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Abstract 

Background: In the field of biology and medicine, the interpretability and accuracy 
are both important when designing predictive models. The interpretability of many 
machine learning models such as neural networks is still a challenge. Recently, many 
researchers utilized prior information such as biological pathways to develop neu‑
ral networks‑based methods, so as to provide some insights and interpretability 
for the models. However, the prior biological knowledge may be incomplete and there 
still exists some unknown information to be explored.

Results: We proposed a novel method, named PathExpSurv, to gain an insight 
into the black‑box model of neural network for cancer survival analysis. We demon‑
strated that PathExpSurv could not only incorporate the known prior information 
into the model, but also explore the unknown possible expansion to the existing path‑
ways. We performed downstream analyses based on the expanded pathways and suc‑
cessfully identified some key genes associated with the diseases and original pathways.

Conclusions: Our proposed PathExpSurv is a novel, effective and interpretable 
method for survival analysis. It has great utility and value in medical diagnosis 
and offers a promising framework for biological research.

Keywords: Survival analysis, Neural nerworks, Model interpretability, Pathways, 
Disease genes

Introduction
When developing a predictive model in the area of biology and medicine, it is signifi-
cant to balance the trade-off between accuracy and interpretability. Simple models like 
linear regression usually have high interpretability but don’t perform well, whereas the 
complex models based on deep learning can achieve good performance but it is hard to 
explain the black-box inside these models.

In this study, we investigated the accuracy and interpretability of survival mod-
els, which is specifically developed for dealing with censored data. Survival models 
are applied to perform time-to-event analysis in order to understand the relationships 
between the patients’ covariates and the risk of the event. The Cox proportional hazards 
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model (CPH) [1], a semi-parametric regression model, was widely used in survival analy-
sis. This model assumes that the log-risk of failure is a linear combination of the patient’s 
features. Although linear model has good interpretability, it might be too simplistic to 
just assume that the log-risk function is linear.

With the advent of machine learning, biomedical researchers were able to fit survival 
data with more sophisticated nonlinear log-risk functions [2–5]. Among these models, 
Faraggi and Simon [2] firstly incorporated the feed-forward neural network into the 
CPH, but this model with only a single hidden layer hadn’t showed great improvements 
beyond the CPH. DeepSurv [3] was an extension to Simon-Farragi’s network and con-
figurable with multiple hidden layers. It employed a more complex deep neural network 
to model the relationships between the observed features and the patients’ risk of failure 
and showed improvements on the CPH when modeling the non-linear data. These neu-
ral network-based methods have high predictive performance, but they only leverage the 
fully connected neural networks, which maybe arbitrarily over-parameterized and lack 
of interpretability.

In order to design a biologically informed and sparse neural network, DeepOmix [6] 
utilized signaling pathways as the functional modules based on KEGG and Reactome 
databases to construct pathway-associated sparse network. Each node encoded some 
biological entity and each edge represented a known relationship between the corre-
sponding entities. However, this model only considered the known and fixed functional 
modules in databases to design a sparse network, which might leave out some important 
factors. In fact, despite painstaking and manual curation, signaling pathways stored in 
databases still remained incomplete [7].

Therefore, it is necessary to make an exploration on the unknown space out of the 
prior information and identify some significant genes which may complement the origi-
nal functional modules. In this paper, we presented PathExpSurv, a novel survival analy-
sis method by exploiting and expanding the existing pathways. We firstly incorporated 
prior biological knowledge of signaling pathways into the neural network for survival 
analysis. In order to explore the possible unknown pathways with better performance, 
we further added the genes beyond the databases into the neural network pre-trained 
using the existing pathways, and continued to train a regularized survival analysis model, 
with a L1 penalty that guarantees the sparse structure in the expanded pathways. By 
simultaneously exploiting the existing pathways and exploring the unknown pathways, 
PathExpSurv can gain an insight into the black-box model of neural network for survival 
analysis. We also performed several downstream analyses based on the expanded path-
ways and successfully identified some key genes associated with the diseases and original 
pathways.

Methods
Basic architecture

Suppose G is the number of genes, and N is the number of samples (patients). Path-
ExpSurv uses a biologically informed neural network fW(x) to predict the effects of a 
patient’s covariates on their hazard rate, with the input of gene expression x ∈ R

1×G and 
the learnable weights W . Our main objective is to optimize the mean negative log partial 
likelihood:
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where δi ∈ {0, 1} is the event indicator of i-th sample, xi ∈ R
1×G is the feature vector, and 

Ti ∈ R is the event time.
The basic architecture of neural network fW(x) consists of 3 layers (Fig.  1a). The 

first layer is gene layer, the second layer is pathway layer and the third layer is the out-
put layer. The nodes of first and second layers encode the genes and pathways respec-
tively, and each edge represents the relationship between a gene and a pathway. The 
connections between the corresponding entities follow the pathway database such as 
KEGG and are encoded by a mask matrix M . We assume that the genes belonging to 
the same pathway have similar functions, so we constrain the weight W1 between the 
gene and pathway layer to be non-negative. The output of neural network is calcu-
lated as:

where ⊙ is the element-wise multiplication of two matrices, x ∈ R
1×G ,W1 ∈ R

G×P
+ ,

M ∈ {0, 1}G×P ,W2 ∈ R
P×1, σ = tanh , and P is the number of pathways explored in the 

model.

l(W) = −

N

i=1

δi fW(xi)− log

j:Tj≥Ti

exp fW(xj)

fW(x,M) = σ(σ (x · [W1 ⊙M]) ·W2)

Fig. 1 a Schematic overview of PathExpSurv. The basic architecture of the neural network consists 3 layers 
(gene layer, pathway layer and output layer). The connection between the gene layer and the pathway 
layer is determined by the pathway mask matrix, in which number 1 (black) means a non‑penalized link 
representing a fixed relationship between gene and pathway in prior information, number 1 (grey) means 
a penalized link representing a possible relationship to be explored, and number 0 (white) means no link. 
The training scheme of PathExpSurv includes two phases, namely pre‑training phase and training phase. 
In the pre‑training phase, the prior pathway mask (M) is used to pre‑train the model to achieve a relatively 
high and stable performance. In the training phase, a specific fully connected mask ( E ) with prior links and L1
‑penalized non‑prior links is used to train the model to explore the unknown space and obtain the expanded 
pathways. b Pipeline of pathway expansion. We first randomly chose 90% samples from the dataset to train 
the PathExpSurv model, and repeated 100 times to obtain the weight matrices between the gene layer 
and the pathway layer W(k)

1  (k = 1, . . . , 100) . Then we transformed these matrices into binary matrices O(k) 
(k = 1, . . . , 100) , and calculated the occurrence probability matrix S based on these binary matrices. Finally 
we obtained the expanded pathways matrix R by filtering out the gene‑pathway pairs with small occurrence 
probabilities
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Two‑phase training scheme

We proposed a novel optimization scheme consisting 2 phases (Fig. 1a): pre-training phase 
and training phase, in order to improve the performance of neural network by expanding 
the prior pathways.

During the pre-training phase, we utilized the prior pathways from the KEGG database 
to pre-train the model. We added a standard deviation term to the loss function due to the 
assumption that the genes in the prior functional modules are almost equally important. 
Then the objective function of pre-train phase became:

where M is the prior pathway mask matrix obtained from the KEGG database.
During the training phase, we changed the connections between the gene layer and the 

pathway layer to fully connected, and added a L1 regularization term in order to select a few 
important genes from the genes outside the prior pathways. That is, we optimized the fol-
lowing loss:

where E ∈ {1}G×P is the matrix of which the elements are all 1.

Evaluation metric

When evaluating the performance of survival analysis, we need to consider the censored 
data. The concordance index (C-index) [8] is the most widely used evaluation metric in sur-
vival analysis. C-index is defined as:

C-index expresses the proportion of concordant pairs in the dataset which estimates the 
probability that, for a random pair of individuals, the ordering of the predicted hazard 
risk of the two individuals is concordant with that of their true survival time.

Pathway expansion

In order to identify the reliable genes complement to the prior pathways, we performed the 
following pathway expansion procedure as shown in Fig. 1b. Firstly, we selected 90% sam-
ples randomly from the dataset each time to train the PathExpSurv model. In this way, we 
repeated 100 times and obtained 100 different weight matrices between the gene layer and 
the pathway layer, W(k)

1  , k = 1, ..., 100 . Then we calculated the corresponding occurrence 
matrix as follows:
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where k = 1, ..., 100 , i = 1, ...,G , j = 1, ...,P.

Secondly, we defined the occurrence probability of i-th gene in the j-th pathway as:

Finally, we sorted all the values in the occurrence probability matrix S from biggest to 
smallest, and denoted the n-th biggest value as pn . We extracted the top αK  genes with 
highest occurrence probabilities to expand the prior pathways, where α is the parameter 
to control the size of expanded pathways and K is the total number of genes in the orig-
inal pathways. The expanded pathways can be represented by the following incidence 
matrix:

Results
Data acquisition and experimental settings

To conduct computational experiments, we obtained 3 different survival datasets from 
UCSC Xena (https://xenabrowser.net/datapages/ ): (1) Breast Cancer Dataset (BRCA), 
(2) Lower Grade Glioma Dataset (LGG) and (3) Thyroid Cancer Dataset (THCA). For 
each cancer, we took the signaling pathways associated with the corresponding disease 
from  KEGG DISEASE Database (https://www.kegg.jp/kegg/disease/ ) as the source of 
prior pathways, i.e. the functional modules. We only used gene expression data as the 
feature and the total number of genes in the original datasets is 60489. We did some pre-
processing on the gene expression data. First, we transformed the read counts through 
log2(x + 1) . Second, we selected the top variable genes of which the standard deviations 
among the patients were larger than 1. In this way, there were only 2005 (BRCA), 1061 
(THCA) and 1126 (LGG) genes left. Third, we normalized the data into a standard nor-
mal distribution in order to overcome some problems like gradient vanishing in the neu-
ral network models. The detail information of cancer datasets and prior pathways were 
summarized in Additional file 1: Tables S1 and S2.

Ten-fold cross-validation was used in the two-phase training. That is, we randomly 
divided the samples into training set and the testing set with the ratio of 9:1. We cal-
culated the objective function, i.e., the loss function in the training set, and simultane-
ously computed the evaluation metric, i.e., C-index, to monitor the performance of 
models in both the training set and the testing set, as shown in Fig.  2c. The penalty 
weight � = 1 in the pre-training phase and µ = 1 in the training phase. We adopted 
the Adam optimizer to train our model, in which the learning rate was set to 0.05. 
The number of total epochs was 200 (i.e., 100 epochs for pre-training phase and 100 
epochs for training phase), and the full batch was used. The parameter of pathway 
expansion α is set to 0.2 in this study.

S(i, j) =

∑100
k=1O

(k)(i, j)

100

R(i, j) =

{

1, S(i, j) ≥ p
⌊(1+α)K+ 1

2 ⌋

0, S(i, j) < p
⌊(1+α)K+ 1

2 ⌋
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Performance of survival analysis

We first compared the performance of PathExpSurv with two baseline models: Prior 
Net, Fully-connected Net. The Prior Net model utilized the sparse neural network 
derived from the prior pathways, and was trained using the same loss in the pre-training 
phase of PathExpSurv, which included a standard deviation penalty. On the other hand, 
the Fully-connected Net model employed the fully connected neural network, and was 
trained through the loss with the L1 penalty in the training phase of PathExpSurv. For fair 
comparison, the number of epochs of the training process was set to 200 for both Prior 
Net and Fully-connected Net. The training scheme of PathExpSurv can be regarded as a 
mixture of two baseline models, comprising 100 epochs of pre-training with Prior Net, 
followed by another 100 epochs of training with Fully-connected Net. We performed 
10-fold cross validation and the results were showed in Fig. 2a. As expected, the Fully-
connected Net and PathExpSurv outperformed the Prior Net. On the THCA dataset, 
PathExpSurv even showed better result than the Fully-connected Net which had more 
learnable parameters.

Fig. 2 a Performance comparison on Prior Net, Fully‑connected Net and PathExpSurv. Generally, the 
Fully‑connected Net and PathExpSurv outperformed the Prior Net. On the THCA dataset, PathExpSurv even 
showed better result than the Fully‑connected Net which had more learnable parameters. b GSEA p‑values of 
the ranked genes list for each pathway. The GSEA p‑values of PathExpSurv are significantly smaller than those 
of Fully‑connected Net, indicating PathExpSurv has the ability to obtain meaningful expanded pathways and 
the results is more interpretable. c Example of training curves of the two‑phase training. The loss and C‑index 
showed significant improvement in the training phase. d Performance comparison on several methods of 
cancer survival analysis. The C‑index results of 6 methods (Cox regression, Elastic‑Net Cox model, Random 
Survival Forest, DeepSurv, DeepOmix and PathExpSurv) are shown, and PathExpSurv had best performance 
among these methods
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We further investigated and compared the interpretability of PathExpSurv with 
the Fully-connected Net. We extracted the ranked gene list for each pathway from 
the weight matrix W1 , and performed Gene Set Enrichment Analysis (GSEA) to test 
whether the ranked gene list is closely associated with some functional term. The p-val-
ues of the top enriched term for each pathway were shown in Fig. 2b. The GSEA p-values 
of PathExpSurv were significantly smaller than those of Fully-connected Net, indicating 
that PathExpSurv had the tendency to discover some genes which were closely related 
with each other and was more explainable than Fully-connected Net. Together with the 
results in Fig. 2a, we can conclude that the Prior Net has good interpretability but its 
performance might be limited, while the Fully-connected Net has higher performance 
but its interpretability might be poor. And our PathExpSurv could balance the perfor-
mance and the interpretability well.

For accurately evaluating the roles of pre-training phase and training phase, we per-
formed two-phase training scheme for 100 random experiments and computed the 
means and standard deviations of the results. Table 1 displayed the results of these two 
phases. Fig. 2c showed the training curve on LGG, and the training curves of other data-
sets were shown in Additional file  1: Fig. S1. We found that the optimal C-indices of 
training phases were mostly better than those of pre-training phases, which meant that 
the training of pre-trained networks learned more useful information beyond the prior 
pathway modules.

Finally, to evaluate the performance of PathExpSurv against state-of-the-art meth-
ods, we conducted 10-fold cross validation and compared the final C-index values in the 
testing set for each method. The performance of PathExpSurv was compared with five 
typical survival analysis methods: the Cox proportional hazards model [1], Elastic-Net 
Cox model (En-Cox), Random Survival Forest (RSF) [9], DeepSurv [3], and DeepOmix 
[6]. As shown in Fig. 2d, PathExpSurv had best performance among these methods. In 
general, neural networks-based models (DeepSurv, DeepOmix and PathExpSurv) are 
superior to other methods (Cox, En-Cox and RSF). It is worthy to note that, the poor 
performance of DeepSurv is partially attributed to the over-fitting in the training data-
set, while the prior information utilized in PathExpSurv and DeepOmix can help them 
to avoid the over-fitting.

Gene selection and pathway expansion

Applying the pathway expansion procedure, we identified the supplement genes of 
each prior pathway for each dataset, as shown in Table 2. In each disease dataset, the 

Table 1 Means and standard deviations of C‑index in pre‑training and training phase

The best C-index in pre-training phase and training phase is marked in bold

Dataset Samples Pre‑training phase Training phase

BRCA Training set 93.66 ± 0.42 95.61 ± 0.39

Testing set 92.81 ± 2.13 93.02 ± 1.93

THCA Training set 98.64 ± 0.31 98.88 ± 0.30

Testing set 98.48 ± 3.25 98.99 ± 1.41

LGG Training set 90.17 ± 1.05 93.69 ± 0.78

Testing set 88.60 ± 3.61 88.34 ± 3.78
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number of supplement genes is 20% of the total size of the original pathways. The occur-
rence probabilities of these supplement genes were exhibited in Fig. 3a, most of which 
are larger than 0.6, indicating these genes could be reliably identified. On the one hand, 
these supplement genes were significantly related to the corresponding pathway, as vali-
dated by the enrichment analysis and the recoverability testing in this section. On the 
other hand, these supplement genes were also closely associated with the corresponding 
disease, which would be demonstrated in next section.

Table 2 List of prior pathways and supplement genes

Dataset Pathway Original Expanded Supplement genes

BRCA ERK signaling 18 22 AGPAT2, BAMBI, DGAT2, LINC01235

PI3K signaling 15 15 –

WNT signaling 46 46 –

NOTCH signaling 14 22 LOC110384692, C4A, HLF, SNHG5, ASCL1, ORM2, IFIT2, 
THBS1

Nuclear receptor signaling 5 5 –

Cell cycle 6 17 IBSP, HEY1, TNN, H2BC4, MTRNR2L1, CGA, TFPI2, 
TTYH1, ASAH1, PEBP4, TTC36

Transcription 9 11 MMP12, MSI1

THCA ERK signaling 12 12 –

WNT signaling 5 10 STC1, APOD, EEF1A2, ND4L, SCX

Transcription 11 11 –

LGG ERK signaling 19 20 H1-2

PI3K signaling 13 13 –

Calcium signaling 15 15 –

Cell cycle 13 25 REM1, C1QL4, MTND4P12, GRB2, RNU4-2, LYVE1, 
TMEM132E, PCDHB2, ERBB3, H1-2, PCDHGB6, MFAP4

Transcription 9 10 H1-2

Fig. 3 a Occurrence probability of the supplement genes. b Performance comparison on several gene 
selection methods. PathExpSurv showed best performance compared to other 4 methods (Var, Carss, RFPI 
and Cox)
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We compared PathExpSurv with several other gene selection methods, including 
three filter methods summarized in [10]: variance filter (Var), Carss filter (Carss), and 
random forest permutation importance filter (RFPI). Additionally, we utilized the 
Cox proportional hazards model [1] to select genes with high absolute weight values, 
which we referred to as the Cox score method (Cox). The filtered gene set size was 
set to be the number of genes of all the expanded pathways. Subsequently, we input-
ted the filtered genes into fully-connected networks for survival analysis. The results 
presented in Fig. 3b showed that PathExpSurv significantly outperformed other gene 
selection methods.

We then performed Gene Ontology (GO) term enrichment analysis on the sup-
plement genes of each pathway, so as to discover the relationships between original 
pathway and expanded pathway. As shown in Additional file 1: Fig. S3 and Table S5, 
the supplement genes of ERK signaling pathway for BRCA are enriched in glyc-
erolipid biosynthetic process ( p = 0.000720304 ) and glycerolipid metabolic process 
( p = 0.002490982 ), which are closely related to ERK signaling [11]. The supplement 
genes of NOTCH signaling pathway for BRCA are enriched in positive regulation of 
tumor necrosis factor production ( p = 0.003496794 ) and positive regulation of tumor 
necrosis factor superfamily cytokine production ( p = 0.003496794 ), as shown in 
Fig. 4a and Additional file 1: Table S6. Fernandez et al. [12] showed that tumor necro-
sis factor-α modulate NOTCH signaling in the bone marrow microenvironment dur-
ing inflammation. The supplement genes of WNT signaling pathway for THCA are 

Fig. 4 a GO term enrichment analysis result of the supplement genes of NOTCH signaling pathway for BRCA, 
and b WNT signaling pathway for THCA. c Comparison of the recovering probability (top) and rank (bottom) 
distributions of leave‑one‑out genes and non‑prior genes. The p‑values of Kolmogorov–Smirnov test are 
shown in the figure. d Kaplan–Meier curves of single‑gene survival analysis for three most significantly 
different genes ( p < 0.05)
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enriched in bone morphogenesis ( p = 0.00252103 ) and skeletal system morphogenesis 
( p = 0.005187936 ), as shown in Fig. 4b and Additional file 1: Table S7. WNT signaling 
activates bone morphogenetic protein 2 expression [13].

We also conducted a simulation experiment, named recoverability testing, to test 
whether PathExpSurv could recover the meaningful genes closely related to the prior 
pathway. We adopted the leave-one-out cross-validation strategy for this experiment. In 
this experiment, we removed one gene from the prior pathway at a time and applied 
PathExpSurv 100 times to check how many times the leave-one-out gene can be recov-
ered. We then compared the recovering probabilities of leave-one-out genes and non-
prior genes. The two-sample Kolmogorov-Smirnov test reveals that there is a significant 
difference between the recovering probability (rank) distributions of leave-one-out genes 
and non-prior genes (Fig. 4c). The discrepancy of the two distributions showed that the 
leave-one-out genes were more likely to be recovered, which might indicate that Path-
ExpSurv had the ability to identify the genes significantly related to the corresponding 
pathway.

Disease gene discovery

The supplement genes were identified because they could enhance the performance of 
survival analysis, implying their close association with the corresponding disease. We 
conducted a literature search and discovered some promising evidence to support this 
notion. These genes could be further investigated and potentially used as the additional 
important indicators for the disease.

For breast cancer, Wang et al. [14] showed the close relationship between the expres-
sion of BAMBI and the proliferation and migration of breast cancer. The high expression 
of LINC01235 was associated with poor prognosis of breast cancer patients [15]. IFIT2 
was considered a tumor suppressor in breast cancer [16], as it had been identified to 
inhibit cancer cell growth and migration, and promoted cell apoptosis. Chi et  al. [17] 
demonstrated that small nucleolar RNA host gene 5 (SNHG5) promoted breast cancer 
cell proliferation both in vitro and in vivo. HLF regulates ferroptosis, development and 
chemoresistance of triple-negative breast cancer by activating tumor cell-macrophage 
crosstalk [18]. The expression of THBS1 in breast cancer was associated with poor 
metastasis-free survival [19]. Knockdown of PEBP4 inhibited breast cancer cell prolifer-
ation in vitro and tumor growth in vivo [20]. The abnormal expression of the IBSP gene 
was closely related to bone metastasis, increased malignant risk and the poor prognosis 
of breast cancer [21]. TFPI2 was down-regulated in breast cancer tissues and cell lines, 
and was associated with poor prognosis of patients diagnosed with breast cancer [22]. 
Zhou et al. [23] found that increased CGA  expression was significantly associated with a 
poor prognosis in patients with breast cancer. H2BC4 was overexpressed in breast can-
cer [24]. MSI1 was a negative prognostic indicator of breast cancer patient survival, and 
was indicative of tumor cells with stem cell-like characteristics [25].

For thyroid cancer, Hayase et al. [26] demonstrated that STC1 was highly expressed in 
thyroid tumor cell line and thyroid tumor tissues. The expression level of APOD showed 
significant differences in the high- and low-risk groups of differentiated thyroid cancer 
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recurrence [27]. EEF1A2 was previously suggested as driver of tumor progression and 
potential biomarker [28].

For lower grade glioma, ERBB3 showed marked underexpression in most glioblasto-
mas [29]. GRB2 was largely involved in multiple tumor malignancies [30]. Yang et al. [31] 
indicated that MFAP4 could be used as novel biomarker for developing therapies against 
human cancers.

We also performed the single-gene survival analysis to validate the significance of 
the newly-found disease genes. For one specific gene, we divided the dataset into two 
groups: high expression group contained the top 50% gene expression level and low 
expression group contained the others. Then we ploted the Kaplan-Meier curves of the 
two groups, and identified the most significantly different genes ( p < 0.05 ). We dis-
played three examples (LINC01235, STC1, H1-2) in Fig. 4d, while the complete curves of 
all the significant genes were shown in Additional file 1: Fig. S4. For BRCA, we identified 
key genes: LINC01235, TTC36, H2BC4, THBS1, AGPAT2, MMP12. For THCA, we got 
STC1, ND4L, APOD. For LGG, we obtained H1-2, LYVE1, MFAP4, PCDHGB6. These 
genes were differentially expressed between two groups and might contribute to the per-
formance improvement of PathExpSurv.

Limitations and discussion
The supplement genes identified by PathExpSurv are useful since they can be inter-
preted as the unknown important genes to complement the original pathways. First, the 
expanded pathways can be used to enhance the predictive performance of many bioin-
formatics models based on pathways, as in our comprehensive survival analysis experi-
ments. Second, the supplement genes are important for diagnosing and studying related 
diseases. Compared with the single gene identified by other bioinformatics methods 
such as differential expressed gene analysis, the supplement genes identified by Path-
ExpSurv are associated with specific pathways respectively, therefore can provide more 
insightful hypotheses for investigating the molecular mechanisms of diseases. Last but 
not least, the supplement genes are also helpful to reconstruct potentially incomplete 
pathways and fill the gap in the existing database.

However, it is worth noting that we need to be very cautious when interpreting the 
supplement genes identified by PathExpSurv. First, the supplement genes are identified 
through statistical analysis based on the mathematical model. The associations between 
the supplement genes and the respective pathways and diseases are purely inferred by 
computational algorithm, and are not guaranteed absolute truth. Whether the supple-
ment genes belongs to the respective pathways and their concrete roles in the pathways 
require further validation. Therefore, the improved predictive performance after intro-
ducing the supplement genes is less interpretable than that using only the known genes 
in the pathways. The users should use the supplement genes carefully and avoid to pro-
vide misleading conclusions. Second, as most machine learning approaches, the supple-
ment genes and their associations with the pathways and diseases are predicted based 
on the model learned from the training data, and the results on different datasets may be 
varied. The users should carefully select the training datasets according to the purpose 
and design of their experiments to obtain reliable and convincing results.



Page 12 of 14Hou et al. BMC Bioinformatics          (2023) 24:434 

PathExpSurv offers a novel and effective method for better survival analysis with high 
interpretability. When implementing the method as a practical tool for clinicians, it is 
important to pay attention to the utilization of PathExpSurv’s advantages. First, the prior 
pathways are crucial input and should be carefully selected by the clinicians based on 
their knowledge of diseases and patients. Second, besides the survival risk scores pre-
dicted by the model, the tool should also output the expanded pathways with the sup-
plement genes so that the clinicians can justify the results. Third, different datasets can 
be used in two phases in order to balance the performance and the computation time. 
For example, a large dataset from public databases is used in the pre-training phase 
to improve the reproducibility and reliability, while a small dataset from the targeting 
patients is used in the training phase to increase the sensitivity and specificity. Fourth, 
visualization and enrichment analysis of the expanded pathways and their relationships 
with diseases are necessary for understanding and interpreting the results.

Although PathExpSurv has achieved good performance and exhibited great explaina-
bility, there still exist some directions to improve this model. First, the current approach 
for selecting genes beyond the database is based on the LASSO method, and we can also 
consider some attribution methods such as DeepLIFT [32], DeepExplain [33] and LIME 
[34]. Second, PathExpSurv only employed a 3-layer neural network, and more sophisti-
cated architecture might further improve the performance and interpretability. Third, 
the training scheme of PathExpSurv consisted of two phases, we can design a more com-
plex training way to adjust the pathways step by step. Furthermore, PathExpSurv could 
be regarded as a high-level framework which might be applied to all kinds of prediction 
tasks.

Conclusion
In this paper, we proposed a novel survival analysis method, named PathExpSurv, which 
exploited a two-phase training scheme to firstly pre-train the biologically informed neu-
ral network and then further train it to make an exploration beyond the prior pathway 
database. We showed that PathExpSurv can improve the performance of survival anal-
ysis while keep good interpretability of the model. Furthermore, our method can also 
obtain valuable supplement genes which are significantly associated with the prior path-
ways and the diseases.
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