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Introduction
Many neuron-based systems have been developed to discuss solutions for prediction of 
diseases, their communication, and control via using a BCI system. Supervised learn-
ing, unsupervised learning, and semi-supervised learning are the most often utilized 
methodologies. A machine learning expert who is familiar with preconditioned feature 
extraction techniques is required.

Furthermore, the key challenge is selecting useful features for solving an issue from a 
challenging assignment. Deep learning techniques for a specific problem can bypass the 
burden of extracting useful features from raw input data for feature selection. A multi-
level network is required to learn numerous specific features.

Abstract 

The commercial adoption of BCI technologies for both clinical and non-clinical applica-
tions is drawing scientists to the creation of wearable devices for daily living. Emotions 
are essential to human existence and have a significant impact on thinking. Emotion 
is frequently linked to rational decision-making, perception, interpersonal interaction, 
and even basic human intellect. The requirement for trustworthy and implementable 
methods for the detection of individual emotional responses is needed with rising 
attention of the scientific community towards the establishment of some significant 
emotional connections among people and computers. This work introduces EEG 
recognition model, where the input signal is pre-processed using band pass filter. 
Then, the features like discrete wavelet transform (DWT), band power, spectral flatness, 
and improved Entropy are extracted. Further, for recognition, tri-classifiers like long 
short term memory (LSTM), improved deep belief network (DBN) and recurrent neural 
network (RNN) are used. Also to enhance tri-model classifier performance, the weights 
of LSTM, improved DBN, and RNN are tuned by model named as shark smell updated 
BES optimization (SSU-BES). Finally, the perfection of SSU-BES is demonstrated 
over diverse metrics.
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Image identification, audio recognition, language translation, natural language 
understanding, signal processing, face recognition, and other applications benefit 
from encouraging findings obtained through deep learning. We need to measure 
and analyze brain signals in a standard BCI workflow to get any usable outputs for 
computers to read. EEG is used to assess the electrical activity of various brain areas. 
Because testing and working on EEG signals is extremely difficult and exhausting, an 
automated computer-aided diagnosis approach must be created. When we categorize 
patterns using sampled waveforms, we get terrible results. To improve classification 
performance, we must extract only the data’s distinguishing characteristics. Human–
computer interaction (HCI) [1] technologies are already present in many aspects of 
our daily life. The rapid advancement of HCI technology and its applications in sev-
eral industries have sparked a significant deal of interest in creating HCI that is more 
intelligent. Without a doubt, the development of humanized human-machine inter-
faces in the field of HCI depends on human emotions.

Emotions are most unique features of people, and they have an impact on how they 
behave and act. An essential component of human life is comprehending and under-
standing emotions [2, 3]. Human emotions, ideas, and conduct are reflected in emotion. 
In the fields of remote learning, healthcare, and HCI, emotion detection is a popular 
study area [4, 5]. For instance, in medical care, identifying the emotions of patients, par-
ticularly those with disorders of expression, allows one to take various nursing measures 
in accordance with the patient’s emotions and enhance nursing quality [6–8]. The EEG, a 
traditional physiological signal, is quick and impervious to human control. As a result, it 
has been frequently used in treating with emotion identification [9]. The majority of the 
earlier EEG emotion identification methods concentrate on two fundamental problems:

1.	 How to identify distinguishable emotional EEG signals
2.	 How to create a more powerful model for emotion identification [10–12]. The major-

ity of techniques for retrieving exclusionary EEG emotional features fall into one of 
three categories: frequency, time or frequency-time domain (e.g., DWT) [13, 14].

However, as EEG signal is non- stationary, non-linear, and includes a substantial 
amount of noise, the field of emotion identification based on signal properties is 
exceedingly difficult. Additionally, the EEG signal’s features are primarily retrieved 
from its frequency, time or frequency–time domain, as well as its spatial domain [15–
18]. The asymmetry among electrode pairs has received a lot of attention from scien-
tists who are building schemes for identifying emotions due to the spatial properties. 
In other words, the techniques typically relate to the variations in signals detected by 
the matching electrodes on right and left hemisphere of the brain, accordingly.

The contributions are as follows:

•	 Determines improved entropy along with spectral flatness, band power and DWT.
•	 Introduces tri-classifiers (LSTM, DBN and RNN) classifiers with optimization 

strategy for recognition purpose.
•	 Proposes SSU-BES algorithm for training the tri-classifiers via tuning the optimal 

weights, which ensures the efficiency in emotion recognition.
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Here, Sect.  2 analyses the related work. Section  3 offers explanation on novel EEG 
based emotion recognition approach. Section 4 and 5 depicts features and tri-classifiers. 
Section 6 depicts about SSU-BES based optimal weight election and results are given in 
Section 7 and 8.

Literature survey
Related work

Yishu [19] suggested learning multi-channel characteristics from EEG signal in 2021 
to recognize human emotions, with the EEG data being triggered by sound signals. To 
identify various human emotions, they specifically employed textual feature fusion and 
multi-channel EEG in the time domain, wherein, 6 characteristics in the time domain 
were merged to a feature set for emotion categorization. Based on text, textual features 
were extracted. Additionally, they extracted EEG and text based features in the temporal 
and frequency domains. Lastly, they trained SVM to recognize human emotions. Their 
suggested technique increases detection accuracy rate according to experiments on the 
DEAP dataset.

Abdul Hamit [20] introduced an automated approach for recognizing emotions using 
EEG data. The suggested procedure was simple and involves four main steps. During 
the pre-processing stage, a DWT-based noise reduction approach was used. As a fea-
ture extractor, a TQWT was used. For dimension reduction, there are six alternative sta-
tistical techniques. The RFE classifier was used in the classification step in conjunction 
with a variety of classification algorithms, including KNN, SVM, ANN, RF, and 4 distinct 
DT algorithms. The findings unequivocally demonstrated the viability of the suggested 
TQWT and RFE driven emotion identification framework as a method for identifying 
emotions from EEG data.

A BiDCNN for EEG emotional identification was proposed by Dongmin et al. in 2021 
[21] and could successfully learn the various response patterns between the right and 
left hemispheres. Three separate EEG feature matrix were built specifically to record and 
magnify various electrical brain reactions to emotional stimuli. The spatial and tempo-
ral data were then retrieved using 3 CNN layers. The subject independent experimental 
findings further demonstrated that BiDCNN achieved superior outcomes on the valence 
and arousal detection tasks, with accuracy rates of 68.14 % and 63.94 %, respectively. 
Different participants were utilized to train and test the model.

The development of extracted features depending on HOLO-FM presentation of 
EEG signal characteristics was the foundation of work proposed by Ante [22] for emo-
tion identification. On feature maps, DL was employed as a feature extractor approach. 
Extracted features were then combined for recognition system to recognize various 
types of emotions. By comparing their methods to existing studies in which the authors 
used EEG data to categorize human emotions in a two-dimensional space, they were able 
to show that their method was more successful. The suggested approach could increase 
the emotion identification rate on datasets of various sizes, according to experimental 
findings.

Wenjing [23] updated the correlation mode and extracted characteristics for emo-
tion identification study in 2021 using CFC. Their findings demonstrated that the 
CFC-based EEG network outperformed existing EEG synchronization networks in 
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the categorization of emotions. Additionally, combining local and global character-
istics as well as dynamic network characteristics can significantly increase emotion 
identification accuracy. This investigation made a ground-breaking exploration for 
future studies on selecting features of emotion detection and connected neuronal 
pathways of functional interconnections and introduces a different idea of data con-
nection for the further research of emotion detection and other enhanced cognitive 
actions.

A unique scaling layer that may mine useful data-driven spectrogram-like characteris-
tics from unprocessed EEG signals was proposed by Hu et al. in 2021 [24]. In addition, 
it used convolution kernels that have been scaled up from a single data driven prototype 
to reveal a frequency-like size, which helped it to overcome the drawbacks of previous 
existing approaches that required retrieving the characteristics and their estimates man-
ually. The suggested neural network architecture called Scaling Net, was dependent on 
Scaling Layer that produced cutting-edge results on the well-known datasets.

In 2020, Yu Liu [25] suggested an efficient scheme for emotion identification. It was a 
complete framework that could concurrently identify emotional states and extract fea-
tures from unprocessed EEG data. When creating the principal capsules, it integrated 
multi-level feature mappings learnt by several layers in comparison to the original Caps 
Net, enhancing the ability of feature representation. In order to decrease the number of 
constraints and speed up computation, it also employed a bottleneck layer. The findings 
demonstrated that their method was more accurate than cutting-edge techniques.

A unique fractal pattern feature based method was described by Turker et al. [26] 
combined with an automated EEG-based emotion identification algorithm. A multi-
layer feature generator was proposed utilizing FFP and TQWT signal decomposing 
approach. An enhanced iterative selector was used throughout the feature selection 
step. The effectiveness of the provided FFP and TQWT feature creation has been 
thought to be shown by the shallow classifiers. This model has been evaluated on 
14-channel emotional EEG data using SVM, LDA, and KNN. With SVM, the sug-
gested framework obtained 99.82 percent.

Empirical selection of decomposition parameters can result in information loss 
owing to mode mixing, production of noisy modes, inadequate signal synthesis, 
and so on. Optimized variational mode decomposition was proposed in the study 
by Smith K Khare et al. [27] for emotion recognition utilizing single-channel EEG 
recordings. For dominating channel selection, the Eigenvector centrality technique 
(EVCM) is used. For non-stationary EEG signal decomposition, an optimal number 
of modes (K opt) and penalty factor (opt) are chosen adaptively. The modes of EEG 
signals are used to extract time-domain information. Post-hoc analysis is performed 
to pick relevant characteristics, which are then used as input to various classifiers 
for emotion classification. An extreme learning machine classifier achieves an over-
all accuracy of 97.24% for a four emotion classification. Five performance parameters 
are used to assess the suggested method’s performance. The F-1 score, false-positive 
rate, Mathew’s correlation coefficient, and Cohen’s Kappa are calculated to be 0.9454, 
0.94%, 92.92%, and 0.9633, respectively. Using the same dataset as the classic varia-
tional mode decomposition and the existing state-of-the-art, the using the same data-
set, the proposed method shows improved performance of about 4% and 2%.
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Emotions are the most potent information source for studying a person’s cognition, 
behavior, and medical issues. Accurate emotion recognition aids in the development 
of emotional computing, brain-computer interfaces, medical diagnosis systems, and so 
on. EEG signals are one such source for capturing and studying human emotions. The 
authors Smith K Khare et al. [28] proposed a unique time-order representation for iden-
tifying human emotions that is based on the S-transform and a convolutional neural 
network (CNN). The S-transform is used to translate EEG signals into time-order rep-
resentation (TOR). This TOR is fed into CNN, which automatically extracts and classi-
fies the deep features. The classification of emotional states of happiness, fear, sadness, 
and relaxation is 94.58% accurate. The method’s superiority is determined by evaluating 
four performance parameters and comparing it to existing state-of-the-art on the same 
dataset.

Convolutional networks and recurrent networks are the traditional approaches for 
learning complicated spatial connections over several electrodes and brain regions. Yet, 
due to the processes of local feature learning, these models have trouble capturing long-
range relationships. Z. Wang et al. [29] proposed a transformer-based approach to hier-
archically learn discriminative spatial information from electrode level to brain-region 
level to improve EEG spatial dependency capture and emotion detection accuracy. 
Transformer encoders are used in electrode-level spatial learning to integrate informa-
tion across multiple brain areas. A transformer encoder is used in brain-region-level 
spatial learning to record spatial interdependence between brain regions. Finally, sub-
ject-independent tests are performed on the DEAP and MAHNOB-HCI databases to 
confirm the usefulness of the proposed model. The experimental findings show that the 
suggested model performs very well in emotion recognition with arousal and valence 
level. Furthermore, the visualization of self-attention suggests that the suggested model 
may prioritize discriminative spatial information from the pre-frontal, frontal, temporal, 
and parietal lobes.

Apart from the usage of dry electrodes and wireless technologies, minimizing the 
number of channels is critical for improving device ergonomics. The study of A. Apicella 
et al. [30] provides a review of research that used fewer than 16 channels for EEG-based 
emotion identification. The main findings of this review are as follows:

(1)	 The guidelines for choosing the most promising scalp areas for EEG acquisitions;
(2)	 The importance of prior neurophysiological knowledge;
(3)	 The convergences between different studies in terms of preferable scalp areas for 

signal acquisition.

For channel selection, three ways emerge: data-driven, previous knowledge-based, and 
based on commercially available wearable solutions. The most common is data-driven, 
although the neurophysiology of emotions is rarely considered. Additionally, commer-
cial EEG equipment seldom has electrodes that have been specifically selected to evalu-
ate emotions. Several electrodes show significant convergences: Fp1, Fp2, F3, and F4 are 
the most informative channels for the valence dimension, according to both data-driven 
and neurophysiological prior knowledge techniques. P3 and P4 were shown to be rel-
evant for the arousal component.
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In the past few decades, EEG-based emotion recognition has emerged as one of the 
most important issues in the domains of healthcare, education, information sharing, 
gaming, and many others. In order to predict six fundamental emotions, Md. Mustafizur 
Rahman et al. [31] suggested three non-linear characteristics and eight ensemble learn-
ing methods (hope, interest, excitement, shame, fear, and sad). They used a randomized 
grid search method to fine-tune each algorithm’s hyper-parameter in order to boost the 
recognition rate of each classifier. To evaluate the effectiveness of each approach, they 
ran all the tests on the DEAP and AMIGOS datasets and assessed the calculation time 
and accuracy. Also, they examined statistical significance to evaluate the effectiveness 
of the method. According to the experimental findings, they used the Higuchi fractal 
dimension on the DEAP and AMIGOS datasets, respectively, to reach the greatest aver-
age accuracy, 89.38% and 94.62%. Comparing their suggested methodology to current 
methods that used the same dataset, the average recognition rate rose by 8.22% and 
1.77%, respectively.

Review

Regarding adaptability, different ML algorithms are obtainable for use in a range of 
applications and, thanks to technical advances in computing and effective application of 
algorithms, they can complete complex calculations with little time wasted [8]. However, 
there is no proof that any one algorithm is superior to others, which makes choosing an 
algorithm for emotion categorization assignments is challenging. Additionally, in terms 
of adaptability, a trained model for ML algorithms which may be utilized for bench 
marking or commercial deployment for upcoming emotion classifications is required. 
According to a survey of recent works, the authors have attempted improvements 
to CNN [21] in this area, but more research on domain agnostic emotion subspace is 
required. Similar to how ensemble models have advanced; the authors have developed 
an emotion categorization approach that requires more certainty in handling large data-
sets [20]. SVM [19] is now used to verify the effectiveness of categorizing emotions using 
deep textual and EEG feature training. This has shown acceptable results for categoriz-
ing emotions. The model must be created to operate with actual datasets, though. The 
feature maps in [22] were created by the authors using TOPO-FM representations, and 
DL model was deployed to take out features. This model has demonstrated its superior-
ity in categorizing emotions; nevertheless, for improved outcomes in practice, the cate-
gorization should be tested using additional feature sets and cross validation. In order to 
make the categorization more accurate in practice, more algorithms and feature extrac-
tors are required because the advancement is not sufficiently exact in all of its features.

Explanation on novel EEG based emotion recognition approach
This work introduces a new EEG oriented emotion recognition model with subsequent 
stages.

•	 At first, band pass filtering is used to pre-process the input signal.
•	 Then, DWT, band power, spectral flatness, and improved entropy based features are 

extracted.
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•	 Then, tri-model classifiers is determined that includes LSTM, Improved DBN and 
RNN for recognizing the emotions from the signal. Here, the training process takes 
place under optimization scheme via optimal weight tuning of the classifiers.

•	 Introduces a new SSU-BES algorithm for resolving the searching ability of BES with 
SSO.

The illustrative depiction of SSU-BES model is exposed in Fig. 1.

Pre‑processing

Let the input signal be S, which is subjected for pre-processing phase. This is the initial 
phase before classifying it. In this work, BPF based pre-processing takes place. In gen-
eral, BPF [32] is a circuit or device that eliminates (attenuates) frequencies outside of a 
specific range while passing frequencies inside of that range A band-pass filter inhibits 
elements with frequency range below or above its pass band while allowing components 
within a predefined range of frequencies to pass through. The pre-processed signal is 
denoted as Spre.

Fig. 1  Pictorial model of SSU-BES method
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DWT, band power, spectral flatness, and improved entropy features
Subsequent to the pre-processing, the feature extraction process takes place, where the 
relevant features are extracted from the pre-processed signal. In this work, we are deter-
mining few features during the extraction, and that are as follows:

•	 DWT
•	 Band power
•	 Spectral flatness
•	 Improved entropy

DWT features

The WT theory requires an evaluation of signals at various frequencies and timings. 
A wavelet is actually a harmonics with an average mean of zero and a practically fixed 
period. The CWT divides a time domain function into wavelets. However, CWT imple-
mentation is constrained by data redundancy and the considerable amount of computa-
tion needed to compute all practical transformations and scales. The DWT improves the 
WT [33], which boosted the deconstruction method’s adaptability. An orthogonal DWT 
can be used to evaluate a given collection of data for several scales. Eq. (1) provides the 
mathematical formula for the DWT.

The arithmetical model for mother wavelet is shown in Eq. (2) and v&g signifies scale 
and shift coefficients.

Band power

Decomposing the signal into functionally separate frequency bands, such as delta (0.5–4 
Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and gamma (30–100 Hz) [34], 
is one of the most used techniques for analysing EEG data. The lower frequency bands 
(theta and delta), will have bigger exponential values than higher frequency bands (beta 
and alpha), since the EEG wave bands reflect a power spectrum [35]. They are helpful in 
their present output form as a measure of each band’s strength in relation to the other 
bands as well as whether that band is growing or shrinking over time [36].

Spectral flatness

The term Wiener entropy, commonly referred to as spectral flatness or tonality coeffi-
cient [37], is a measurement used in digital signal processing to describe an audio spec-
trum. A sound’s spectral flatness, which is commonly expressed in decibels, can be used 

(1)DWT (g , v) =
+∞

−∞

x(t) ∗ τu,v g dt

(2)τu,v
(

g
)

= 1
√
g
τ

(

g − v

g

)
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to gauge how closely it approaches a pure tone as opposed to seeming noise-like. As an 
alternative to measuring the spectral flatness throughout the whole band, it may also be 
done within a specific sub band.

The spectral flatness is calculated as revealed in Eq. (3), in which,y(m) signifies magni-
tude of bin count m.

Improved entropy

How much information is conveyed by a signal, is explained by entropy. Equation  (4) 
is used to compute entropy. Nevertheless, to resolve the reliability issues, numerous 
changes are implemented to the current process. Equation (5) shows improved entropy, 
in which, b → random term and → probability distribution and → EEG signal, pos and 
neg → positive and negative reviews, weii → weight that is estimated using Bernoulli 
map.

The extracted feature set fe that includes DWT, SF, fe Ien are then subjected to optimi-
zation assisted tri-classifiers (LSTM, DBN and RNN).

Optimization assisted tri classifiers: LSTM, improved DBN and RNN
This work deploys tri-classifiers (LSTM, Improved DBN and RNN) for recognizing 
emotions in EEG signal. Here, the tri-classifiers due process in this way: The features 
extracted are parallel subjected to all the three classifiers. From which, the results are 
obtained. We can denote that as LSTMout, Improved DBNout, RNNout respectively. Once 
after the determination of the individual outcome, all the three are averaged to define the 
final results. Moreover, during the training process of the classification, the weights of all 
the three classifiers are tuned optimally by novel SSU-BES algorithm. This is because; 
it is observed that the optimal tuning ensures high efficiency during the classification, 
since the training is the crucial part to define the appropriate recognition with respect to 
features. Hence, during testing, the model could accurately recognize the emotions.

LSTM

It [36] included: a forget gate, input gate, and output gate. Assume that variables Y  and 
A are concealed and cell states. (Dt , At−1,Yt−1) and (Yt , At) be input and output layers. 
LSTM used Gt to arrange the data as revealed by Eq. (6), in which, σ → activation func-
tion,(PYG ,GYG) and (PIG , FIG) implied weight and bias constraints to map hidden and 

(3)SF =

√

∏M−1
m=0 y(m)

∑M−1
m=0 y(m)

M

(4)feen = −
b

∑

i=1

P
(

yi
)

log P
(

yi
)

(5)
feIen =

b
∑

i=1

P
(

pos
∣

∣yi
)neg
pos ∗ log2 In

(

P
(

neg
∣

∣yi
) pos
neg

)

weii
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input layers to forget gate At time t, the forget gate → Gt , input gate → It and output gate 
→ Lt.

It is used in LSTM as in Eqs. (7)–(9), here, (PYV , LYV ) and (PIV ,VIV ) → weight and bias 
factors to map hidden and input layers to cell gate. (PYI , FYI ) and (PII , FII ) imply weight 
and bias constraint to map hidden and input layers to It . It get output hidden layer from 
Lt as in Eqs. (10) and (11), in which, (PYL, FYL) and (PIL, FIL) → weight and bias to map Lt.

RNN

The variable length input sequence may be handled by RNN [38, 39]. The RNN includes 
the following 4 weights or biases: Forget gate layer, Input gate layer, Output gate layer 
and State gate layer. The input and forget gates are in charge of controlling both the cur-
rent input state and preceding concealed state. The features 

{

fe1, fe2...., feM
}

 are given as 
input to RNN and the hidden state sequence is implied by 

{

wg1,wg2, ....,wgM
}

 and the 
output vector is implied by {I1, I2, . . . Im} . The hidden state and output is computed as 
in Eqs. (12) and (13), in which,rf  implies recurrent function,Fi implies input vectors,wgi 
implies hidden unit,P,Q,R implies weight matrices; and activation function is implied by 
tanh . The total weights are determined by the new SSU-BES algorithm.

Improved DBN

A generative graphical model called DBN [40] or DNN groupings, which consists of 
multiple layers of hidden units (latent variables). Associative memories make up the two 
top layers of DBN that are symmetrically linked. The arrows pointing to the layer closest 
to the data direct relationships to all below layers.

The lowest layer, or the observable units, that’s where the input data is collected. 
Actual input information is an integer. There have been no intra layer interconnections 
like the RBM. Software that finds similarities in data is known as a hidden unit. The 
weight matrix (We) that links the two levels is symmetric. Every device in every layer is 
linked to a higher layer below it.

(6)Gt = σ(PIGXt + PYGYt−1 + FIG + FYG)

(7)Vt = tanh (FIV + PIV Xt + FYV + PYV Yt−1)

(8)It = σ(PIIXt + PYIYt−1 + FII + FYI )

(9)At = GtAt−1 + ItVt

(10)Ft = σ(LIF + JIFXt + LYF + JYFYt−1)

(11)Yt = Lt tanh (At)

(12)wg = rf (Fi,wgi−1) = tanh(P.Fi + Q.wgi−1)

(13)Ii = softmax(R,wgi)
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The pre-training of DBN is done using a contrastive divergence algorithm. In this 
work, SSU-BES based training is also determined that tunes the weighting parameter. 
There have the weight connection among each layer. These weights define which vari-
ables in 1 layer are used to compute the components in the layer above. In DBN, we 
examine the top 2 hidden layers of Gibbs using a variety of metrics. Essentially, the RBM 
represented by 2 top timed layers is sampled in this step. The values of the latent vari-
able may be used to create a basic bottom-up transfer. Here, the recognition outcomes 
are determined based on the actual and predicted value via evaluating the loss function. 
As per the improved version, a new evaluation is done for loss calculation that calculates 
MAEL, which is given in Eq. (14), where x̂ and x denote the projected value and actual 
value, respectively.

The results from tri-classifiers are averaged and absolute outcome is accomplished.

SSU‑BES based optimal weight tuning process
As mentioned before, the training of weights in classifiers are done by SSU-BES algo-
rithm. The solution given to the algorithm is shown in Fig. 2. During this, the objective 
fixed is defined as Obj in Eq. (15).

Proposed SSU‑BES algorithm

A renowned optimization scheme with better convergence is BES [10]. Even so, the per-
formance of the searching ability and swooping stage of BES is poor which leads to pre-
mature convergence and falls in local optimum. Thus, a hybrid optimization SSU-BES 
is developed by merging the SSO in BES. As, the hybridization of algorithms become 
crucial and efficient, they are applicable to solve complicated search issues [41–44]. The 
following is a description of mathematical definition of proposed algorithm:

Choosing space stage: This step determines the ideal area based on the amount of 
food. Eq. (16) accurately models this behaviour.

(14)L
(

x, x̂
)

= 1

N

N
∑

i=0

[

x − x̂i
)

(15)Obj = min

(

1

accuracy

)

SSU-BES

w1 w2 w3 wNl...

wg1 wg2 wg3 wgNd...

We1 We2 We3 WeNr...

Fig. 2  Solution encoding
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In Eq. (16), Zbest refers to elected searching space depending upon best position of 
eagle, Zmean refers to mean distance amid every positions of bald eagle (population 
mean), Zi refers to present position of eagle, ra refers to random constraint produced 
among [0—1], β is controlling parameter.

Improved Searching Space stage: The eagle is currently searching for prey by flying 
in selected spiral space in a variety of orientations. Additionally, the ideal swooping 
and hunting positions are shown. Traditionally, Eq. (17) provides a detailed definition 
of this behaviour, nevertheless, as per SSU-BES; this behaviour is computed based 
upon the combination of SSO update as in Eq.  (18), in which ℜ1 refers to random 
parameter,ηk refers to a value among 0 and 1. In addition, conventionally ℜ1 is ran-
domly computed, as per the proposed SSU-BES, ℜ1 is computed depending upon cir-
cle map.

In Eq. (22), “ β refers to constant constraint among [0.5, 2], Q refers to constant con-
straint among 0.5 to 2, and ran1 and ran2 refers to 2 arbitrary constraints”.

Proposed Swooping stage: Conservatively, this stage is shown in Eq. (25), however, as 
per SSU-BES, this stage is computed from the combination of SSO update as in Eq. (27), 
in which,sdw refers to weighted standard deviation, ℜ2 refers to random parameter,αk 
→inertia coefficient, k = 1, 2, .... kmax,

∂(obj)
∂χ j

∣

∣

∣

χk
i,j

 denote derivative obj at location χk
i,j , 

velocity → V  . Further, sdw is computed as in Eq. (27), where, ⇀z  → weight of average bald 
eagle swing from best position, z → observation value of shark towards prey, ̟  → weight 
of each observation of prey and K ′ → count of non-zero observation towards prey.

(16)Znew = Zbest + β × ra(Zmean − Zi)

(17)Znew = Zi + Y (i)× (Zi − Zi+1)+ p(i)× (Zi − Zmean)

(18)Znew = ηk .ℜ1





Zi + Y (i)× (Zi − Zi+1)

∇of
�

�

χk
i,j



+ p(i)× (Zi − Zmean)

(19)p(i) = pr(i)

max (|pr| , Y (i) = Yr(i)

max (|Yr|

(20)pr(i) = cos (θ(i))× ran(i), Yr(i) = sin (θ(i))× ran(i)

(21)θ(i) = β × π × ran1

(22)ran(i) = θ(i)+ Q × ran2

(23)θ(i) = 2

π
arccos

1

3
arctan (it)

(24)ran(i) = 1

2
arctan (it)
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Results and discussion
Simulation set up

This work was executed in MATLAB. The betterment of Tri classifier + SSU-BES was 
computed with data in [40]. The HC+SMA-SSA was evaluated with SVM [2], TQWT 
[9], Tri classifier + SSO, Tri classifier + BES, Tri classifier + DHOA, Tri classifier + 
BWO, Tri classifier + HHO and LSTM, DBN, CNN and RNN. The analysis was done for 
two cases such as valence and arousal.

Dataset description

We took a multimodal dataset for the analysis of human affective states. The electro-
encephalogram (EEG) and peripheral physiological signals of 32 participants were 
recorded as each watched 40 one-minute long excerpts of music videos. Participants 
rated each video in terms of the levels of arousal, valence, like/dislike, dominance and 
familiarity. The data was recorded in two separate locations. Participants 1-22 were 
recorded in Twente and participant 23-32 in Geneva. Due to a different revision of the 
hardware, there are some minor differences in the format. First, the order of EEG chan-
nels is different for the two locations. Second, the GSR measure is in a different format 
for each location. The DEAP dataset can be accessed from: https://​www.​eecs.​qmul.​ac.​
uk/​mmv/​datas​ets/​deap/​downl​oad.​html.

All metadata contained in four spreadsheets (online ratings, video list, participant 
ratings and participant questionnaire). The data are collected from 32 participants. 
Each participant file contains two arrays like data and labels. The size of the data array 
is 40x40x8064 (i.e. video/trial x channel x data) where the size of label is 40x4 (i.e. 
video/trial x label). Four labels are considered in the dataset such as valence, arousal, 
dominance and liking. Moreover, the data was down sampled to 128Hz. And, it was 

(25)
Znew = rand × Zbest + p1(i)× (Zi − it1× Zmean)

+Y 1(i)× (Zi − it2× Zbest)

(26)Znew =











rand × Zbest + p1(i)× (Zi − it1× Zmean)

+Y 1(i)× (Zi − it2× Zbest)

ηk .ℜ1. ∂(obj)∂χ j

�

�

�

χk
i,j

+ αk .ℜ2.V k−1
i,j











sdw

(27)sdw =

∑K
i=1̟i

(

zi −
⇀
z
̟

)

(K ′−1)
∑k

i=1 ̟i

K

(28)p1(i) = pr(i)

max (|pr| , Y 1(i) = Yr(i)

max (|Yr|

(29)pr(i) = ran(i)× sinh (θ(i)), Yr(i) = ran(i)× cosh (θ(i))

(30)θ(i) = β × π × ran3, ran(i) = θ(i)

https://www.eecs.qmul.ac.uk/mmv/datasets/deap/download.html.
https://www.eecs.qmul.ac.uk/mmv/datasets/deap/download.html.
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segmented into 60 second trails and 3 second pre-trail baseline removed. The trial was 
reordered from presentation order to video (i.e. experiment id) order. Herein, two labels 
such as arousal and valence are considered.

Performance

The study on Tri classifier + SSU-BES model is computed over SVM [19], TQWT [26], 
Tri classifier + SSO, Tri classifier + BES, Tri classifier + DHOA, Tri classifier + BWO, 
Tri classifier + HHO and LSTM, DBN, CNN and RNN. The estimation of Tri classifier 
+ SSU-BES based EEG emotion detection done over SVM [19], TQWT [26], Tri classi-
fier + SSO, Tri classifier + BES, Tri classifier + DHOA, Tri classifier + BWO, Tri classi-
fier + HHO are exposed in Figs. 3, 4, 5 for valence case and Figs. 6, 7, 8 for arousal case. 
The analysis of Tri classifier + SSU-BES over varied classifiers such as SVM [2], TQWT 
[9], LSTM, DBN, CNN and RNN is shown in Tables 1, 2 for valence case and arousal 
case. Here, Tri classifier + SSU-BES have accomplished high values for positive metrics, 
while, less values for negative metrics. The FDR attained by Tri classifier + SSU-BES at 
80th LR is lesser than FDR attained by Tri classifier + SSU-BES at other LRs for valence 
case. The FNR attained by Tri classifier + SSU-BES at 90th LR is lesser than FNR attained 
by Tri classifier + SSU-BES at other LRs for valence case. The MCC for both cases is 
high at 90th LR. Here as we have done enhancements in DBN and entropy, the result-
ants of our method looks superior over compared ones. In valence and arousal cases, Tri 
classifier + SSU-BES is better than compared ones, which can be proven from the classi-
fier analysis in Tables 1 and 2. The improvements in recognition is purely relies with the 
inclusion of optimal training of classifiers, as the process takes complete responsibility 

Fig. 3  Investigation on Tri classifier + SSU-BES over existing schemes for a Precision, b accuracy, c specificity 
and d sensitivity for valence case
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on proper training with the features. Moreover, the improvement in the entropy feature 
is also another aspect to get the accurate results.

Fig. 4  Investigation on Tri classifier + SSU-BES over existing schemes for a MCC, b NPV, c F1-score for valence 
case

Fig. 5  Investigation on Tri classifier + SSU-BES over existing schemes for a FPR, b FNR, c FOR and d FDR for 
valence case
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Fig. 6  Investigation on Tri classifier + SSU-BES over existing schemes for a Precision, b accuracy, c specificity 
and d sensitivity for arousal case

Fig. 7  Investigation on Tri classifier + SSU-BES over existing schemes for a MCC, b NPV, c F1-score for arousal 
case
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Statistical study

Tables 3 and 4 depicts the statistical analysis (cost) by means of novel Tri classifier + 
SSU-BES oriented model over SVM [19], TQWT [26], Tri classifier + SSO, Tri classifier 
+ BES, Tri classifier + DHOA, Tri classifier + BWO, Tri classifier + HHO. “The meta 
heuristic schemes are stochastic, and to substantiate its fair evaluation, each model is 
analyzed quite a lot of times to accomplish high accuracy”. For mean case, a high accu-
racy of 0.956is gained using with Tri classifier + SSU-BES, while SVM [2], TQWT [9], 
Tri classifier + SSO, Tri classifier + BES, Tri classifier + DHOA, Tri classifier + BWO, 
Tri classifier + HHO have acquired less accuracy of 0.69486, 0.84592, 0.89124, 0.87613, 
0.92749, 0.89124 and 0.92447 for valence case. Likewise, for arousal case, the Tri 

Fig. 8  Investigation on Tri classifier + SSU-BES over existing schemes for a FPR, b FNR, c FOR and d FDR for 
arousal case

Table 1  Analysis on classifiers using valence case

Metrics Tri classifier + SSU-
BES

SVM [2] TQWT [9] LSTM DBN CNN RNN

FDR 0.050877 0.34122 0.28333 0.12371 0.14041 0.094488 0.13433

Sensitivity 0.88399 0.63107 0.41748 0.82524 0.8123 0.74434 0.75081

NPV 0.95659 0.69486 0.84592 0.89124 0.87613 0.92749 0.89124

Specificity 0.95659 0.69486 0.84592 0.89124 0.87613 0.92749 0.89124

FPR 0.043413 0.30514 0.15408 0.10876 0.12387 0.072508 0.10876

F1-Score 0.9154 0.64463 0.52761 0.85 0.83527 0.81705 0.80416

FOR 0.043413 0.30514 0.15408 0.10876 0.12387 0.072508 0.10876

Accuracy 0.92188 0.66406 0.63906 0.85938 0.84531 0.83906 0.82344

MCC 0.84484 0.32666 0.29274 0.71902 0.69067 0.68619 0.65031

Precision 0.94912 0.65878 0.71667 0.87629 0.85959 0.90551 0.86567

FNR 0.11601 0.36893 0.58252 0.17476 0.1877 0.25566 0.24919
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classifier + SSU-BES have acquired high accuracy for mean scenario. Thus, it is proved 
that the proposed optimization strategy gives high efficiency on solving the optimiza-
tion issue with respect to accurate recognition. The individual improvement in DBN and 
entropy features adds additional efficiency to get the accurate recognition of emotions.

Convergence study

The cost examination of SSU-BES technique over SSO, BES, DHOA, BWO and HHO 
is exposed in Fig. 9. This is because, optimization plays a vital role in this work, and the 
cost was analyzed for varied iterations. In particular, a less cost of 1.06 is acquired by 
SSU-BES from 12th to 25th iteration. As we have done enhancements in optimization, 

Table 2  Analysis on classifiers using arousal case

Metrics Tri classifier + SSU-
BES

SVM [2] TQWT [9] LSTM DBN CNN RNN

Sensitivity 0.93913 0.74576 0.5113 0.84463 0.82392 0.98305 0.83333

FDR 0.062229 0.29223 0.26423 0.17403 0.10469 0.30952 0.31395

Precision 0.93777 0.70777 0.73577 0.82597 0.89531 0.69048 0.68605

FPR 0.072881 0.38112 0.22727 0.22028 0.11417 0.54545 0.47203

F1-Score 0.93845 0.72627 0.60333 0.8352 0.85813 0.81119 0.75255

MCC 0.86636 0.36766 0.29029 0.62624 0.7072 0.53183 0.38257

FNR 0.06087 0.25424 0.4887 0.15537 0.17608 0.016949 0.16667

Specificity 0.92712 0.61888 0.77273 0.77972 0.88583 0.45455 0.52797

NPV 0.92712 0.61888 0.77273 0.77972 0.88583 0.45455 0.52797

Accuracy 0.93359 0.68906 0.62813 0.81563 0.85225 0.74687 0.69688

FOR 0.072881 0.38112 0.22727 0.22028 0.11417 0.54545 0.47203

Table 3  Statistical study for valence case

Metrics SVM [2] TQWT [9] Tri 
classifier + SSO

Tri 
classifier + BES

Tri 
classifier + DHOA

Tri 
classifier + BWO

Tri 
classifier + HHO

Tri 
classifier + SSU-
BES

Standard 
Devia-
tion

0.17689 0.25477 0.36446 0.34908 0.36945 0.34208 0.36528 0.43297

Variance 0.031289 0.064906 0.13283 0.12186 0.13649 0.11702 0.13343 0.18746

Mean 0.5123 0.49631 0.5844 0.57921 0.57657 0.57072 0.57479 0.60746

Best 0.69486 0.84592 0.89124 0.87613 0.92749 0.89124 0.92447 0.95659

Worst 0.30514 0.15408 0.10876 0.12387 0.072508 0.10876 0.075529 0.043413

Table 4  Statistical study for arousal case

Metrics SVM [2] TQWT [9] Tri 
classifier + SSO

Tri 
classifier + BES

Tri 
classifier + DHOA

Tri 
classifier + BWO

Tri 
classifier + HHO

Tri 
classifier + SSU-
BES

Standard 
Devia-
tion

0.18996 0.21909 0.3315 0.33749 0.3309 0.33514 0.32686 0.43286

Variance 0.036085 0.047998 0.10989 0.1139 0.10949 0.11232 0.10683 0.18737

Mean 0.52573 0.50198 0.58391 0.58238 0.58533 0.58434 0.58291 0.61258

Best 0.74576 0.77273 0.9096 0.87853 0.92655 0.90395 0.91243 0.93913

Worst 0.25424 0.22727 0.090395 0.12147 0.073446 0.096045 0.087571 0.06087
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the approach has resulted in less cost values. Thus, the better convergence is proved by 
the model. It is clear that, as the iteration increases, the minimal convergence attained. 
During the initial convergence, even the proposed algorithm shows high error rate. 
But, as the iterations increased, the error gets minimized, and finally, the least error is 
obtained by the proposed algorithm.

Ablation study

The ablation analysis of proposed tri-classifier + SSU-BES is given in Tables  5 and 6. 
Here, the variation of models with conventional feature and proposed feature is deter-
mined. Also, the variation with conventional DBN is also given. A high accuracy of 
0.92188 is gained for tri-classifier + SSU-BES that was higher over proposed + con-
ventional entropy, proposed + conventional DBN and proposed + no optimization 
for valence case. Likewise, FOR metric for proposed work are less than other variants. 

Fig. 9  Convergence analysis of SSU-BES technique over compared ones

Table 5  Evaluation of proposed over other features for valence case

Metrics Tri 
classifier + SSU-
BES

Proposed + Conventional 
entropy

Proposed + Conventional 
DBN

No optimization

FDR 0.050877 0.1958 0.41348 0.34395

Sensitivity 0.88399 0.37217 0.84466 0.33333

FOR 0.043413 0.084592 0.55589 0.16314

Accuracy 0.92188 0.65312 0.6375 0.59375

MCC 0.84484 0.34498 0.31351 0.19765

FPR 0.043413 0.084592 0.55589 0.16314

Specificity 0.95659 0.91541 0.44411 0.83686

F1-Score 0.9154 0.50885 0.69231 0.44206

NPV 0.95659 0.91541 0.44411 0.83686

Precision 0.94912 0.8042 0.58652 0.65605

FNR 0.11601 0.62783 0.15534 0.66667
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Finally, it is proved that the proposed concept with improved feature set and improved 
loss evaluation results with increased accuracy.

Conclusion
This work proposed an EEG recognition model, where the input signal was pre-pro-
cessed using Band pass filter. Then, the features like “DWT, band power, spectral flat-
ness, and improved entropy were extracted”. Further, for recognition, tri-classifiers like 
“(LSTM, improved DBN and RNN)” were used. Also to enhance tri-model classifier per-
formance, the weights of LSTM, improved DBN, and RNN were optimally tuned by the 
new model named as SSU-BES. The analysis of tri-classifier + SSU-BES over varied clas-
sifiers was done for valence case and arousal case. Here, Tri classifier + SSU-BES have 
accomplished high values for positive metrics, while, less values for negative metrics. 
The FDR attained by Tri classifier + SSU-BES at 80th LR was lesser than FDR attained by 
Tri classifier + SSU-BES at other LRs for valence case. The FNR attained by tri-classifier 
+ SSU-BES at 90th LR was lesser than FNR attained by tri-classifier + SSU-BES at other 
LRs for valence case.

In future, large datasets have to be involved. And, as contrast to the image processing-
based method, emotion identification utilizing EEG signals needs a multidisciplinary set 
of abilities from the fields of engineering, computer science, psychology, and neurosci-
ence. But to move beyond the capabilities of the present algorithms for emotion identifi-
cation, it is necessary to make new discoveries in neuroscience and psychology or to use 
a multi-modal strategy that blends EEG-based emotion recognition models with tech-
niques based on picture processing. There is also a need to develop Uncertainty Quan-
tification (UQ) methods that can be used to explain the uncertainty in deep learning 
models and can handle complex, high-dimensional datasets. EEG does have a very high 
temporal resolution but a relatively lower spatial resolution. So, the precise classification 
can be gained by integrating EEG with some higher spatial resolution signals such as 
NIRS and fMRI.

Table 6  Evaluation of proposed over other features for arousal case

Metrics Tri 
classifier + SSU-
BES

Proposed + Conventional 
entropy

Proposed + Conventional 
DBN

No optimization

NPV 0.92712 0.91541 0.44411 0.83686

Accuracy 0.93359 0.65312 0.6375 0.59375

FPR 0.072881 0.084592 0.55589 0.16314

Sensitivity 0.93913 0.37217 0.84466 0.33333

MCC 0.86636 0.34498 0.31351 0.19765

FNR 0.06087 0.62783 0.15534 0.66667

Specificity 0.92712 0.91541 0.44411 0.83686

FDR 0.062229 0.1958 0.41348 0.34395

F1-Score 0.93845 0.50885 0.69231 0.44206

Precision 0.93777 0.8042 0.58652 0.65605

FOR 0.072881 0.084592 0.55589 0.16314
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Abbreviation
ANN	� Artificial neural network
BWO	� Black widow optimization
BES	� Bald eagle search
BiDCNN	� Bi-hemisphere discrepancy CNN
BPF	� Band pass filter
CFC	� Cross-frequency coupling
CNN	� Convolutional neural network
DHOA	� Deer hunting optimization
DWT	� Discrete wavelet transforms
DL	� Deep learning
DT	� Decision tree
DBN	� Deep belief network
EEG	� Electroencephalography
FFP	� Fractal Firat pattern
GL	� Greedy learning
HHO	� Harris hacks optimization
k-NN	� K-nearest neighbor
HCI	� Human–computer interaction
LSTM	� Long short term memory
LDA	� Linear discriminate analysis
LR	� Learning rate
MLF-CapsNet	� Multi-level features guided capsule network
ML	� Machine learning
MAEL	� Mean absolute error loss
RNN	� Recurrent neural networks
RFE	� Random forest ensemble
RF	� Random forest
SSU-BES	� Shark smell updated BES optimization
SVM	� Support vector machine
SSO	� Shark smell optimization
TOPO-FM	� Topographic and holographic
TQWT	� Tunable Q wavelet transform
WT	� Wavelet transform
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