy Solver

Combinatorial optimization

VLSNS Solver

Optimal solution

RT

m/z

RT

m/z

Raw feature distribution Aligned feature distribution

Sample 1

Sample 2

Sample 3

…

Fig. 1  The workflow of G-Aligner. G-Aligner performs feature alignment in three main steps: feature list
input, retention time alignment and feature matching. After loading features of multiple samples, G-Aligner
first roughly aligns the retention time of features between samples. Then, in the feature matching step,
G-Aligner builds multipartite graphs to represent potential matching relationship among features, and utilizes
combinatorial optimization to obtain optimal matchings

Page 4 of 17Wang et al. BMC Bioinformatics (2023) 24:431

duplicates and obtained 924 and 835 analytes, respectively. In both benchmark datasets,
the retention times of mixed compounds have different drift trends due to large differ-
ences in physical and chemical properties (Additional file 1: Fig. S1). Even after retention
time alignment across runs, the retention times of analyte features still had wide shifts,
which increased the difficulty of feature alignment and made the dataset more suitable
for feature alignment evaluation.

Furthermore, to evaluate the performance of feature alignment methods on a bigger
dataset, we used the dataset published in Metabolights MTBLS562 [18]. The MTBLS562
dataset was acquired with DDA method and acquired by AB SCIEX TripleTOF 6600
with Agilent 1290 UHPLC system. The MTBLS562 dataset contains 40 LC–MS runs of
40 mice (C57BL/6J strain, SPF level) at 5 different ages (4, 12, 24, 32 to 52 weeks, n=8
in each group). Benchmark library was provided along with the dataset, containing 245
analytes. We further screened the benchmark library to remove duplicates and noises
and obtained 207 analytes. Some analytes in the library have low abundance in samples
with feature intensity heights on the order of hundreds.

Input preparation

G-Aligner requires users to provide a list of extracted features for each LC–MS run.
G-Aligner supports feature extraction results in csv and tsv formats, which can be
exported from untargeted metabolomics software. As a general method, G-Aligner
only requires users to provide basic feature information, including m/z, retention time
and intensity. In case of using profile-based retention time alignment methods that
require raw files (such as OBI-Warp), users need to convert raw files to mzML format by
MSConvert [19] or aird format by AirdPro [20] for G-Aligner analysis.

Retention time alignment

To correct retention time drift and reduce the difficulty of subsequent feature match-
ing, G-Aligner provides a feature-based retention time alignment method RANSAC
(RANdom SAmple Consensus) and a profile-based method OBI-Warp (Ordered Bijec-
tive Interpolated Warping). RANSAC is an iterative method for fitting a model to data
and is robust to outliers. In each iteration, the RANSAC method selects a random subset
of points from the input data and fits a linear or nonlinear model to these points. The
remaining points are then classified into inliers or outliers based on their consistency
with the model. Among the iterations, the best-fitting model with the largest number
of inliers is selected as the alignment result. OBI-Warp is an extension of dynamic time
warping (DTW) for nonlinear retention time warping. For pairs of runs that need to
be aligned, OBI-Warp first uses DTW to analyze the spectral similarity and obtain the
optimal bijective warping function by dynamic programming. OBI-Warp combines the
warping function output from DTW with piecewise cubic Hermitian interpolation and
produces smooth warped functions. G-Aligner implemented OBI-Warp in Python for
the first time and separated it as an independent installation package for importing by
other Python-based software. These two algorithms were also applied in MZmine2 and
XCMS, respectively, and their effectiveness and stability have been proven in long-term
use. G-Aligner uses linear RANSAC as the default retention time alignment algorithm
because it does not require additional raw file import and is faster and more stable.

Page 5 of 17Wang et al. BMC Bioinformatics (2023) 24:431 	

Feature matching

Graph building

Instead of matching features iteratively to a real or virtual reference run, G-Aligner
comprehensively considers potential feature correspondences between all LC–MS
runs and performs combinatorial optimization to obtain optimal solutions. After
retention time coarse registration, the corresponding features of each analyte in dif-
ferent runs are relatively close in m/z and retention time coordinates. To find poten-
tial correspondences among all runs, G-Aligner superimposes the retention time
aligned features in all runs on the same coordinate system consisting of m/z and
retention time dimensions, searches neighborhoods for each feature according to the
m/z and retention time tolerances set by the user, and builds an undirected relation
graph containing features of all runs. Each node in the graph represents a feature, and
each edge represents a potential feature correspondence between neighbor features.

Graph splitting

After graph building, spatially close feature nodes are connected into many con-
nected components, which are maximal connected subgraphs of the relation graph. A
connected component is the largest set of potentially corresponding features for each
contained analyte and can be treated as the smallest computing unit for combinato-
rial optimization. G-Aligner splits the relation graph into connected components and
performs combinatorial optimization on each connected component to divide and
conquer the feature matching problem. The edge weights in each connected compo-
nent are calculated by the weighted sum of normalized differences in m/z, retention
time and intensity. The m/z and retention time differences are normalized by user-
specified m/z and retention time tolerances, and the intensity difference is the devia-
tion in intensity normalized by the largest feature intensity in the same connected
component in each run. The edge weight is calculated as Eq. 1 and Eq. 2:

Assignment solving

In graph theory, a multipartite graph is a type of graph in which the nodes can be
divided into multiple independent sets. Each set of nodes is called a partite, and each
edge connects a pair of nodes from different partites. After graph splitting, each con-
nected component is a multipartite graph where edges do not connect feature nodes
of the same run but different runs. To find the optimal correspondence solution,
G-Aligner treats the feature matching problem on the multipartite subgraph as an
unbalanced multidimensional assignment problem (MAP), in which the feature num-
ber differs in partites. MAP is a fundamental combinatorial optimization problem to

(1)normed area =
area

maximum area in the partite

(2)

edge weight =
1

3
×

|�m/z|

m/z tolerance
+

|�RT |

RT tolerance
+ 1−

min(normed area)

max(normed area)

Page 6 of 17Wang et al. BMC Bioinformatics (2023) 24:431

find optimal matchings in a weighted multipartite graph, in which the sum of weights
of the edges is minimum.

In G-Aligner, we comprehensively considered the neighborhood distribution of features
in all runs and defined the unbalanced MAP of the feature matching as follows. For a mul-
tipartite graph G which contained feature nodes F from M runs (Eq. 3), let F(k) represent
the feature set of the k-th LC–MS run, and f kik represent the ik-th feature node in the k-
th LC–MS run (Eq. 4). F(k) contains nk deduplicated feature nodes {f k0 , . . . , f

k
nk−1} and a

placeholder node f knk . We define a linkage (M-partite matching) of features as Li1...iM (Eq. 5),
which contains one feature node from each run. Each linkage represents a possible combi-
nation of related features of an analyte. When linkage Li1...iM contains a placeholder node
f knk , it means no feature from the k-th run was matched in the linkage. Accordingly, we
recorded the empty linkage containing placeholder nodes of all runs as Ln1...nM . The feasible
solutions Γ of MAP should satisfy the following constraints (Eq. 6, 7, 8, 9). Equation 6 states
that each solution γ contains p matchings, where p is the max node number (containing
placeholder node) in each feature set. Equation 7 states that each matching uniquely corre-
sponds to a distinct linkage. Equation 8 states that different matchings in the same solution
do not contain shared non-placeholder feature nodes. Equation 9 states that each feasible
solution contains all feature nodes. A figure of feature nodes, linkages and matchings in a
feasible solution is shown in Fig. 2.

(3)F ={F(1), . . . , F(M)}

(4)F(k) =
{

f kik | ik = 0, . . . , nk

}

, for k = 1, . . . ,M

(5)Li1...iM =

{

f 1i1 , . . . , f
M
iM

}

, for ik = 0, . . . , nk , k = 1, . . . ,M

(6)γ =
{

γ1, . . . , γp
}

, p = max (n1, . . . , nM)+ 1

(7)∀γj : γj =Li1...iM∃!tuple(i1, . . . , iM)

Fig. 2  Visual representation of feature nodes, linkages and matchings in a feasible solution

Page 7 of 17Wang et al. BMC Bioinformatics (2023) 24:431 	

In order to measure the quality of solutions, we calculated the cost of each solution and
selected the one with the lowest cost as the optimal solution. Let Cγ represents the cost of
solution γ , and Cγi represents the cost of matching γi (Eq. 10). The cost of a solution is the
total cost of all matchings contained. Cγi consists of distribution cost Cdistribution , connectiv-
ity cost Cconnectivity , missing node cost Cmissing and full match bonus Bfull_match (Eq. 11).

The distribution cost in a matching describes the dispersion of matched nodes. For
matching γi , we first extract the subgraph Gγi from the multipartite graph G, which contains
all feature nodes and interconnected edges in γi . Then, we calculated the minimum span-
ning tree (MST) of Gγi to find the minimum total weight of the edge subsets connecting all
nodes, and used the total weight as the distribution cost Cdistribution for matching γi (Eq. 12).
In matchings with placeholder nodes and far unconnected clusters, the number of edges
in MST is lower than expected M − 1 , resulting in undesired lower distribution cost and
affecting matching priorities. Hence, we introduce the missing node cost and the connec-
tivity cost to penalize the missing edges (Eq. 13, 14). In matchings with placeholder nodes,
the edge number reduction equals the number of placeholder nodes. We calculate the miss-
ing node cost by multiplying the placeholder node number Np by a penalty factor wp . In far
matchings, feature nodes are far apart and form multiple clusters, which results in missing
edges between clusters. The missed number of edges is equal to the number of connected
subgraphs in Gγi . Similarly, we calculate the connectivity cost by multiplying the number of
connected subgraphs Nc by a penalty factor wc . Besides, we believe matchings with more
feature nodes have greater matching priority. Appropriate incentives should be given to full
matchings when competing for nodes with others. For connected full matchings, we intro-
duce a bonus factor b and subtract it from the matching cost (Eq. 15). All factors are opti-
mized as built-in parameters and do not require user modification.

(8)γi ∩ γj ⊂ Ln1...nM , for i �= j

(9)F = U
p
j=1γj

(10)Cγ =

p
∑

j=1

Cγj

(11)Cγj =Cdistribution + Cconnectivity + Cmissing − Bfull_match

(12)Cdistribution =
∑

e∈E(T)

W (e),T = MST
(

Gγi

)

(13)Cconnectivity =wc ∗ Nc

(14)Cmissing =wp ∗ Np

(15)Bfull_match =b

Page 8 of 17Wang et al. BMC Bioinformatics (2023) 24:431

However, the multidimensional assignment problem is a well-known NP-Hard problem
at three or higher dimensions. There is no known algorithm for finding the optimal solu-
tion in polynomial time. To solve MAP efficiently, G-Aligner proposed three solvers: the
Gurobi solver, the Greedy solver and the VLSNS solver.

The Gurobi solver converts the multidimensional assignment problem to an integer
linear programming problem and uses the state-of-the-art commercial Gurobi opti-
mizer to find the global optimal solution. By inputting matching costs, feasible solution
rules and optimization objectives into the model, the Gurobi optimizer can efficiently
calculate optimization results, much faster than other linear programming solvers such
as the OR-Tools developed by Google. The pseudocode of the Gurobi solver is detailed
in Additional file 1: Algorithm S1.

The Greedy solver pays more attention to the quality of a single matching than the
solution. In each iteration, the Greedy solver finds the minimum cost matching, adds
the matching to the solution, and sets the corresponding costs of matched features to
infinite to avoid generating infeasible solutions. In this way, the Greedy solver does not
sacrifice the best matchings for a lower cost of solutions. The pseudocode of the Greedy
solver is detailed in Additional file 1: Algorithm S2.

However, the Gurobi and Greedy solver must compute the matching costs for all
permutations before running. For faster calculations, we propose the VLSNS solver
to solve the unbalanced MAPs, which calculates costs as needed during optimization.
The VLSNS solver used a recent metaheuristic approach, known as the very large-scale
neighborhood search (VLSNS) [21], which finds near-optimal solutions to the MAP
by iteratively transforming the current solution into a better solution in the neighbor-
hood. The VLSNS solver converts the multidimensional assignment problem to linear
(two-dimensional) assignment problems (LAP) between each partite and the others.
In each iteration, the VLSNS solver finds an optimal permutation for each partite and
updates the solution permutation in the best-improved partite until no lower cost can be
obtained. The pseudocode of the VLSNS solver is detailed in Additional file 1: Algorithm
S3.

Since the solution space is not fully searched, VLSNS is not guaranteed to obtain
global optimal results and is prone to fall into local optimum. As compensation, multiple
start solutions are provided to the solver for parallel optimization, and the optimized
solution with the lowest cost is used as the final result. We provide two solution ini-
tialization methods: the MSR method (Additional file 1: Algorithm S4.1) and the MSG
method (Additional file 1: Algorithm S4.2). The MSR (multi-solution random) method
generates multiple solutions at random. The MSG (multi-solution grid) method gener-
ates random solutions first and then equidistantly rolls the permutation order in each
partite into multiple grid solutions for each random solution. By adopting the multi-
start strategy, the VLSNS solver ensures the computation accuracy and is able to obtain
near global optimal results while having a faster calculation speed.

Big graph acceleration

In cases of dense feature distribution and insufficient accuracy of retention time align-
ment, some connected components may contain a large number of nodes. As the num-
ber of nodes increases, the computing time increases polynomially. For efficient analysis

Page 9 of 17Wang et al. BMC Bioinformatics (2023) 24:431 	

of big graphs, we proposed a graph segmentation method to divide big graphs into mul-
tiple small subgraphs, and a result merging method to combine solutions of small graphs
to a final result. The graph splitting method iteratively divides the graph into two sub-
graphs by LC–MS run according to the preset node number limit. Nodes in runs with
adjacent acquisition time are segmented into the same subgraphs, and the total num-
ber of nodes in the two subgraphs is similar. After splitting, G-Aligner performs the
optimization methods described above to obtain optimal solutions for each subgraph.
Then, G-Aligner assembles the solutions of multiple subgraphs with the result merging
method. The result merging method first computes the minimum weight of the edges
between each pair of matchings as their distance. Then, matchings are iteratively merged
in ascending order of distance when they do not contain nodes from the same LC–MS
run.

Besides, G-Aligner can be recursively executed to meet diverse alignment require-
ments. By default, G-Aligner scans the directory of the feature extraction result folder
provided by the user and recursively aligns the results in each subfolder from bottom
to top according to the folder structure. For example, in the scenario where each sam-
ple has multiple technical replicates, users can put all replicates of each sample in the
same subfolder, so that G-Aligner will first align the technical replicates of each sample,
and then align samples according to the mean feature m/z and retention time among
replicates. Optionally, this recursive align method provides more sample relation infor-
mation for the algorithm, facilitating better results and faster analysis in large cohort
alignments.

Results
Evaluation workflow

We compared G-Aligner with the feature alignment methods in three popular untar-
geted metabolomics software: MZmine2 (version 2.53), OpenMS (version 2.7.0), and
XCMS (version 3.18.0), as representatives of local nearest matching of paired runs,
multi-run centric matching and multi-run non-centric matching respectively, on the
TripleTOF 6600 dataset, the QE HF dataset and the MTBLS562 dataset. Moreover, since
we had problems running LWBmatch, we implemented a local bipartite solver for com-
parison, as a representative of bipartite pairwise matching methods. After selecting the
LC–MS run with the most features as a reference run, the local bipartite solver matched
other LC–MS runs iteratively in descending order of feature numbers to the reference
run. The local bipartite solver treats feature matching as a weighted bipartite assignment
problem and uses a modified Jonker-Volgenant algorithm [22] to find the maximum car-
dinality matching with a minimum sum of matching distances.

In evaluations of G-Aligner and other methods, we first manually annotated features
of library analytes for each dataset and conducted a comprehensive assessment of the
feature alignment algorithms on the same manually annotated feature set to exclude dif-
ferences in feature extraction. Then, we integrated G-Aligner into the workflow of each
software to evaluate the improvement on their self-extracted features. In parameter set-
tings, we first manually selected a set of reasonable parameters based on the distribu-
tion of the data, and then manually fine-tuned them to obtain the best parameters to
achieve the highest detection rate and alignment performance of features corresponding

Page 10 of 17Wang et al. BMC Bioinformatics (2023) 24:431

to the compounds in the library. The fine-tuned parameters of compared software were
summarized in Additional file 1: Tables S1, S2 and S3. Notably, the differences in feature
extraction parameter settings may lead to different distributions on extracted features
and result in different difficulties in feature alignment. However, the parameter settings
for feature extraction are less important to the evaluation results, we only need to evalu-
ate G-Aligner and other methods on the same set of feature extraction results under the
same alignment difficulty.

Evaluation on manually annotated features

To perform a comprehensive evaluation for feature alignment algorithms, all algorithms
should be evaluated on the same set of features to control the variable in feature dis-
tribution. To create a feature dataset with standard alignment results for each dataset,
we extracted and annotated features of library analytes with the MetaPro [23] batch
inspection tool. For each analyte in library, we extracted features close to the m/z and
RT coordinates in each run, in which at most one feature was manually annotated as
the corresponding feature. All of the extracted nearby features were added to the fea-
ture datasets. Each feature was represented by its apex m/z (the apex m/z of the spectral
peak at apex RT), apex RT and integrated area. The annotation procedure was detailed
in Additional file 1: Appendix S1.

We utilized the annotated results as references to evaluate the accuracy of feature
alignment algorithms. When importing the manually annotated features into the com-
parison software, we directly accessed the source code of the compared software in
Python, Java, and R environments, and assembled or re-extracted the features into sup-
ported memory objects, since all comparison software lacked external feature import
capabilities or only supported specific feature formats. The m/z and retention time
ranges of each feature used in re-extraction were kept the same as MetaPro extracted
features, which ensured the consistency of evaluation datasets.

To benchmark the performance of the feature alignment, we compare the predicted
matchings with the manual annotation results (Fig. 3). For each analyte, the predicted
matching with the most common features with the annotated matching was considered
its corresponding matching, while the contained features were considered its corre-
sponding features. The corresponding feature of each analyte in each sample may differ
between the predicted and annotated matchings. For each analyte, the alignment in a
sample was considered true positive (TP) when the corresponding feature was present
in both aligned and annotated results, false positive (FP) when the corresponding feature
was only present in the aligned results, true negative (TN) when there was no corre-
sponding feature in the aligned and annotated results, and false negative (FN) when the
corresponding feature was only present in the annotated results. Then, we counted the
feature alignment status of all compared methods and calculated the precision (P), recall
(R), F1 score (F), feature accuracy (F_ACC), and analyte accuracy (A_ACC) accordingly
on each dataset.

In evaluation of the feature alignment accuracy, we compared G-Aligner with
other methods on the manually annotated features of each dataset and summarized
the results in Table 1, 2, 3. The combinatorial optimization methods in G-Aligner
outperformed other comparison methods and achieved the best performance on all

Page 11 of 17Wang et al. BMC Bioinformatics (2023) 24:431 	

datasets with the most TP and FP and the least FP and FN, proving the necessity
of multi-run analysis. Among the combinatorial optimization solvers, the Greedy
solver obtained less accurate results than the Gurobi solver and VLSNS solver. The
Greedy solver focused only on local optimal matchings and ignored correspond-
ing suboptimal matches in the greedy search, which illustrates the importance of
global optimization. The Gurobi solver and VLSNS solver were too slow and were
skipped in evaluations of the MTBLS562 dataset. G-Aligner achieved the best result
on all datasets, with F1 scores at 0.999, 0.998 and 1.000, feature accuracy at 0.999,
0.997 and 0.999, and analyte accuracy at 0.990, 0.989 and 0.981, respectively, in the
TripleTOF 6600, QE HF and MTBLS562 dataset. Compared to the best-performed
OpenMS method, G-Aligner achieved 1.1%, 1.9% and 0.6% higher feature accuracy
and 5.3%, 8.7% and 14.0% higher analyte accuracy, respectively.

12 40 11 31 - - 17

12 40 13 31 29 - -

TP TP FP TP FP TN FN

Annotated matching

Predicted matching

Correctness

1 2 3 4 5 6 7

Fig. 3  Definitions of evaluation metrics. In the example matching of 7 samples, numbers in matching vectors
are the index numbers of matched features in the feature lists of corresponding samples

Table 1  Evaluation results on manually annotated feature sets of the TripleTOF 6600dataset

The results with the highest performance in the comparison are indicated in bold

TP FP TN FN P R F F_ACC​ A_ACC​

MZmine2 RANSAC 7163 77 0 152 0.989 0.979 0.984 0.969 0.883

OpenMS QT 7303 64 0 25 0.991 0.997 0.994 0.988 0.937

XCMS Group 6916 228 0 248 0.968 0.965 0.967 0.936 0.837

XCMS OBI-Warp 6797 253 0 342 0.964 0.952 0.958 0.920 0.777

Local bipartite 7150 75 0 167 0.990 0.977 0.983 0.967 0.918

G-Aligner Greedy 7381 4 0 7 0.999 0.999 0.999 0.999 0.990
G-Aligner Gurobi 7382 3 0 7 1.000 0.999 0.999 0.999 0.990
G-Aligner VLSNS_MSR 7382 3 0 7 1.000 0.999 0.999 0.999 0.990
G-Aligner VLSNS_MSG 7382 3 0 7 1.000 0.999 0.999 0.999 0.990

Page 12 of 17Wang et al. BMC Bioinformatics (2023) 24:431

Evaluation on software self‑extracted features

Since the distribution of all untargeted extracted features was more complicated than
the manually annotated feature datasets, we further evaluated the performance of
G-Aligner on full untargeted extracted features. Considering that there may be implicit
correlations between the alignment methods and their analysis pipeline, we integrated
G-Aligner into the workflow of each software and compared G-Aligner with their origi-
nal alignment methods in the native environment. To obtain benchmarks for alignment,
we used the manually annotated results to infer the correct alignment of untargeted
extracted features for each software. Since the feature of each analyte corresponds to
the same LC–MS signal in each file, the corresponding features extracted by different
software should be extremely near. We matched the untargeted extracted features to the
manually annotated features with m/z and retention time tolerances at (0.01Da, 0.1min)
on the TripleTOF 6600 dataset, (0.005Da, 0.1min) on the QE HF dataset and (0.015Da,
0.1min) on the MTBLS562 dataset. If more than one feature was matched within the
tolerances, the closest was selected as the inferred corresponding feature. The distance
between features was the squared sum of m/z and retention time deviations normal-
ized by the inverse of the tolerance. To benchmark the feature alignment performance
on untargeted extracted features, we used the same evaluation metrics as on manually
annotated features by matching alignment results to inferred annotation results. For
each software, we compared G-Aligner with the native feature alignment methods on

Table 2  Evaluation results on manually annotated feature sets of the QE HF dataset

The results with the highest performance in the comparison are indicated in bold

TP FP TN FN P R F F_ACC​ A_ACC​

MZmine2 RANSAC 7982 103 0 265 0.987 0.968 0.977 0.956 0.831

OpenMS 8167 146 0 37 0.982 0.995 0.989 0.978 0.902

XCMS Group 6812 629 0 909 0.915 0.882 0.899 0.816 0.715

XCMS OBI-Warp 6749 677 0 924 0.909 0.880 0.894 0.808 0.667

Local bipartite 8019 78 0 253 0.990 0.969 0.980 0.960 0.884

G-Aligner Greedy 8320 12 0 18 0.999 0.998 0.998 0.996 0.989
G-Aligner Gurobi 8323 7 0 20 0.999 0.998 0.998 0.997 0.989
G-Aligner VLSNS_MSR 8323 7 0 20 0.999 0.998 0.998 0.997 0.989
G-Aligner VLSNS_MSG 8323 7 0 20 0.999 0.998 0.998 0.997 0.989

Table 3  Evaluation results on manually annotated feature sets of the MTBLS562 dataset

The results with the highest performance in the comparison are indicated in bold

TP FP TN FN P R F F_ACC​ A_ACC​

MZmine2 RANSAC 7822 25 0 433 0.997 0.948 0.972 0.945 0.744

OpenMS 8221 34 0 25 0.996 0.997 0.996 0.993 0.841

XCMS Group 6115 847 0 1318 0.878 0.823 0.850 0.739 0.145

XCMS OBI-Warp 6230 868 0 1182 0.878 0.841 0.859 0.752 0.169

Local bipartite 8173 1 0 106 1.000 0.987 0.993 0.987 0.937

G-Aligner Greedy 8269 3 0 8 1.000 0.999 0.999 0.999 0.976

G-Aligner Gurobi 8272 3 0 5 1.000 0.999 1.000 0.999 0.981
G-Aligner VLSNS_MSR 8272 3 0 5 1.000 0.999 1.000 0.999 0.981
G-Aligner VLSNS_MSG 8272 3 0 5 1.000 0.999 1.000 0.999 0.981

Page 13 of 17Wang et al. BMC Bioinformatics (2023) 24:431 	

the alignment performance of all analytes on all datasets, including match status, preci-
sion, recall, F1 score, feature accuracy and analyte accuracy.

In evaluation results on untargeted extracted features of the three software (Tables 4,
5, 6), all evaluation methods achieved less accurate results than on the manually anno-
tated features, which was mainly due to the increase in complexity in feature distribu-
tions. Different from manually annotated data, false detections and missing detections
always happens in untargeted feature extraction, causing more interference to the align-
ment algorithms. In the evaluation of software self-extracted features, the combinato-
rial optimization methods in G-Aligner achieved obviously better performance than
local pairwise and native methods of all software on all datasets. G-Aligner proved its
robustness on untargted extracted features of the three software with different qualities;
OpenMS had the most missing features, MZmine2 had fewer, and XCMS had the least.
The Gurobi and VLSNS solver achieved the best performance in most feature sets, but
was less accurate than the Greedy solver on the OpenMS features of the TripleTOF 6600
dataset. Although the Greedy solver only performs local optimization and always infe-
rior to the Gurobi and VLSNS solver in most cases, the strategy of finding local opti-
mum matching could be less disturbed for feature sets with insufficient quality. In most
evaluations on the complex distributed untargted extracted features, the VLSNS solver
with the MSG solution initialization method showed higher accuracy than with the MSR
method, which indicated that the MSR method might generate less dispersed initial
solutions compared due to excessive dependence on randomness, and it was more prone
to lead the VLSNS solver into suboptimal solutions. G-Aligner achieved the best perfor-
mance on untargeted extracted features on all datasets, with 1.7%, 9.0% and 0.5% higher
feature accuracy, 5.8%, 26.6% and 7.7% higher analyte accuracy than MZmine2, 2.4%,

Table 4  Evaluation results on software self-extracted features on the TripleTOF 6600 dataset

The results with the highest performance in the comparison are indicated in bold

TP FP TN FN P R F F_ACC​ A_ACC​

MZmine2 RANSAC 6716 129 422 125 0.981 0.982 0.981 0.966 0.869

Local bipartite 6688 122 413 169 0.982 0.975 0.979 0.961 0.882

G-Aligner Greedy 6847 98 403 44 0.986 0.994 0.990 0.981 0.925

G-Aligner Gurobi 6859 84 403 46 0.988 0.993 0.991 0.982 0.926

G-Aligner VLSNS_MSR 6846 89 403 54 0.987 0.992 0.990 0.981 0.922

G-Aligner VLSNS_MSG 6862 81 403 46 0.988 0.993 0.991 0.983 0.927
OpenMS QT 5771 336 1204 81 0.945 0.986 0.965 0.944 0.741

Local bipartite 5355 338 1248 451 0.941 0.922 0.931 0.893 0.697

G-Aligner Greedy 5922 140 1230 100 0.977 0.983 0.980 0.968 0.874

G-Aligner Gurobi 5910 152 1233 97 0.975 0.984 0.979 0.966 0.876
G-Aligner VLSNS_MSR 5906 156 1233 97 0.974 0.984 0.979 0.966 0.873

G-Aligner VLSNS_MSG 5910 152 1233 97 0.975 0.984 0.979 0.966 0.876
XCMS Group 6567 251 38 536 0.963 0.925 0.943 0.894 0.712

XCMS OBI-Warp 6173 293 39 887 0.955 0.874 0.913 0.840 0.600

Local bipartite 6939 152 51 250 0.979 0.965 0.972 0.946 0.866

G-Aligner Greedy 7281 52 47 12 0.993 0.998 0.996 0.991 0.956

G-Aligner Gurobi 7283 47 47 15 0.994 0.998 0.996 0.992 0.957
G-Aligner VLSNS_MSR 7270 51 47 24 0.993 0.997 0.995 0.990 0.951

G-Aligner VLSNS_MSG 7283 47 47 15 0.994 0.998 0.996 0.992 0.957

Page 14 of 17Wang et al. BMC Bioinformatics (2023) 24:431

1.5% and 1.7% higher feature accuracy, 13.5%, 10.6% and 18.4% higher analyte accuracy
than OpenMS, 9.8%, 2.6% and 9.4% higher feature accuracy, 24.5%, 11.4% and 24.7%
higher analyte accuracy than XCMS, respectively on the TripleTOF 6600, QE HF and
MTBLS562 dataset.

Analysis time

We measured the time costs of G-Aligner and all comparison software on a Windows
11 computer with an Intel(R)_Core(TM)_i9-12900KS CPU (Additional file 1: Tables S4,

Table 5  Evaluation results on software self-extracted features on the QE HF dataset

The results with the highest performance in the comparison are indicated in bold

TP FP TN FN P R F F_ACC​ A_ACC​

MZmine2 RANSAC 6995 11 566 778 0.998 0.900 0.947 0.906 0.721

Local bipartite 7705 6 563 76 0.999 0.990 0.995 0.990 0.975

G-Aligner Greedy 7751 5 563 31 0.999 0.996 0.998 0.996 0.987
G-Aligner Gurobi 7751 5 563 31 0.999 0.996 0.998 0.996 0.987
G-Aligner VLSNS_MSR 7746 5 563 36 0.999 0.995 0.997 0.995 0.986

G-Aligner VLSNS_MSG 7751 5 563 31 0.999 0.996 0.998 0.996 0.987
OpenMS QT 7039 20 1166 125 0.997 0.983 0.990 0.983 0.887

Local bipartite 7092 8 1169 81 0.999 0.989 0.994 0.989 0.972

G-Aligner Greedy 7161 2 1169 18 1.000 0.997 0.999 0.998 0.993
G-Aligner Gurobi 7161 2 1169 18 1.000 0.997 0.999 0.998 0.993
G-Aligner VLSNS_MSR 7161 2 1169 18 1.000 0.997 0.999 0.998 0.993
G-Aligner VLSNS_MSG 7161 2 1169 18 1.000 0.997 0.999 0.998 0.993
XCMS Group 7934 99 134 183 0.988 0.977 0.983 0.966 0.846

XCMS OBI-Warp 7940 70 135 205 0.991 0.975 0.983 0.967 0.846

Local bipartite 8057 36 148 109 0.996 0.987 0.991 0.983 0.938

G-Aligner Greedy 8141 15 148 46 0.998 0.994 0.996 0.993 0.960
G-Aligner Gurobi 8141 15 148 46 0.998 0.994 0.996 0.993 0.960
G-Aligner VLSNS_MSR 8131 20 148 51 0.998 0.994 0.996 0.991 0.957

G-Aligner VLSNS_MSG 8141 15 148 46 0.998 0.994 0.996 0.993 0.960

Table 6  Evaluation results on software self-extracted features on the MTBLS562 dataset

The results with the highest performance in the comparison are indicated in bold

TP FP TN FN P R F F_ACC​ A_ACC​

MZmine2 RANSAC 5751 106 2398 25 0.982 0.996 0.989 0.984 0.768

Local bipartite 5719 58 2448 55 0.990 0.990 0.990 0.986 0.845

G-Aligner VLSNS_MSR 5744 67 2435 34 0.988 0.994 0.991 0.988 0.850
G-Aligner VLSNS_MSG 5758 66 2434 22 0.989 0.996 0.992 0.989 0.845

OpenMS QT 3916 139 4182 43 0.966 0.989 0.977 0.978 0.715

Local bipartite 3933 32 4277 38 0.992 0.990 0.991 0.992 0.894

G-Aligner VLSNS_MSR 3961 34 4275 10 0.991 0.997 0.994 0.995 0.899
G-Aligner VLSNS_MSG 3966 35 4275 4 0.991 0.999 0.995 0.995 0.899
XCMS Group 5786 386 1671 437 0.937 0.930 0.934 0.901 0.676

XCMS OBI-Warp 5756 437 1671 416 0.929 0.933 0.931 0.897 0.652

Local bipartite 6425 37 1807 11 0.994 0.998 0.996 0.994 0.923
G-Aligner VLSNS_MSR 6425 38 1807 10 0.994 0.998 0.996 0.994 0.918

G-Aligner VLSNS_MSG 6431 37 1807 5 0.994 0.999 0.997 0.995 0.923

Page 15 of 17Wang et al. BMC Bioinformatics (2023) 24:431 	

S5). In evaluation of the manually annotated features, G-Aligner took 1.5 min, 3 min,
0.8 min, respectively on the TripleTOF 6600, QE HF, MTBLS562 dataset. In evaluation
on software-extracted features, G-Aligner took 0.6 to 3 min per file on the TripleTOF
6600 dataset, 0.4 to 1 min per file on the QE HF dataset and 1 to 8 min per file on the
MTBLS562 dataset. Due to the comprehensive analysis on all potential feature corre-
spondences, combinatorial methods in G-Aligner spent more time than other compared
methods. Among the solvers in G-Aligner, the VLSNS solver was up to 9.6 times faster
than the Gurobi and Greedy solver and empowered G-Aligner to achieve more accurate
feature alignment in acceptable time.

Discussion

In comparison with popular feature alignment methods in OpenMS, MZmine2 and
XCMS, all combinatorial optimization methods in G-Aligner showed significant
improvement on the manually annotated and untargeted extracted features of all data-
sets. The solvers of G-Aligner had different optimization strategies. The Greedy solver
is a local optimization method that finds minimum cost matchings iteratively, and the
Gurobi and VLSNS solvers aim to find a global optimal solution that minimizes the sum
of matching costs. The Gurobi solver and the VLSNS solver achieved equal or better
feature alignment accuracy than the Greedy solver in most comparisons, proving the
general superiority of global optimization. In global optimization methods, the Gurobi
solver treated the MAPs as integer linear programming problems and guaranteed to find
global optimal results, while the VLSNS solver was designed to find near-optimal results
in less time. With the assistance of the MSG solution initialization method, the VLSNS
solver achieved the same global optimal results as the Gurobi solver in all evaluations
with less computation time. As a general feature alignment method, G-Aligner helped
all evaluated software achieve more accurate feature alignment results and proved its
generality and robustness.

Conclusion
In this study, we proposed G-Aligner to improve feature matching accuracy for untar-
geted metabolomics LC–MS data. G-Aligner considered features of all runs as graph
nodes and potential correspondences between features as edges. By treating the feature
matching problem as multidimensional assignment problems on multipartite graphs,
G-Aligner achieved non-centric analysis of all potential correspondences between fea-
tures of all runs for the first time. Due to the comprehensive analysis of feature distri-
bution, G-Aligner showed obvious advantages in feature matching accuracy. Compared
to popular methods, G-Aligner achieved the highest feature alignment accuracy on all
benchmark datasets with reasonable computational time.

The main limitation of G-Aligner is the lack of computing speed. To comprehen-
sively consider all potential feature correspondences, G-Aligner modeled the feature
matching problem to a multidimensional assignment problem, which was NP-Hard
and inevitably requires a lot of computing time. Although we provided two accelera-
tion methods to keep the running time within an acceptable range, there was still a
gap between painless application. There are two ways to promote the comprehensive
analysis of all potential feature correspondences. The first way is to introduce GPU

Page 16 of 17Wang et al. BMC Bioinformatics (2023) 24:431

acceleration to speed up the parallel calculations in G-Aligner. Another way is to go
down to the basis principle of retention time drifting. Analyzing massive amount of
potential correlations is inevitable in phenomena analysis. Instead, using the phe-
nomena data to estimate the principle of drifting such as retention modeling may be
a new efficient way for untargted feature alignment. Furthermore, G-Aligner will be
integrated into MetaPro for feature alignment in the untargeted analysis module.

Abbreviations
LC–MS	� Liquid chromatography–mass spectrometry
m/z	� Mass to charge
RT	� Retention rime
RANSAC	� RANdom SAmple Consensus
OBI-Warp	� Ordered bijective interpolated warping
DTW	� Dynamic time warping
MAP	� Multidimensional assignment problem
MST	� Minimum spanning tree
VLSNS	� Very large-scale neighborhood search
LAP	� Linear assignment problem
MSR	� Multi-solution randoms
MSG	� Multi-solution grid
TP	� True positive
FP	� False positive
TN	� True negative
FN	� False negative
P	� Precision score
R	� Recall score
F	� F1 score
F_ACC​	� Feature accuracy
A_ACC​	� Analyte accuracy

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​023-​05525-4.

Additional file 1. Supplementary information of this study; Algorithm S1, Pseudocode of the Gurobi solver;
Algorithm S2, Pseudocode of the Greedy solver; Algorithm S3, Pseudocode of the VLSNS solver; Algorithm
S4, Pseudocode of the solution initialization methods of the VLSNS solver; Figure S1, The RT drift distribution of
library analytes on the TripleTOF 6600 dataset and the QE HF dataset; Table S1, Optimized parameters used in the
TripleTOF 6600 dataset evaluation; Table S2, Optimized parameters used in the QE HF dataset evaluation; Table S3,
Optimized parameters used in the MTBLS562 dataset evaluation; Table S4, Time cost on manually annotated feature
sets of the TripleTOF 6600 dataset, the QE HF dataset and the MTBLS562 dataset; Table S5, Time cost on software
self-extracted feature sets of the TripleTOF 6600 dataset, the QE HF dataset and the MTBLS562 dataset; Appendix S1.
Data annotation procedure in MetaPro.

Acknowledgements
The authors thank the editors and anonymous reviewers for their valuable suggestions.

Author contributions
RW and CY designed the study. RW designed and implemented G-Aligner, performed evaluations, and wrote the manu-
script. RW, ML, SA and JW annotated the evaluation datasets. CY reviewed and edited the manuscript.

Funding
Natural Science Foundation of Shandong Province (2022HWYQ-081). Academic promotion project of Shandong First
Medical University, and funding from Jinan City.

Availability of data and materials
Benchmark datasets, manual annotation results, evaluation methods and results are available at https://​doi.​org/​10.​5281/​
zenodo.​83130​34

Code availability
G-Aligner is open-source and freely available at https://​github.​com/​CSi-​Studio/​G-​Align​er under a permissive license.

Declarations

Ethics approval and consent to participate
Not applicable.

https://doi.org/10.1186/s12859-023-05525-4
https://doi.org/10.5281/zenodo.8313034
https://doi.org/10.5281/zenodo.8313034
https://github.com/CSi-Studio/G-Aligner

Page 17 of 17Wang et al. BMC Bioinformatics (2023) 24:431 	

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 5 July 2023 Accepted: 9 October 2023

References
	1.	 Fiehn O. Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol. 2002;48:155–71. https://​doi.​org/​

10.​1023/A:​10137​13905​833.
	2.	 Wishart DS. Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov.

2016;15:473–84. https://​doi.​org/​10.​1038/​nrd.​2016.​32.
	3.	 Smith R, Ventura D, Prince JT. LC–MS alignment in theory and practice: a comprehensive algorithmic review. Brief Bioin-

form. 2013;16:104–17. https://​doi.​org/​10.​1093/​bib/​bbt080.
	4.	 Tomasi G, Berg FVD, Andersson C. Correlation optimized warping and dynamic time warping as preprocessing methods

for chromatographic data. J Chemom. 2004;18:231–41. https://​doi.​org/​10.​1002/​cem.​859.
	5.	 Liu Y, Chang C, Zhu Y. Advances of chromatogram retention time alignment algorithms in proteomics. https://​doi.​org/​

10.​13345/j.​cjb.​210271
	6.	 Sakoe H, Chiba S. Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans Acoust

Speech Signal Process. 1978;26:43–9. https://​doi.​org/​10.​1109/​TASSP.​1978.​11630​55.
	7.	 Eilers PHC. Parametric time warping. Anal Chem. 2004;76:404–11. https://​doi.​org/​10.​1021/​ac034​800e.
	8.	 Wang Y, Miller DJ, Poskanzer K, Wang Y, Tian L, Yu G. Graphical time warping for joint alignment of multiple curves. Adv

Neural Inf Process Syst. 2016;3655–3663.
	9.	 Pluskal T, Castillo S, Villar-Briones A, Ore M. Mzmine 2: Modular framework for processing, visualizing, and analyzing mass

spectrometry-based molecular profile data. BMC Bioinform. 2010. https://​doi.​org/​10.​1186/​1471-​2105-​11-​395
	10.	 Fischler MA, Bolles RC. Random sample consensus: a paradigm for model fitting with applications to image analysis and

automated cartography. Commun ACM. 1981;24:381–95. https://​doi.​org/​10.​1145/​358669.​358692.
	11.	 Wang J, Lam H. Graph-based peak alignment algorithms for multiple liquid chromatography-mass spectrometry data-

sets. Bioinformatics. 2013;29:2469–76. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btt435.
	12.	 Wu L, Amon S, Lam H. A hybrid retention time alignment algorithm for SWATH-MS data. Proteomics. 2016;16:2272–83.

https://​doi.​org/​10.​1002/​pmic.​20150​0511.
	13.	 ...Rást HL, Sachsenberg T, Aiche S, Bielow C, Weisser H, Aicheler F, Andreotti S, Ehrlich HC, Gutenbrunner P, Kenar E, Liang

X, Nahnsen S, Nilse L, Pfeuffer J, Rosenberger G, Rurik M, Schmitt U, Veit J, Walzer M, Wojnar D, Wolski WE, Schilling O,
Choudhary JS, Malmstrém L, Aebersold R, Reinert K, Kohlbacher O. OpenMS: a flexible open-source software platform
for mass spectrometry data analysis. Nat Methods. 2016;13:741–8. https://​doi.​org/​10.​1038/​nmeth.​3959.

	14.	 Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G. XCMS: processing mass spectrometry data for metabolite profiling
using nonlinear peak alignment, matching, and identification. Anal Chem. 2006;78:779–87. https://​doi.​org/​10.​1021/​
ac051​437y.

	15.	 Prince JT, Marcotte EM. Chromatographic alignment of ESI-LC-MS proteomics data sets by ordered bijective interpo-
lated warping. Anal Chem. 2006;78:6140–52. https://​doi.​org/​10.​1021/​ac060​5344.

	16.	 Pierskalla WP. Letter to the editors-the multidimensional assignment problem. Oper Res. 1968;16:422–31. https://​doi.​
org/​10.​1287/​opre.​16.2.​422.

	17.	 Li Z, Lu Y, Guo Y, Cao H, Wang Q, Shui W. Comprehensive evaluation of untargeted metabolomics data processing soft-
ware in feature detection, quantification and discriminating marker selection. Anal Chim Acta. 2018;1029:50–7. https://​
doi.​org/​10.​1016/j.​aca.​2018.​05.​001.

	18.	 Tu J, Yin Y, Xu M, Wang R, Zhu ZJ, Carnitine C, Cholesteryl CE. Absolute quantitative lipidomics reveals lipidome-wide
alterations in aging brain. Metabolomics. 2018. https://​doi.​org/​10.​1007/​s11306-​017-​1304-x.

	19.	 Chambers MC, MacLean B, Burke R, Amodei D, Ruderman DL, Neumann S, Gatto L, Fischer B, Pratt B, Egertson J, Hoff
K, Kessner D, Tasman N, Shulman N, Frewen B, Baker TA, Brusniak MY, Paulse C, Creasy D, Flashner L, Kani K, Moulding
C, Seymour SL, Nuwaysir LM, Lefebvre B, Kuhlmann F, Roark J, Rainer P, Detlev S, Hemenway T, Huhmer A, Langridge J,
Connolly B, Chadick T, Holly K, Eckels J, Deutsch EW, Moritz RL, Katz JE, Agus DB, MacCoss M, Tabb DL, Mallick P. A cross-
platform toolkit for mass spectrometry and proteomics. Nat Biotechnol. 2012;30:918–20. https://​doi.​org/​10.​1038/​nbt.​
2377.

	20.	 Lu M, An S, Wang R, Wang J, Yu C. Aird: a computation-oriented mass spectrometry data format enables a higher com-
pression ratio and less decoding time. BMC Bioinform. 2022;23:1–12. https://​doi.​org/​10.​1186/​s12859-​021-​04490-0.

	21.	 Kammerdiner AR, Vaughan CF. Very large-scale neighborhood search for the multidimensional assignment problem.
Optim Methods Appl. 2017;130:251–62. https://​doi.​org/​10.​1007/​978-3-​319-​68640-0_​12.

	22.	 Crouse DF. On implementing 2D rectangular assignment algorithms. IEEE Trans Aerosp Electron Syst. 2016;52:1679–96.
https://​doi.​org/​10.​1109/​TAES.​2016.​140952.

	23.	 An S, Wang R, Lu M, Zhang C, Liu H, Wang J, Xie C, Yu C. Metapro: a web-based metabolomics application for LC–MS
data batch inspection and library curation. Metabolomics 2023. https://​doi.​org/​10.​1007/​s11306-​023-​02018-6

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1023/A:1013713905833
https://doi.org/10.1023/A:1013713905833
https://doi.org/10.1038/nrd.2016.32
https://doi.org/10.1093/bib/bbt080
https://doi.org/10.1002/cem.859
https://doi.org/10.13345/j.cjb.210271
https://doi.org/10.13345/j.cjb.210271
https://doi.org/10.1109/TASSP.1978.1163055
https://doi.org/10.1021/ac034800e
https://doi.org/10.1186/1471-2105-11-395
https://doi.org/10.1145/358669.358692
https://doi.org/10.1093/bioinformatics/btt435
https://doi.org/10.1002/pmic.201500511
https://doi.org/10.1038/nmeth.3959
https://doi.org/10.1021/ac051437y
https://doi.org/10.1021/ac051437y
https://doi.org/10.1021/ac0605344
https://doi.org/10.1287/opre.16.2.422
https://doi.org/10.1287/opre.16.2.422
https://doi.org/10.1016/j.aca.2018.05.001
https://doi.org/10.1016/j.aca.2018.05.001
https://doi.org/10.1007/s11306-017-1304-x
https://doi.org/10.1038/nbt.2377
https://doi.org/10.1038/nbt.2377
https://doi.org/10.1186/s12859-021-04490-0
https://doi.org/10.1007/978-3-319-68640-0_12
https://doi.org/10.1109/TAES.2016.140952
https://doi.org/10.1007/s11306-023-02018-6

	G-Aligner: a graph-based feature alignment method for untargeted LC–MS-based metabolomics
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Methods
	Evaluation datasets
	Input preparation
	Retention time alignment
	Feature matching
	Graph building
	Graph splitting
	Assignment solving

	Big graph acceleration

	Results
	Evaluation workflow
	Evaluation on manually annotated features
	Evaluation on software self-extracted features
	Analysis time
	Discussion

	Conclusion
	Anchor 23
	Acknowledgements
	References

