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Abstract 

Hierarchical classification offers a more specific categorization of data and breaks 
down large classification problems into subproblems, providing improved predic-
tion accuracy and predictive power for undefined categories, while also mitigating 
the impact of poor-quality data. Despite these advantages, its application in predicting 
primary cancer is rare. To leverage the similarity of cancers and the specificity of meth-
ylation patterns among them, we developed the Cancer Hierarchy Classification Tool 
(CHCT) using the idea of hierarchical classification, with methylation data from 30 can-
cer types and 8239 methylome samples downloaded from publicly available databases 
(The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO)). We used 
unsupervised clustering to divide the classification subproblems and screened dif-
ferentially methylated sites using Analysis of variance (ANOVA) test, Tukey-kramer test, 
and Boruta algorithms to construct models for each classifier module. After validation, 
CHCT accurately classified 1568 out of 1660 cases in the test set, with an average accu-
racy of 94.46%. We further curated an independent validation cohort of 677 cancer 
samples from GEO and assigned a diagnosis using CHCT, which showed high diagnos-
tic potential with generally high accuracies (an average accuracy of 91.40%). Moreover, 
CHCT demonstrates predictive capability for additional cancer types beyond its original 
classifier scope as demonstrated in the medulloblastoma and pituitary tumor datasets. 
In summary, CHCT can hierarchically classify primary cancer by methylation profile, 
by splitting a large-scale classification of 30 cancer types into ten smaller classification 
problems. These results indicate that cancer hierarchical classification has the potential 
to be an accurate and robust cancer classification method.
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Introduction
The aggressive and unpredictable spread pattern of malignant tumors always poses 
a considerable challenge to patients and medical personnel. Traditional cancer detec-
tion techniques are usually invasive, single-target, and difficult to detect cancer at early 
stages. However, with the development of genetic testing technology, molecular diag-
nostic technologies are playing an increasingly important role in cancer detection and 
early diagnosis. As a method for molecular tumor diagnosis, DNA tumor detection is 
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divided into genetic mutation detection and methylation detection. Nevertheless, nor-
mal human cells undergo continual mutations, some of which involve cancer-related 
genes. However, only a limited number of these mutations actually contribute to tumor 
development. This situation can result in false positives and may suggest the challenge 
of distinguishing the tissue origin of tumors from various organs solely based on genetic 
mutations [1]. In contrast, tumor development and progression are accompanied by 
changes in DNA methylation patterns, which are generally tissue-specific. Thus, there 
are extensive differences in DNA methylation patterns between normal and tumor cells 
from different tissues and organs.

DNA methylation is a fundamental epigenetic mark that governs cell identity and 
gene expression changing occurs in early carcinogenesis [2]. Tumor suppressor genes 
are inactivated by hypermethylation [3]. By the contrary, hypomethylation can cause 
genomic instability and facilitates transformation into tumor cells [4]. These altered 
methylation distributions lead to the suppression of tumor oncogene expression and 
an increase in proto-oncogene expression, further promoting tumorigenesis and devel-
opment. DNA methylation patterns are consistent with the cells or tissues where they 
originate, implying that detection of tumor-specific DNA methylation may serve as a 
feasible approach for developing a cancer detection test [5]. Many studies have shown 
that the DNA methylation patterns are tumor type-specific [6] and tissue-specific [7] 
and are changed in the early stage of cancer development across the whole genome [8]. 
Therefore, the DNA methylation patterns could be a valuable marker for cancer detec-
tion and determination of tissue origin of tumors.

In this regard, various studies have focused on identifying tumor based on DNA meth-
ylation patterns. Koelsche et al. constructed a random forest model to classify soft tissue 
and bone tumors using a dataset of 1077 methylation profiles. Their findings demon-
strated the potential of DNA methylation-based sarcoma classification for research and 
future diagnostic applications [9]. Hao et al. evaluated the utility of DNA methylation 
for differentiating tumor tissue from normal tissue in four common cancers. They found 
that they could differentiate cancerous tissue from normal tissue with 95% accuracy [10]. 
Moran et al. established a random forest classifier of cancer type based on the microar-
ray DNA methylation signatures in a training set of 2790 tumor samples of known ori-
gin representing 38 tumor types and including 85 metastases showing high diagnostic 
potential [6]. Capper et al. present a comprehensive approach for the DNA methylation-
based classification of central nervous system tumors across all entities and age groups. 
Predictions from that classifier changed 12% of the original neuropathology diagnoses 
in an independent validation cohort [11]. Shimizu et al. established the Cancer Cell-of-
Origin methylation panel using the methylation data of the 28 types of cancer in TCGA 
(The Cancer Genome Atlas), which showed high sensitivity and specificity [12]. Mod-
hukur et  al. used 24 cancer types and 9303 methylome samples to construct machine 
learning classifiers to discriminate metastatic, primary, and non-cancerous methylome 
samples with an average accuracy of 99% [13].

The classification method used in these studies, as mentioned above, is flat classifica-
tion, which requires all features that are informative enough to distinguish all involved 
cancer types to be found at once. However, (i) in flat classification, the increase in the 
number of categories to be recognized may lead to a decrease in classification accuracy, 
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especially in the case of relatively homogeneous category classifications. (ii) There is also 
no way for flat classification to provide predictive power in the face of cancer types not 
included in the classifier, even if such cancer is somewhat associated with certain can-
cer in the classifier. In fact, the natural hierarchy of the data could have high classifica-
tion values. Many important real-world classification problems are naturally reduced to 
hierarchical classification problems in which the classes to be predicted are organized 
into a hierarchy of classes-typically lung cancer, squamous cell lung carcinoma and lung 
adenocarcinoma, ignoring those parent–child class relationships could lose some vital 
information. (iii) In flat classification, poor data quality in some categories may affect all 
other categories, which in turn affects the performance of the overall models [14].

In addition, methylation data, as a complex dataset, can reflect the similarities and ori-
gins of different tumors. It can be used to organize cancer entities into a tree structure 
and hierarchically classify them based on their similarities, thereby achieving a more 
complex classification.

In this study, instead of flattening out and ignoring those inner hierarchies, we consid-
ered the similarity of the cancers and developed a Cancer Hierarchy Classification Tool 
(CHCT) using the idea of hierarchical classification that splits a large-scale classification 
problem of 30 cancer types into a set of small classification problems to classify primary 
cancer by the methylation profile hierarchically. To carry out our study, we utilized 8239 
tissue samples spanning 30 common primary cancers from the open-access database 
TCGA and GEO (Gene Expression Omnibus), split into training set and test set with 
a 4:1 ratio. UPGMA (unweighted pair group method with arithmetic mean), an unsu-
pervised algorithm for grouping data based on overall similarity, was used to determine 
the architecture of CHCT, which divided 30 cancer types into 12 groups. Thus, the large 
problem of classifying 30 types of cancer was divided into ten subproblems. The Ran-
dom Forest algorithm has excellent robustness, outstanding performance in handling 
high-dimensional data, overfitting prevention capabilities, and effectiveness in handling 
imbalanced data. Thus, we used the Random Forest algorithm to develop our models 
with the training set samples to solve these ten subproblems. Each classification problem 
corresponds to a classification model. We assess the model’s performance on a held-out 
test cohort. Finally, we evaluated our models by testing them on an independent test 
cohort consisting of multiple tumor types from the GEO database.

Methods
Overview

CHCT can be viewed as a tool with a two-tier architecture. The data to be predicted is 
first predicted by the first layer of CHCT, and the result of this layer is used to further 
mobilize the next layer of the prediction model to get the final prediction results (For 
OV (Ovarian Cancer), THYM (Thymoma), and LIHC (Liver Cancer), the first layer pre-
diction model gives the prediction directly). The overall procedure of CHCT comprises 
five main steps: (i) sample acquisition from TCGA and GEO, and data preprocessing; 
(ii) clustering samples using the UPGMA algorithm; (iii) screening biomarkers using 
ANOVA (Analysis of variance) test, Tukey-Kramer test, and Boruta algorithm; (iv) train-
ing random forest models to classify cancer types and constructing CHCT; and (v) vali-
dating CHCT. An overview of the study workflow is illustrated in Fig. 1.
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Sample acquisition from TCGA and GEO, and data preprocessing

In this study, raw primary cancer methylation data from the Illumina Human Methyla-
tion 450 BeadChip (450K) methylation platforms were obtained from TCGA and GEO. 
The UCSC Xena browser [15] was used to download methylation data based. Since only 
a few OV (n = 10) were profiled using 450K array in TCGA, we supplemented with OV 
samples (n = 89) from GEO (GSE65820, GSE81224). We collected a total of 8239 sam-
ples (TCGA = 8150 and GEO = 89) from 30 types of cancer, including ACC (Adrenocor-
tical Cancer), BLCA (Bladder Cancer), BRCA (Breast Cancer), CESC (Cervical Cancer), 
CHOL (Bile Duct Cancer), COAD (Colon Cancer), ESCA (Esophageal Cancer), GBM 
(Glioblastoma), HNSC (Head and Neck Cancer), KICH (Kidney Chromophobe), KIRC 
(Kidney Clear Cell Carcinoma), KIRP (Kidney Papillary Cell Carcinoma), LGG (Lower 
Grade Glioma), LIHC, LUAD (Lung Adenocarcinoma), LUSC (Lung Squamous Cell 
Carcinoma), MESO (Mesothelioma), OV, PAAD (Pancreatic Cancer), PCPG (Pheochro-
mocytoma and Paraganglioma), PRAD (Prostate Cancer), READ (Rectal Cancer), SARC 

Fig. 1 Schematic of the study method, architecture of CHCT, and identification of the informative CpG sites 
by Tukey-kramer test. a Raw methylation cancer data across 30 cancer types were downloaded from TCGA 
and GEO. After data preprocessing, the data was clustered by UPGMA to divide cancer groups. The first layer 
classifier labels were established. Then, we firstly used ANOVA test to select the probes with a significant 
difference. We further used the Tukey-kramer test to screen probes with differences from all other 11 groups. 
Boruta algorithm was applied to select the most informative CpGs. Finally, we built a predictive model 
containing these CpGs as features, and the model was tested using test set. The second layer classifier was 
built similarly. To assess the models’ adaptability, we collected the independent primary cancer methylation 
data cohort from GEO to test models. b The architecture diagram of CHCT. CHCT can be viewed as a tool with 
a two-tier architecture. The data to be predicted is first predicted by the first layer of CHCT, and the result of 
this layer is used to further mobilize the next layer of the prediction model to get the final prediction results 
(For OV, THYM, and LIHC, the first layer prediction model gives the prediction directly). c The one vs all other 
approach seeks to screen the CpG sites that distinguish each cancer type from all other cancer types. In 
this illustration, consider a hypothetical differential consisting of four cancer types. The pairwise differential 
approach aims to identify the best markers for differentiating each possible cancer pair
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(Sarcoma), SKCM (Melanoma), STAD (Stomach Cancer), THCA (Thyroid Cancer), 
THYM, UCEC (Endometrioid Cancer), UCS (Uterine Carcinosarcoma), UVM (Uveal 
melanomas). The beta value was used to estimate methylation levels derived from meth-
ylated and unmethylated probe intensities using the formula M/(M + U + 100), where 
M and U are fully methylated and fully unmethylated intensities, respectively. Since the 
CpG sites in different datasets varied, only probes shared across all included datasets for 
each analysis were used for classifier training and testing. Moreover, we excluded probes 
on sex chromosomes and probes with missing values from methylation data. To assess 
the model’s adaptability, we collected the independent data cohort consisting of the Illu-
mina Human Methylation 450 BeadChip primary tumor methylation data from GEO.

Clustering samples using the UPGMA algorithm

We took several steps to preprocess our data effectively. First, we excluded subtypes that 
either had fewer than five samples or contributed less than 10% to the total number of 
samples for a given cancer type. Additionally, we excluded subtypes with ambiguous 
information. To reduce the dimensionality of our data and make it more amenable to 
result visualization without significant information loss, we calculated the mean methyl-
ation fraction for each subtype within each cancer type, resulting in clustered data. Sub-
sequently, we divided the raw data into 103 distinct groups based on clinical subtypes. 
To identify the most informative CpG sites, we selected the top 1% of CpG sites that 
exhibited the highest variability across all samples. Next, we used the UPGMA [16] clus-
tering algorithm, based on the Pearson correlation coefficient, to cluster the 103 groups. 
This clustering approach allowed us to visually represent the relationships among these 
groups. To determine the optimal number of clusters, we employed the silhouette coeffi-
cient [17] as a reference. The silhouette coefficient helped us assess the quality of cluster-
ing and make informed decisions about the number of clusters, ensuring the reliability 
of our results. The fanning diagram was plotted using ggtree [18]. All data preprocessing 
was conducted in Python version 3.10 and clustering was performed in R version 4.1.2.

Screening biomarkers using ANOVA test, Tukey‑Kramer test, and Boruta algorithm

Methylation data of 12 groups (a total of 8239 samples collected from 30 types of can-
cer) were analyzed to screen the group-specific probes for the first layer. We firstly 
applied ANOVA test to find any statistical differences in probes between the means of 
the 12 groups of cancer types, probes with p-value less than 0.5 were screened. Then, 
the Tukey-kramer test was performed for pairwise comparison of 12 groups aiming 
to screen probes with differences from the all the other 11 groups using the cut-off of 
the Tukey-corrected p-value adjusted for multiple comparisons < 0.01 and the absolute 
mean methylation difference between the compared groups of > 0.2 ( �β > 0.2, p <0·01). 
In some cases, such as group-10, we gradually decreased �β to 0.15 or 0.1 to ensure suf-
ficient CpG sites were selected. Similarly, we identified biomarkers of groups in the sec-
ond layer that contained at least two cancer types (group-2, group-4, group-5, group-6, 
group-7, group-8, group-10, group-11, and group-12). Noting the markers of ESCA11, 
STAD, COAD, READ, ESCA12, HNSC and LUSC were screened by gradually decreas-
ing �β to 0.15 or 0.1 (Additional file  1: Table  S2). All data processing was performed 
in Python version 3.10. To further reduce the feature’s dimension, Boruta algorithm 
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was applied [19]. Boruta is an improved feature selection method based on the fea-
tures importance of random forest classifier which is the estimator of Boruta. Boruta 
algorithm will generate random shaded features to be added to the original data, and 
compare the importance of the shaded features and the original features, then iterate 
several times, and finally compare the number of times the original features outperform 
the shaded features according to the binomial distribution to decide whether to keep 
or eliminate the features, so that the final features obtained can play a positive role in 
the prediction of the model. Boruta_py v 0.3, a python implementation of Boruta fea-
ture selection, was used. We used the same approach to execute Boruta Feature Selec-
tion for group-2, group-4, group-5, group-6, group-7, group-8, group-10, group-11 and 
group-12.

Training random forest models to classify cancer types and constructing CHCT

We first randomly split each type of cancer samples into training set that was par-
ticipated in model training and test set that was not involved in model construc-
tion throughout with a 4:1 ratio. Then, we reduced the dimension of these train data 
(ANOVA test, Tukey-kramer’s test and Boruta algorithm were used) to ensure that the 
model is trained with a modest number of features. The Random Forest model [20], 
where classifiers comprise many weak classifiers, was used to develop the cancer classi-
fier incorporating all 6579 train samples of the 12 groups. The classification is performed 
by merging the decisions of all weak classifiers and then predicting the tumor types 
(by most common prediction from all weak classifiers). Since the number of methyl-
ome samples from each class and type of cancer was imbalanced, we set the parameter 
class weight = ’not-balanced’ to address unequal class size. After learning curve param-
eters tuning, the Random Forest generates 200 binary decision trees (classification and 
regression trees, CART) as weak classifiers. On the held-out 1660 test dataset, which the 
model did not see during training, the random forest model achieved an overall accuracy 
of 98.13%. To evaluate the robustness of the predicted model, the 5-fold cross-validation 
was performed on the model, showing a cross-validation score of 0.972. In 5-fold cross-
validation, the data set is first randomly divided into five-folds, and then the i-th (i = 1, 
2, 3, 4, 5) fold is used as the validation set to verify the random forest model constructed 
with the remaining (5–1) folds as the training set. This process is repeated k times until 
each fold is set as the validation set. The receiver operating characteristic curve shows a 
high AUC (0.999) in predicting 12 groups of 30 cancer types [21]. This result indicates a 
high separating capacity. We used the same approach to develop classifiers for group-2, 
group-4, group-5, group-6, group-7, group-8, group-10, group-11 and group-12. All data 
processing and model training were performed in Python version 3.10.

Validating CHCT

To access the robustness of the classifier algorithm, we use the external independent 
validation cohort obtained from the GEO database. The model was evaluated using the 
top-k differential diagnosis accuracy, which measures how accurately the ground truth 
label is found in the k highest confidence predictions of the model. This allows us to 
potentially use the top predictions of CHCT for a given sample to narrow down the ori-
gin of the tumor to a handful of possible types. CHCT defaults to top-2² accuracy as 
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the output accuracy: CHCT would select the top-2 of the first layer classifier firstly. If 
the top-2 of the first layer contains multi-classification groups such as group-5, group-6, 
group10, group11, or group12, CHCT would further select the top-2 of these groups in 
the second layer. Overall, the result of CHCT can be anywhere from 2 to 4. To visualize 
heterogeneity between samples, we used Uniform Manifold Approximation and Projec-
tion (UMAP) [22], which is a dimension reduction technique.

Result
The hierarchical structure of the CHCT recapitulates lineage relationships among cancer 

types

After completing data collection and processing, we first clustered the methylation data 
consisting of 30 cancer types from TCGA and GEO. The raw data was divided into 103 
groups based on the clinical subtypes. We further used an unsupervised agglomerative 
algorithm (UPGMA) to cluster the 103 subtypes of 30 kinds of cancers by the top 1% 
most variable CpG site among them. These cancer classes were assigned to 12 categories 
relating to their Pearson similarity.

For each cancer, its subtypes cluster in close proximity to each other, reflecting the 
homogeneity of different subtypes of cancer. Since ESCA adenocarcinomas and CESC 
adenocarcinomas are distinct from ESCA squamous cell carcinomas and CESC squa-
mous cell carcinomas respectively, we separated the ESCA dataset and CESC dataset 
into four subtypes: ESCA adenocarcinoma (ESCA11), ESCA squamous carcinoma 
(ESCA12), CESC adenocarcinoma (CESC11) and CESC squamous carcinoma (CESC12). 
The result of the cluster is shown in Fig.  2. Strikingly, the clustering results showed 
that cancers were grouped together in a certain lineage or tissue relationship, and also 
showed a clear distinction between squamous carcinoma and adenocarcinoma [7, 23]. 
OV, UCEC and UCS cluster closely. But the relationship between OV, UCEC, and UCS 
is not as close as that of UCEC and UCS according to the silhouette coefficient. MESO 
and SARC cluster together, where mesothelioma can be considered as a type of sarcoma 
[24]. UVM and SKCM agglomerate in a union, as both cancer types derive from mel-
anocytes that share the same embryonic origin and display the same cellular function 

Fig. 2 The result of clustering. a The result fanning diagram of unsupervised agglomerative clustering 
(UPGMA), reflecting that the cancers were clustered together in a certain lineage or tissue relationship. 
Cancer types are indicated by edge colors. b Considering the result of the cluster and silhouette coefficient of 
each cancer, we grouped 30 cancer types into 12 groups. Cancer groups are indicated by edge colors
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[25]. Kidney-related cancers such as KICH, KIRP and KIRC, and THCA are clustered 
together, indicating interactions between kidney cancer and thyroid cancer [26]. ACC, 
LGG, GBM, and PCPG are lumped together, which are relatively homogeneous diseases 
[27]. PRAD and BRCA are very close. Some research has shown that there may be a link 
between prostate cancer and breast cancer due to certain common genetic mutations 
[28–30]. A family history of breast cancer is associated with an increased risk of pros-
tate cancer. Certain common genetic mutations may contribute to these cancers. PAAD, 
LUAD, and CHOL cluster together as adenocarcinomas, as do STAD, ESCA11, READ, 
COAD, and CESC11. Squamous carcinomas such as CESC12, ESCA12, BLCA, LUSC 
and HNSC agglomerate together. Finally, considering the result of the cluster and silhou-
ette coefficient of each cancer, we grouped 30 cancer types into 12 groups. Table 1 shows 
the group of these cancers. Overall, UPGMA showed generally well-separated clusters 
according to our analysis.

The methylation CpGs selected demonstrate cancer type specificity

We conducted a differential methylation analysis on the 12 classes defined above to 
identify the most informative CpG sites for cancer-type classification. To achieve this, 
we used the ANOVA test, Tukey-Kramer test, and Boruta algorithm. Firstly, we used the 
ANOVA test to select probes with a significant difference. We then applied the Tukey-
Kramer test to retain CpGs that could best distinguish one cancer group from all other 
cancer groups. From the 12 groups, we identified 13,103 probes that were statistically 
significant. We then used the Boruta algorithm to screen for more informative CpG 
sites, which resulted in the retention of 8061 probes. The heatmap shown in Fig. 3 dis-
played the differences between the 12 groups in each probe, and the selected methylated 
CpGs demonstrated significant tumor type specificity.

We further selected the features of the group-2, group-4, group-5, group-6, group-7, 
group-8, group-11, and group-12 of the second layer using the same procedure, resulting 
in the identification of 284, 238, 986, 1078, 339, 456, 874, and 1481 probes, respectively. 

Table 1 Components of each group

∗Adenocarcinoma
∗∗Squamous carcinoma

Group Components

Group-1 OV

Group-2 UCS, UCSC

Group-3 THYM

Group-4 MESO, SARC 

Group-5 KIRP, KIRC, KICH, THCA

Group-6 PCPG, ACC, LGG, GBM

Group-7 UVM, SKCM

Group-8 BRCA, PRAD

Group-9 LIHC

Group-10 PAAD, LUAD, CHOL

Group-11 STAD, READ, COAD, CESC∗ , ESCA∗

Group-12 HNSC, LUSC, BLCA, CESC∗∗ , ESCA∗∗
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The above selected markers are sufficiently discriminatory for each cancer type (Addi-
tional file 1: Fig. S1).

CHCT can clearly classify the types of cancer

We initially split each type of cancer sample randomly into a training set, which was 
used to construct the model, and a test set, which was not involved in the model build-
ing, at a ratio of 4:1. The first layer of the CHCT classification model was constructed 
using the random forest algorithm, and the entire training data set with 8061 features 
was used to train the constructed model to classify 12 cancer groups consisting of 30 
cancer types. The resulting model was then tested using the test dataset, and it achieved 
a 5-fold cross-validation score of 0.972 and an area under the receiver operating char-
acteristic curve of 0.999, indicating a satisfactory predictive power. Of the 1660 cases, 
1629 were correctly classified, resulting in an average accuracy of 98.13%. The preci-
sion and recall for the majority of cancer types were higher than 0.97. We used the same 

Fig. 3 CHCT can identify the cancers well using the screen-out methylation signature. a Heat map depicts 
the methylation level of retained probes of first layer classifier, reflecting clear distinction among the 12 
cancer groups. Upper annotation indicates sample types of 12 cancer groups. Left-sided annotation indicates 
12 cancer-specific methylation panels. b ROC curve shows the high AUC in predicting 12 cancer types using 
the methylation signature. c UMAP plot shows a high degree of heterogeneity between the same type 
samples from TCGA and GEO
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approach to construct the random forest models for the second layer, and their perfor-
mance is shown in Additional file 1: Tables S1–S12 and Figs. S1–S2. Our results showed 
that these classifiers could perform well, with some achieving a maximum area under 
the curve (AUC) for the group-2, group-4, group-7, group-8, and group-10 classifiers 
(AUC = 1.000) and a minimum AUC for the group-11 classifier (AUC = 0.971). The 
highest 5-fold cross-validation score was achieved by the group-8 classifier (cv-score = 
0.999), while the lowest score was achieved by the group-11 classifier (cv-score = 0.877). 
CHCT was able to accurately predict 1568 out of 1660 samples from the test set, achiev-
ing an accuracy rate of 94.5%. Our findings demonstrate that CHCT has a high diagnos-
tic potential with high accuracy.

CHCT is also universal to other methylation platform data

To evaluate the adaptability of our model, we collected independent cancer methyla-
tion data (n = 505) from the GEO cohort. We used top-k2 to assess the performance of 
CHCT, which defaults to top-22 accuracy as the output accuracy. (Details of the evalu-
ation method can be found in the Methods section.) Our trained model performed 
well without tuning or domain adaptation. Specifically, 13 cancer types achieved over 
90% prediction accuracy, and the average accuracy of 19 cancer types reached 91.48%. 
Table 2 shows the specific prediction results.

We performed UMAP clustering on the same cancer data from different databases. 
Data from TCGA were mainly used for model construction and testing, and data from 
GEO were mainly used to verify model generalizability. We found a high degree of heter-
ogeneity between the same type samples from TCGA and GEO. This suggests that differ-
ent processing methods may have been used between different databases. However, our 
tool performs relatively well in different data processing methods. In brief, our models 

Table 2 Independent validation cohort

Cancer type GSE Sample size Auccary (%)

ACC GSE77804 2 100

PAAD GSE74071 14 100

HNSC GSE67114 8 100

LUSC GSE121849 20 100

KICH GSE156932 8 75

KIRC GSE156932 2 100

LIHC GSE113019 18 100

LUAD GSE66836 164 100

SKCM GSE140169 46 97.83

UVM GSE156876 5 100

MESO GSE175769 10 90

OV GSE51820 85 74.12

PCPG GSE43293 22 100

PRAD GSE157272 23 100

SARC GSE89041 15 66

THYM GSE94769 11 72

THCA GSE77804 11 81.82

BRCA GSE52865 40 97.50
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are capable of generalizing to diverse data sources and processing methods not encoun-
tered during model training or probe normalization.

CHCT can provide some predictive power for cancer types not covered by the classifier

We utilized CHCT to predict outcomes for two representative datasets: the medulloblas-
toma dataset (GSE75153) and the pituitary tumor dataset (GSE147548). As expected, 
100% of the predictions for medulloblastoma were concentrated in the group-6 category, 
in spite of medulloblastoma being a clinical subtype of glioma not covered by the TCGA 
dataset GBM and LGG. In addition, the classification of pituitary tumors in the CHCT 
dataset was also all clustered in group-6. Since pituitary tumors, like ACC, are endocrine 
adenomas composed of neuronal cells, it is logical for them to cluster in group-6. Hier-
archical classifiers have the potential to offer predictive power for new tumors that were 
previously unknown.

Discussion
Considering the similarities between tumors, we used the strategy of hierarchical clas-
sification that splits a complete multi-class problem into a set of smaller classification 
problems to build CHCT and achieved robust predictive performance.

In contrast to CHCT, we built a flat classification model using the same scenario, 
resulting in 3612 markers after screening. A random forest model was then built and 
achieved an accuracy of 93.23%, with a 5-fold cross-validation score of 0.932. And we 
also compare the CHCT with the 2 classifier that are used for primary cancer classifi-
cation [31, 32]. In Wei’s research, They train a deep learning classifier to predict can-
cer type based on patterns of somatic passenger mutations detected in whole genome 
sequencing of 2606 tumours representing 24 common cancer types produced by the 
PCAWG Consortium and achieve an accuracy of 91% on held-out tumor samples. In 
Binsheng’s research, they developed a neural network framework using the expression of 
a 150-gene panel to infer the tumor tissue-of-origin for 15 common solid tumor cancer 
types and achieves an average prediction sensitivity and precision of 93.36% and 94.07%, 
respectively. The results demonstrated that, under circumstances where it  leverages its 
unique advantages, the hierarchical classification model achieve comparable or even 
superior performance to these flat classification model by breaking down the problem 
into smaller units, classes that are not taxonomically related to a given class of interest 
are not considered in the classification process, leading to more focused and accurate 
results.

Apart from its performance advantages, hierarchical classifiers also offer some predic-
tive power for new or unknown tumors. While it may not be possible to classify these 
new tumors, the classifiers can still predict the upper classes, which can be clinically rel-
evant in determining the appropriate treatment. For instance, similar androgen reduc-
tion treatments, such as testosterone antagonists, can be used to treat both prostate and 
breast cancer. The CHCT provides predictive results that suggest specific cancer foci or 
associated features, enabling individualized treatment recommendations.
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The hierarchical classification can better adapt to dynamic changes. Later on, as 
the number of cancer types increases, the classification structure can be dynamically 
adjusted according to the similarity between the newly added cancers and the original 
ones.

Furthermore, the advantages of hierarchical classification are further magnified in 
cases where data quality in some categories may not be comparable to other cate-
gories, as poor data quality in a category in a flat classification model may affect all 
other categories. In contrast, hierarchical taxonomy ensures that taxonomically dis-
tinct classes are not susceptible to this phenomenon.

Although the multi-level classification model may lead to error propagation when 
the upper-level classifier produces an error result, errors are most likely confined to 
its class or near classes. Hence, the k highest confidence predictions designed to nar-
row down potential cancer types could be used as the output of CHCT.

There are still some samples in the independent validation cohort that cannot be 
correctly classified by the current version of CHCT. There are several reasons: (i) the 
train data used to build models does not cover the entire spectrum of all subtypes, 
and an increase in the number of subtypes could help identify more methylation sub-
classes. (ii) Batch effects are also an essential factor affecting the validation results. 
Batch effects are sub-groups of measurements that have qualitatively different behav-
ior across conditions and are unrelated to the biological or scientific variables in a 
study. Different reagent dosages, chips, experiment instruments, operation person-
nel, etc., result in batch effect [33]. (iii) Due to partial probe missing in the TCGA 
data, we did not take into account the local methylation correlations (i.e., significant 
correlations in methylation levels in neighboring regions) in this study, as it could 
lead to the loss of information related to methylation cascade regions. We plan to 
address this issue using more sophisticated methods in our future research [34–36]. 
(iv) Moreover, according to UMAP cluster results, it can be determined that there 
are relatively obvious differences between samples from different databases, which 
can be attributed to the different methods used to correct and normalize methyla-
tion data [37]. Despite these challenges, CHCT has demonstrated better adaptability 
than other methods. For example, Daniel Xia et al. achieved an accuracy of 94.5% on 
2575 samples from 28 cancer types in TCGA using only 53 CpG probes [38]. How-
ever, their model was focused on extracting the most informative and minimalist set 
of CpG biomarkers, and hence only applicable to TCGA cases. Nevertheless, CHCT 
still achieves good classification performance even on non-TCGA data.

In summary, we have developed the CHCT, a powerful tool for cancer classifica-
tion that serves as proof-of-concept for hierarchical classification models in methyla-
tion analysis, advancing the application of hierarchical classification in translational 
medicine. We propose that hierarchical classification has the potential to be an accu-
rate and robust cancer classification method with advantages that flat classification 
does not possess. Moreover, different feature selection algorithm can be used to build 
models in future. It makes sense that different algorithms and features for different 
subproblems can provide better results. Further research may be necessary to opti-
mize model performance.



Page 13 of 14Yang et al. BMC Bioinformatics          (2023) 24:465  

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859- 023- 05529-0.

Additional file 1: Contains heatmaps of methylation site markers, ROC curve plots of models, a table of sample 
information, and classification performance reports of models.

Additional file 2: Provides the ID of TCGA Samples.

Acknowledgements
We thank Binxu Wang for helpful suggestions regarding the implementation and visualization.

Author contributions
YYP designed and developed CHCT and wrote and revised articles and is a major contributor to the entire research 
effort. ZQH participated in the development and design of CHCT and made outstanding contributions. LGT participated 
in the revision of the article and made outstanding contributions. ZSY and LTY participated in the revision of the article 
and put forward many valuable comments. TJ and GYB participated in article revision, project management and funding 
acquisition. HY proposed research concepts and participated in project management and article revision. All authors 
read and approved the final manuscript.

Funding
This work was supported by the National Natural Science Foundation of China Grants 82270600, The Guangzhou 
Key Laboratory of Molecular and Functional Imaging for Clinical Translation 201905010003, Guangdong Basic and 
Applied Basic Research Foundation 2022A1515220204, Medical Scientific Research Foundation of Guangdong Province 
A2022104, The Research Foundation of Guangdong Provincial Reproductive Science Institute QD202201, Sun Yat-sen 
University Tongchuang Intelligent Medical interdisciplinary talent training Foundation 76,160-3090319, Min-Yue Coop-
erative Research Fund 71010025.

Availability of data and materials
Publicly available datasets were analyzed in this study. This data can be found here: https:// xenab rowser. net/ datap ages/. 
Sample code of 8150 sample we selected in the TCGA database were showed in Additional file 2 and the code of the 
sample from GEO are included in this article. Other data generated during the current study are available in its Additional 
file 1 and the Github repository: https:// github. com/ yyp19 99/ Cancer- Hiera rchic al- Class ifica tion- Tool.

Declarations

Ethics approval and consent to participate
TCGA and GEO belong to public databases. The patients involved in the database have obtained ethical approval. Users 
can download relevant data for free for research and publish relevant articles. Our study is based on open source data, so 
there are no ethical issues and other conflicts of interest.

Consent for publication
Not applicable

Competing Interests
The authors declare that they have no competing interests.

Received: 18 April 2023   Accepted: 12 October 2023

References
 1. Yizhak K, Aguet F, Kim J, Hess JM, Kübler K, Grimsby J, Frazer R, Zhang H, Haradhvala NJ, Rosebrock D, et al. 

Rna sequence analysis reveals macroscopic somatic clonal expansion across normal tissues. Science. 
2019;364(6444):0726.

 2. Bird A. Dna methylation patterns and epigenetic memory. Genes Dev. 2002;16(1):6–21.
 3. Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. New Engl J Med. 

2003;349(21):2042–54.
 4. Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31(1):27–36.
 5. Luo H, Wei W, Ye Z, Zheng J, Xu R-h. Liquid biopsy of methylation biomarkers in cell-free dna. Trends Mol Med. 

2021;27(5):482–500.
 6. Moran S, Martínez-Cardús A, Sayols S, Musulén E, Balañá C, Estival-Gonzalez A, Moutinho C, Heyn H, Diaz-Lagares A, 

de Moura MC, et al. Epigenetic profiling to classify cancer of unknown primary: a multicentre, retrospective analysis. 
Lancet Oncol. 2016;17(10):1386–95.

 7. Loyfer N, Magenheim J, Peretz A, Cann G, Bredno J, Klochendler A, Fox-Fisher I, Shabi-Porat S, Hecht M, Pelet T, et al. 
A human dna methylation atlas reveals principles of cell type-specific methylation and identifies thousands of cell 
type-specific regulatory elements. Biorxiv (2022)

 8. Alvarez H, Opalinska J, Zhou L, Sohal D, Fazzari MJ, Yu Y, Montagna C, Montgomery EA, Canto M, Dunbar KB, et al. 
Widespread hypomethylation occurs early and synergizes with gene amplification during esophageal carcinogen-
esis. PLoS Genet. 2011;7(3):1001356.

https://doi.org/10.1186/s12859-023-05529-0
https://xenabrowser.net/datapages/
https://github.com/yyp1999/Cancer-Hierarchical-Classification-Tool


Page 14 of 14Yang et al. BMC Bioinformatics          (2023) 24:465 

 9. Koelsche C, Schrimpf D, Stichel D, Sill M, Sahm F, Reuss DE, Blattner M, Worst B, Heilig CE, Beck K, et al. Sarcoma clas-
sification by dna methylation profiling. Nat Commun. 2021;12(1):1–10.

 10. Hao X, Luo H, Krawczyk M, Wei W, Wang W, Wang J, Flagg K, Hou J, Zhang H, Yi S, et al. Dna methylation markers for 
diagnosis and prognosis of common cancers. Proc Natl Acad Sci. 2017;114(28):7414–9.

 11. Capper D, Jones DT, Sill M, Hovestadt V, Schrimpf D, Sturm D, Koelsche C, Sahm F, Chavez L, Reuss DE, et al. Dna 
methylation-based classification of central nervous system tumours. Nature. 2018;555(7697):469–74.

 12. Shimizu D, Taniue K, Matsui Y, Haeno H, Araki H, Miura F, Fukunaga M, Shiraishi K, Miyamoto Y, Tsukamoto S, et al. 
Pan-cancer methylome analysis for cancer diagnosis and classification of cancer cell of origin. Cancer Gene Ther. 
2022;29(5):428–36.

 13. Modhukur V, Sharma S, Mondal M, Lawarde A, Kask K, Sharma R, Salumets A. Machine learning approaches to clas-
sify primary and metastatic cancers using tissue of origin-based dna methylation profiles. Cancers. 2021;13(15):3768.

 14. Budach L, Feuerpfeil M, Ihde N, Nathansen A, Noack N, Patzlaff H, Harmouch H, Naumann F. The effects of data qual-
ity on machine learning performance. arXiv: 2207. 14529 (2022)

 15. Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, Banerjee A, Luo Y, Rogers D, Brooks AN, et al. Visual-
izing and interpreting cancer genomics data via the xena platform. Nat Biotechnol. 2020;38(6):675–8.

 16. Michener CD, Sokal RR. A quantitative approach to a problem in classification. Evolution. 1957;11(2):130–62.
 17. Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl 

Math. 1987;20:53–65.
 18. Yu G. Using ggtree to visualize data on tree-like structures. Curr Protocols Bioinform. 2020;69(1):96.
 19. Kursa MB, Rudnicki WR. Feature selection with the boruta package. J Stat Softw. 2010;36:1–13.
 20. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.
 21. Rauschert S, Raubenheimer K, Melton P, Huang R. Machine learning and clinical epigenetics: a review of challenges 

for diagnosis and classification. Clin Epigenetics. 2020;12(1):1–11.
 22. McInnes L, Healy J, Melville J. Umap: uniform manifold approximation and projection for dimension reduction. arXiv: 

1802. 03426 (2018)
 23. Lin EW, Karakasheva TA, Lee D-J, Lee J-S, Long Q, Bass AJ, Wong KK, Rustgi AK. Comparative transcriptomes of 

adenocarcinomas and squamous cell carcinomas reveal molecular similarities that span classical anatomic bounda-
ries. PLoS Genet. 2017;13(8):1006938.

 24. Institute NC. SEER Training Modules, Cancer Registration & Surveillance Modules. U. S. National Institutes of Health. 
https:// train ing. seer. cancer. gov/ disea se/ categ ories/ class ifica tion. html. Accessed 1 Aug 2022

 25. van der Kooij MK, Speetjens FM, van der Burg SH, Kapiteijn E. Uveal versus cutaneous melanoma; same origin, very 
distinct tumor types. Cancers. 2019;11(6):845.

 26. Basu G, Mohapatra A. Interactions between thyroid disorders and kidney disease. Indian J Endocrinol Metab. 
2012;16(2):204.

 27. Crona J, Backman S, Welin S, Taïeb D, Hellman P, Stålberg P, Skogseid B, Pacak K. Rna-sequencing analysis of 
adrenocortical carcinoma, pheochromocytoma and paraganglioma from a pan-cancer perspective. Cancers. 
2018;10(12):518.

 28. Pilarski R. The role of brca testing in hereditary pancreatic and prostate cancer families. Am Soc Clin Oncol Educ 
Book. 2019;39:79–86.

 29. Barber L, Gerke T, Markt SC, Peisch SF, Wilson KM, Ahearn T, Giovannucci E, Parmigiani G, Mucci LA. Family history 
of breast or prostate cancer and prostate cancer riskgenetic link between prostate cancer and breast cancer. Clin 
Cancer Res. 2018;24(23):5910–7.

 30. Beebe-Dimmer JL, Yee C, Cote ML, Petrucelli N, Palmer N, Bock C, Lane D, Agalliu I, Stefanick ML, Simon MS. Familial 
clustering of breast and prostate cancer and risk of postmenopausal breast cancer in the women’s health initiative 
study. Cancer. 2015;121(8):1265–72.

 31. He B, Zhang Y, Zhou Z, Wang B, Liang Y, Lang J, Lin H, Bing P, Yu L, Sun D, et al. A neural network framework for pre-
dicting the tissue-of-origin of 15 common cancer types based on rna-seq data. Front Bioeng Biotechnol. 2020;8:737.

 32. Jiao W, Atwal G, Polak P, Karlic R, Cuppen E, Danyi A, De Ridder J, van Herpen C, Lolkema MP, et al. A deep learning 
system accurately classifies primary and metastatic cancers using passenger mutation patterns. Nat Commun. 
2020;11(1):728.

 33. Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, Geman D, Baggerly K, Irizarry RA. Tackling the 
widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet. 2010;11(10):733–9.

 34. Patil AR, Chang J, Leung M-Y, Kim S. Analyzing high dimensional correlated data using feature ranking and classifiers. 
Comput Math Biophys. 2019;7(1):98–120.

 35. Patil AR, Choi B-J, Kim S. Improving the classification performance with group lasso-based ranking method in high 
dimensional correlated data. J Theor Comput Chem. 2020;19(03):2040009.

 36. Guo S, Diep D, Plongthongkum N, Fung H-L, Zhang K, Zhang K. Identification of methylation haplotype blocks 
aids in deconvolution of heterogeneous tissue samples and tumor tissue-of-origin mapping from plasma dna. Nat 
Genet. 2017;49(4):635–42.

 37. Jean-Philippe Fortin KDH. Bioconductor. http:// bioco nduct or. org/ help/ course- mater ials/ 2015/ BioC2 015/ methy latio 
n450k. html. Accessed 1 Aug 2022 (2015)

 38. Xia D, Leon AJ, Cabanero M, Pugh TJ, Tsao MS, Rath P, Siu LL-Y, Yu C, Bedard PL, Shepherd FA, et al. Minimalist 
approaches to cancer tissue-of-origin classification by dna methylation. Modern Pathol. 2020;33(10):1874–88.

http://arxiv.org/abs/2207.14529
http://arxiv.org/abs/1802.03426
http://arxiv.org/abs/1802.03426
https://training.seer.cancer.gov/disease/categories/classification.html
http://bioconductor.org/help/course-materials/2015/BioC2015/methylation450k.html
http://bioconductor.org/help/course-materials/2015/BioC2015/methylation450k.html

	Hierarchical classification-based pan-cancer methylation analysis to classify primary cancer
	Abstract 
	Introduction
	Methods
	Overview
	Sample acquisition from TCGA and GEO, and data preprocessing
	Clustering samples using the UPGMA algorithm
	Screening biomarkers using ANOVA test, Tukey-Kramer test, and Boruta algorithm
	Training random forest models to classify cancer types and constructing CHCT
	Validating CHCT

	Result
	The hierarchical structure of the CHCT recapitulates lineage relationships among cancer types
	The methylation CpGs selected demonstrate cancer type specificity
	CHCT can clearly classify the types of cancer
	CHCT is also universal to other methylation platform data
	CHCT can provide some predictive power for cancer types not covered by the classifier

	Discussion
	Anchor 18
	Acknowledgements
	References


