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Abstract 

Background: Deep generative models naturally become nonlinear dimension reduc-
tion tools to visualize large-scale datasets such as single-cell RNA sequencing datasets 
for revealing latent grouping patterns or identifying outliers. The variational autoen-
coder (VAE) is a popular deep generative method equipped with encoder/decoder 
structures. The encoder and decoder are useful when a new sample is mapped 
to the latent space and a data point is generated from a point in a latent space. How-
ever, the VAE tends not to show grouping pattern clearly without additional annota-
tion information. On the other hand, similarity-based dimension reduction methods 
such as t-SNE or UMAP present clear grouping patterns even though these methods 
do not have encoder/decoder structures.

Results: To bridge this gap, we propose a new approach that adopts similarity infor-
mation in the VAE framework. In addition, for biological applications, we extend our 
approach to a conditional VAE to account for covariate effects in the dimension reduc-
tion step. In the simulation study and real single-cell RNA sequencing data analyses, 
our method shows great performance compared to existing state-of-the-art methods 
by producing clear grouping structures using an inferred encoder and decoder. Our 
method also successfully adjusts for covariate effects, resulting in more useful dimen-
sion reduction.

Conclusions: Our method is able to produce clearer grouping patterns than those 
of other regularized VAE methods by utilizing similarity information encoded 
in the data via the highly celebrated UMAP loss function.
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Background
Deep generative models [1–3] have been naturally utilized for large-scale biological 
datasets such as RNA-sequencing data [4–8]. The generative models assume lower-
dimensional latent random variables and map them to high-dimensional data. Under 
these models, the inverse mapping of high-dimensional data to lower-dimensional 
embeddings can be used as a nonlinear dimension reduction tool.

Among the deep generative models, the variational autoencoder (VAE) [9] and the 
generative adversarial network (GAN) [10] have been widely investigated. In a VAE, 
probabilistic hierarchical models are used with the encoder/decoder structure. The 
encoder is an approximation of the posterior distribution, which maps high-dimensional 
data to the lower-dimensional embedding, and the decoder is the data distribution func-
tion that matches the lower-dimensional embedding to the high-dimensional data. In 
a GAN, generative mapping is inferred by optimizing a min-max problem. GAN in its 
original form is not equipped with an encoder because its best use is in generating real-
istic data. Although it can be trained with an auxiliary encoder, as in [11, 12], we do not 
pursue GAN in this work because our study showed that, compared to GAN, VAE tends 
to yield a more stable latent representation.

On the other hand, similarity-based dimension reduction tools show excellent perfor-
mance and have been widely adopted, as evidenced by t-distributed stochastic neighbor 
embedding (t-SNE) [13] and uniform manifold approximation and projection (UMAP) 
[14]. These methods present a clear grouping structure, although it is not equipped with 
the encoder/decoder structure, which makes new sample extensions of the methods 
challenging.

To bridge this gap, we propose a new method, a similarity-assisted variational autoen-
coder (saVAE), which adopts similarity information in the framework of the VAE. We 
pursue this by adding pull-push regularization to the evident lower bound of the likeli-
hood function. Our method produces a powerful latent representation superior to both 
VAE and similarity-based approaches. Besides this, for single-cell RNA sequencing data 
applications, a meaningful group pattern can be easily disguised by many other covari-
ates such as donor or batch effects. We thus extend our approach to the conditional VAE 
(CVAE) to adjust for such covariate effects.

Our contributions are (1) formulating an objective function that combines similarity-
based and model-based approaches to promote a type of dimension reduction that best 
reflects hidden structures in data without informative priors, (2) adjusting for covariates 
in the dimension reduction step so that the meaningful lower dimensional representa-
tion is not disguised by the covariate effects, and (3) comparing our methods to state-of-
art dimension reduction methods.

Results
Overview of saVAE

Our saVAE aims at combining the objective functions of VAE and UMAP (see Meth-
ods). The VAE training requires estimating two sets of parameters involved with the 
encoder and decoder. On the other hand, UMAP is a non-parametric method to directly 
infer individual embeddings. Thus it is not trivial to integrate UMAP into the VAE 
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framework. To resolve this problem, we connect the two objective functions by utiliz-
ing the expected UMAP loss function, because the expectation of the UMAP loss is 
the function of the decoder parameters. Our model is summarized in Fig. 1. There are 
several important computational challenges in combining these two methods, such as 
implementing batching schemes and balancing the convergence of the two approaches. 
These issues are further discussed in the Methods section.

When there are external covariates available, they need to be included in the model 
to remove extra sources of variation. For example, in a single-cell RNA sequencing data 
analysis, differences in batches or donors may induce extra groupings. To address the 
covariates, we utilize CVAE, which models covariate effects with an additional multi-
layered perceptron (MLP). We then regularize the CVAE with the expected UMAP loss 
function, called saCVAE.

In summary, our method has the following advantages: (1) saVAE bridges the paramet-
ric method with the nonparametric one by computing the posterior expectation of the 
nonparametric latent variables. (2) By using batches with carefully sampled pairs, saVAE 
becomes scalable to handle large-scale datasets. (3) Differences in algorithmic con-
vergence are balanced using a regularization parameter and by adopting proportional 
updates, which removes extra groups in inferred latent structures.

Synthetic data analysis

We first present the synergies obtained by combining VAE and UMAP with a simu-
lated dataset. The dataset is generated following the sklearn API [15], called the two 
moons dataset. As shown in Fig. 2a, the dataset consists of two interweaving half circles 
in a two-dimensional space. Each half-circle has 2000 points and becomes a class. The 
sklearn method sklearn.datasets.make_moons generates the exact same data-
set, with noise = 0.05 and random_state = 42.

The embeddings inferred from VAE, UMAP, and saVAE are presented in Fig. 2d–f, 
respectively. The VAE learns neither meaningful latent representation nor accurate 

Fig. 1 Overview of saVAE. Our saVAE connects the VAE and UMAP objective functions by utilizing the 
expected UMAP loss function, which yields a dimension reduction result with a more informative grouping 
structure
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reconstruction. On the other hand, the UMAP yields a latent representation reveal-
ing two half-circles but does not show the interweaving features between them. 
Our saVAE captures the interweaving half-circles accurately. Unlike UMAP, VAE 
and saVAE can produce the reconstructed data points via the inferred decoder. The 
reconstructed points are compared in Fig. 2b, c. The saVAE’s reconstruction is much 
closer to the original than VAE’s. This simulation study clearly shows the benefits of 
saVAE, which are that it inherits the structure of VAE while incorporating the power 
of the UMAP method.

MNIST data analysis

The deep clustering via a Gaussian-mixture variational autoencoder with graph 
embedding (DGG) [16] is perhaps the most similar approach to our saVAE: it 
inferred the latent representation using the variational deep embedding (VaDE) [17] 
model with distance regularization. A detailed discussion of the approach is in the 
Related Works section. We compare the embeddings from DGG and saVAE as well 
as UMAP to illustrate the differences among the methods.

The MNIST dataset consists of 60k digit images from 0 to 9. Each data point is 
in the form of a 28 × 28 matrix whose entries are values in the set [0,255]. Dividing 
the whole dataset by the maximum value 255, all values are in [0,1]. We binarize the 
resulting values to use a Bernoulli model (6).

In Fig.  3, the UMAP in general separates the groups accurately (Fig.  3a), except 
for two clusters that needed to be further separated. The DGG forms almost perfect 
groups in the latent space (Fig. 3b), yet the gap between the two clusters (digits 4 and 
9) is still slim. The saVAE shows perfect groups in the latent space, including digits 4 
and 9 (Fig. 3c).

Fig. 2 Method comparison using two moons dataset. The saVAE performs better than either VAE or UMAP in 
terms of finding meaningful latent embeddings and producing accurate reconstruction
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Single‑cell RNA sequencing data analysis when there is no covariate

We compare our saVAE to UMAP, scvis [18], single-cell Variational Inference 
(scVI)  [6, 19], and Ivis [20] as these approaches have available code with excellent 
performance. The following two datasets are used: (1) cortex [21] and (2) peripheral 
blood mononuclear cells (PBMC) [22]. The cortex dataset is from the cortex cells of 
mice. The number of cells is 3005 with seven cell types. The PBMC dataset is one 
of the most commonly used biological datasets. For example, the dataset is used for 
immunology [23], regenerative medicine [24], and drug discovery [25]. The number of 
cells is about 12k, and there are nine cell types. We remark that the PBMC dataset is 
comprised of two batches of PBMCs (4K PBMCs and 8K PBMCs), but we did not use 
the batch information because its effect was negligible (see Additional file 1: Figure 
S1). For both datasets, we used 1200 genes selected by using the highest varying genes 
(HVGs) method [26]. We then compared the inferred embeddings visually as well as 
quantitatively.

For quantitative evaluation, we compare clustering accuracy after performing cluster-
ing on inferred embeddings. The embedding with higher clustering accuracy is accepted 
as a better one. As clustering methods, we consider Kmeans [27] and DBSCAN [28] 
methods. The Kmeans method is a widely used clustering algorithm, but it can capture 
only spherically shaped clusters. To avoid this limitation, DBSCAN is utilized because 
it is another well-known clustering method capable of capturing non-spherical clus-
ters. We applied both clustering algorithms to inferred latent embeddings and reported 
the better clustering result. Here, clustering performance is compared using the aver-
age of the Adjusted Rand Index (ARI) [29] and Normalized Mutual Information (NMI) 
[30]. In this way, the clustering comparison does not depend on the choice of clustering 
method. The DBSCAN heavily depends on its parameters (eps and min sample). Thus, 
we searched for parameters that yield the highest average of ARI and NMI.

The embeddings using the cortex and the PBMC datasets are presented in Figs. 4 
and 5, respectively. In the cortex data, saVAE shows a clear separation of groups. In 
the PBMC dataset, the embeddings from our saVAE are superior to those from the 
other two methods in terms of establishing clusters: CD8 T cells are separated from 
CD4 T cells, and Dendritic cells and FCGR3A+ Monocytes move away from CD14+ 
Monocytes. The findings from visual inspection are confirmed in Fig.  6, where our 
saVAE showed higher ARI and NMI values than UMAP, scvis, Ivis, and scVI.

Fig. 3 Embeddings from MNIST dataset. a The UMAP in general separated the groups accurately except 
for two clusters that needed to be further separated. b The DGG formed almost perfect groups in the latent 
space, yet the gap between the two clusters (digits 4 and 9) was still slim. c The saVAE showed perfect groups 
in the latent space including digits 4 and 9
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Single‑cell RNA sequencing data analysis when there are covariates

We compare our method to others using single-cell RNA sequencing datasets when 
covariates are available. The following two datasets are used: (1) the retina [31] and (2) 
the heart cell atlas [32] datasets. The retina dataset consists of bipolar cells that exist 
between photoreceptors and ganglion cells. It contains 20k cells with fifteen cell types in 
two batches. The original heart cell atlas data consists of 486k cells with fourteen donors 
of age 40–75. We randomly sample 20k cells and use 4 covariates (cell source, donor, 
percent mito, and percent ribo). The first two covariates are categorical variables with 4 
and 14 levels, respectively, and the others are continuous ones.

Fig. 4 Embeddings from cortex dataset. Compared to other methods, saVAE and scvis show better 
performance in separating groups

Fig. 5 Embeddings from PBMC dataset. The embeddings from our saVAE are superior to those from the 
other two methods in terms of establishing clusters: CD8 T cells are separated from CD4 T cells, and Dendritic 
cells and FCGR3A+ Monocytes move away from CD14+ Monocytes
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When fitting saCVAE, the CVAE framework is first applied to the training data. The 
resulting latent embeddings are then used for computing the similarity weights of the 
UMAP loss function. The details of saCVAE are in the Method section. Among other 
existing methods, scVI is the only one that adjusts for covariate effects. We thus com-
pare our approach to scVI, not to scvis or Ivis.

Figures 7 and 8 show that embeddings from UMAP, scVI, and saCVAE, where saC-
VAE tends to group cell types more accurately. In the retina dataset, saCVAE com-
pletely separates BC3A and BC3B cells. In the heart cell atlas dataset, scVI groups a 
part of neuronal cells as endothelial cells, whereas saCVAE correctly separates them. 

Fig. 6 Performance comparison. Our saVAE performs better than UMAP, scvis, Ivis, and scVI. The box plots 
were created from 10 trials

Fig. 7 Embeddings from retina dataset The UMAP fails to separate the cell groups. The scVI shows better 
separation, but there remain several groups that need to be pushed away. The saCVAE completely separates 
cell types, e.g., BC3A and BC3B

Fig. 8 Embeddings from heart cell atlas dataset. The UMAP fails to separate the cell groups. The scVI groups a 
part of neuronal cells as endothelial cells, whereas saCVAE correctly separates them
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Figure  9 demonstrates this finding with the accuracy measures. Our saCVAE yields 
much higher ARI and NMI than the other methods.

Conclusion
In this work, we proposed saVAE, a variant of VAE reflecting the similarity of data in 
the latent space. Moreover, we extended our approach to CVAE to adjust for biologi-
cal covariate effects. Finally, we illustrated that saVAE is superior to other nonlinear 
dimension reduction methods through the various applications to synthetic and real-
world datasets. However, saVAE heavily relies on the quality of a similarity table, so 
the distance metric needs to be selected carefully. Furthermore, our saVAE has higher 
computation complexity ( O(N 2) ) than a vanilla VAE (O(N)) as it unifies two different 
approaches. Here N represents the number of samples. To alleviate this problem, we 
used computational techniques of the negative sampling and the update ratio balancing. 
In the case of saCVAE, it is a two-stage method that may severely depend on the per-
formance of the first-stage approach. When the first stage incurs bad errors, the second 
stage cannot correct that. Our future work will deal with the mentioned challenges.

Methods
VAE

VAE is an approach for approximating a generative model. A typical generative model 
uses a latent variable z and an observable variable x, and the probability density function 
of pθ (x) is obtained by pθ (x|z)pθ (z)dz . Often, the marginal probability distribution 
involves intractable integration; the variational lower bound is also utilized.

Here qφ(z|x) is a variational distribution that approximates the posterior distribution 
pθ (z|x) . This lower bound is called the evidence lower bound (ELBO).

The Monte Carlo approximation [33] is widely adopted to compute the expectation 
of the loss (1), as in [34]. The sampling process does not interfere with computing the 

(1)log pθ (x) ≥ Eqφ(z|x) log
pθ (z, x)

qφ(z|x)
= Eqφ(z|x) log pθ (x|z)− Eqφ(z|x) log

qφ(z|x)

pθ (z)

Fig. 9 Performance comparison. Our saCVAE formulation effectively eliminates the covariate effects, 
resulting in a better cell-type clustering performance. The box plots were created from 10 trials
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gradient with respect to θ . However, the gradient computation with respect to φ is not 
feasible when the parameters are integrated with the random samples.

To eliminate this problem, [9] introduced the following reparametrization trick. 
Assuming qφ(z|x) is a form of a Gaussian variable, the variable z can be written as 
z = µφ(x)+ σφ(x)⊙ ǫ where ǫ ∼ N (0, 1) and ⊙ denote the element-wise product. 
Now, we obtain

The last expectation is still subject to the law of the auxiliary variable ǫ , so we can apply 
the Monte Carlo approximation to the Eq. (2). Therefore, in practice, the VAE is trained 
with the reparametrization trick. For more details, see [9]. Here, µφ and σφ take the form 
of MLPs, called encoder networks. The likelihood pθ (x|z) plays the role of the decoder. 
The VAE algorithm is shown in Algorithm 1.

Algorithm 1 Algorithm of VAE

UMAP

UMAP is one of the most popular dimension reduction algorithms in the data-science 
field [35–38]. The algorithm consists of two primary steps: computing the similarity 
weights among the data and finding lower-dimensional embeddings that best match 
the computed similarity weights. What follows is a specific description of the UMAP. 
We denote the k-nearest neighbors by {xij }

k
j=1 for each observation xi . The distance 

between observations is transformed to the following weight

where ρi is the positive minimum distance from xi , and σi is the normalizing factor. The 
symmetrized weight µij = w(xi, xj)+ w(xj , xi)− w(xi, xj)w(xj , xi) becomes the target 
similarity between xi and xj . In the optimization step, the following objective function is 
solved

(2)
∇φEqφ(z|x) log pθ (x|z) = ∇φEǫ∼N (0,1) log pθ (x|µφ(x)+ σφ(x)⊙ ǫ)

= Eǫ∼N (0,1)∇φ log pθ (x|µφ(x)+ σφ(x)⊙ ǫ)

w(xi, xj) =

{

exp
(

−max(0,d(xi ,xj)−ρi)

σi

)

for j ∈ {i1, ..., ik}

0 otherwise,
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where a and b are hyperparameters. The UMAP finds the embedding to best reproduce 
the target similarities µij.

The optimization is not scalable for large data, because the computational complexity 
of (3) is proportional to the square of the size of the data due to the double summation. 
The following sampling scheme [39] is used to relieve the computational problem. For 
an embedding yi , one neighbor yj with µij > 0 is sampled. The sample is called a posi-
tive sample. Additionally, M ≪ N  embeddings are randomly sampled; these are called 
negative samples, and are used when the double summation of (3) is computed. The use 
of negative samples reduces the computational cost of the algorithm to O(NM). Further 
details for the optimization step can be found in [14, 40].

saVAE

Our saVAE approach bridges VAE and UMAP using a regularization framework. 
Directly combining the VAE objective with the UMAP loss is not feasible for the fol-
lowing three reasons. First, the optimization arguments of VAE and UMAP are not the 
same because VAE optimizes its MLP parameters, while UMAP finds lower dimensional 
embeddings. Second, in the stochastic gradient algorithm, VAE uses a single data point, 
whereas UMAP uses a pair of data points. Third, the algorithmic convergence rates of 
the two are quite different, requiring careful balancing.

To address the first problem, we make the UMAP loss a function of the MLP parame-
ters shared with the VAE. Specifically, assuming the embeddings are from the variational 
distribution, the lower dimensional similarities are replaced with their expectations 
qφ(z|x) . Our loss function is then as follows:

where ν̃ij =
[

Eqφ(z|xi)Eqφ(z′|xj)
1

1+a�z−z′�2b

]

 and �(> 0) is a weight.

Here, the influence on the parameters of the conditional density function of z|x is 
informed by the precomputed high dimensional similarities µij . The similarity informa-
tion then affects the VAE inference when the parameters are shared. The regularizer not 
only makes a more well-grouped representation of the data but also assists the generator 
pθ (x|z) to reconstruct better with reliable similarity information. If the similarity is not 
reliable, the regularization hurts the reconstruction performance, and the inference net-
work will correct the variational distribution to modify the embeddings. In either case, 
the variational distribution is adjusted to make the loss (4) decrease. Hence, the two loss 
functions will have positive influences on each other during the training. Our model is 
visualized in Fig. 10.

(3)

min
{yi}

n
i=1

−
∑

i

∑

j �=i

(

µij ln

(

1

1+ a�yi − yj�2b

)

+ (1− µij) ln

(

1−
1

1+ a�yi − yj�2b

))

,

(4)
− Eqφ(z|x) log pθ (x|z)+ Eqφ(z|x) log

qφ(z|x)

pθ (z)

− �

∑

i

∑

j �=i

µij ln(ν̃ij)+ (1− µij) ln(1− ν̃ij),
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The second problem is resolved by the following implementation. In the application 
of the stochastic gradient descent algorithm, the VAE is usually trained using a mini-
batch, whereas the UMAP is based on sampling (especially pairs). So there is no natural 
way to implement them simultaneously. To resolve this problem, for each data point xi 
in a mini-batch, we sample Pi positive data (x1i , ..., x

Pi
i ) , where Pi is the number of posi-

tive samples, according to the precalculated similarities with xi ; we then concatenate xi 
with xji so that we obtain a paired dataset {(xi, x

j
i)}

Pi
j=1 , which can be used as input for 

the UMAP. In this case, the VAE inference is made using the unpacked data by treating 
{xi, x

1
i , xi, x

2
i , ..., xi, x

Pi
i } as a mini-batch. In contrast to the UMAP, the negative samples of 

xi are randomly taken from the augmented mini-batch {xji}i,j.
The third problem is solved by the selection of an appropriate � in (4) and the intro-

duction of parameter update frequencies. Specifically, we select � as the largest value 
that decreases the VAE loss. Motivated by [41], we further introduce the pre-defined 
number I, which has the role of controlling the update frequencies. That is, the UMAP 
loss is updated I times per update of the VAE loss. This value strikes a balance between 
VAE and UMAP, and reduces the training time. With these two hyperparameters � and 
I, the convergence rates of the two losses become similar. Our saVAE algorithm is pre-
sented in Algorithm 2.

The specific probability density functions adopted in our method are as follows.

(5)pθ (z) = N (0, I),

(6)pθ (x|z) =







Bernoulli(µθ (z)) or
N (µθ (z), I) or
NegativeBinomial(µθ (z), r)

Fig. 10 Graphical model of our saVAE. All plain arrows are multi-layered perceptrons, except for the curved 
one. The curved arrow reflects the similarities among positive samples in the latent space. The dotted arrows 
represent the process of making the paired samples according to the precalculated similarity table of the 
observed data. The gray circles are observable; the white ones are not. The variable z is computed using the 
reparametrization trick [9], that is, z = µ+ ǫ ⊙ σ , where ǫ ∼ N(0, I) . Here, h is a hidden variable, and s is an 
optional input. See Methods section
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where the bold symbols denote the vector or pre-defined parameters and the sub-
indexed symbols are the neural network parameters. The distribution of pθ (x|z) is 
dependent on the datatypes, which include Bernoulli, Gaussian, and Negative Binomial 
distributions. When the prior and variational distributions are assumed to be the Gauss-
ian distribution of (5) and (7), the negative KL divergence can be computed as follows:

where J is the dimension of the latent space and (·)j is the jth component.

Algorithm 2 Algorithm of saVAE

saCVAE

In biological applications including single-cell RNA sequencing data analyses, to find a 
meaningful latent representation, it is important to adjust for additional covariates. For 
example, hundreds of cells are collected from a donor, and accounting for the donor-to-
donor variations is crucial in the dimension reduction step. Other sources of variability 

(7)qφ(z|x) = N (z;µφ(x), diag[σ
2
φ(x)])

−DKL(pθ (z) � qφ(z|x)) =
1

2

J
∑

j=1

[

1+ log(σ 2
φ(x))j − (µ2

φ(x))j − (σ 2
φ(x))j

]
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include laboratory conditions, individual characteristics, and instruments used in exper-
iments. These batch-specific effects need to be adjusted to yield an informative latent 
representation.

The CVAE [42] accounts for such covariate effects. Specifically, for the provided covar-
iate s, the loss function of the CVAE is given by

The notation |s means that the given covariate s, the inputs of the neural network is 
concatenated into s. If it is categorical, we transformed it into a one-hot encoded vec-
tor before inputting the network. After training, a fixed value s0 is used for a covariate 
shift; in other words, a sample from the distribution qφ(z|x, s0) is used as a corrected 
sample. For example, in Fig. 11, we present the latent representations without batch cor-
rection using single-cell RNA sequencing data obtained from the retina. We then use 
CVAE to estimate the conditional distribution for the covariate shift and visualize the 
latent representations after adjusting for the covariate effects. The additional separation 
disappears, suggesting that the grouping comes from the covariate differences. From our 
experiments across diverse datasets, we found that the CVAE successfully eliminates 
variabilities from the covariates. We also found that the batch correction is more effec-
tive when we use qφ(z|x) in (8) instead of qφ(z|x, s0) . It appears that covariate shift con-
stantly occurs during the training of qφ(z|x) . In our paper, we used qφ(z|x) to adjust for 
covariate effects.

(8)−Eqφ(z|x,s) log pθ (x|z, s)+ Eqφ(z|x,s) log
qφ(z|x, s)

pθ (z)
.

Fig. 11 Embeddings from retina dataset. VAE and CVAE are applied to the retina dataset. From a and c, we 
find that the retina dataset is subject to a covariate effect, which causes additional groupings beyond the cell 
types. As shown in b and d, after the correction with CVAE, the covariate effect is well resolved. In c and d, the 
labels 0 and 1 represent the batch ID
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Replacing the VAE loss function with CVAE loss alone does not solve the covari-
ate problem in our framework, because the similarity weights in the UMAP loss func-
tion are still subject to covariate effects. To solve this problem, we propose a two-stage 
approach in which similarity weights are computed via the covariate-adjusted embed-
dings from the first round CVAE and, in the second step, the CVAE with the UMAP loss 
function is trained. Our final objective function of the saCVAE is given as follows:

where µ̃ij is the weight computed from the covariate-adjusted embeddings and ν̃ij and � 
are defined in the previous section.

Related works
To the best of our knowledge, the first attempt at bridging the VAE to similarity-
based dimension reduction was variational manifold probabilistic linear discri-
minant analysis (vm-PLDA) [43]. However, the probability model for the data was 
limited to linear factor models that cannot be easily extended to other discrete 
datasets. Later, scvis [18] used the objective of non-linear dimensional reduction 
to regularize the latent space of VAEs. More precisely, it captured underlying low-
dimensional structures in a given dataset by imposing the t-SNE objective on the 
latent space of the VAEs to achieve a more compressed representation of the data. 
Because this method employs parametric mapping from the high-dimensional space 
to a low-dimensional embedding, it is possible to naturally add new data points to a 
learned latent space. On the other hand, this method still inherits the limitations of 
t-SNE. In addition, [16] proposed deep clustering via a Gaussian-mixture variational 
autoencoder with graph embedding (DGG); this method inferred the latent repre-
sentation using the VaDE model with distance regularization. The authors selected 
the Jenson-Shannon (JS) divergence as a distance between two density functions. 
The computation, however, was not feasible, so they relaxed it to its upper bound 
to promote computational efficiency. Additionally, they trained a Siamese network 
[44, 45] to better learn the similarities among the observed data. This led to robust 
and excellent performance. One problem in DGG is that it is not equipped with a 
controlling parameter because the upper bound is derived under only one particular 
set-up.

In scRNA-seq analysis, VAE-based models have successfully performed many tasks, 
such as imputation, batch correction, clustering, dimension reduction, and prediction 
[4–6, 8, 18, 46–48]. Dhaka [46] is one of the standard VAE-based methods for scRNA 
data, specializing in tumor cell identification. In scVAE [5], the variational approxima-
tion is improved by using a mixture of Gaussian distributions. Yet the number of mix-
ture components needs to be optimally selected, which may be challenging in actual 
application. VASC [4] introduced a zero-inflated layer into VAE for modeling dropout 

− Eqφ(z|x) log pθ (x|z, s)+ Eqφ(z|x) log
qφ(z|x)

pθ (z)

− �

∑

i

∑

j �=i

µ̃ij ln(ν̃ij)+ (1− µ̃ij) ln(1− ν̃ij),
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events in scRNA data. Empirically, however, the estimates exhibited large variabilities. 
In netAE [47], a VAE-based cell-type prediction model was developed, which utilizes 
the modularity measures. The approach requires a well trained classifier to guarantee 
its efficiency. A specialized method, bmVAE [48], is proposed for genotype prediction 
by integrating VAE, GMM, and Gibbs sampling. Its actual application requires special 
attention because doublets or triplets may appear in tumor data. Finally, scVI [6] is a ver-
satile tool for various tasks and commonly used as a baseline model in [49]. As a result, 
performance in each task requires data-specific adjustments.

Transcriptome data preprocessing

Because these transcriptomes have many features (or genes), the outlier removal 
and feature selection were conducted via the HVGs method [26]. We used 1200 
screened features (see Additional file  1: section B for more discussions). We use 
the Negative Binomial distribution (6) because it is a common assumption of 
single-cell RNA-sequencing modeling. As a variational distribution, we used 
qφ(z|x) = N (z;µφ(log(1+ x)), diag[σ 2

φ(log(1+ x))]) ). We found that this particular 
choice produced the best results throughout the experiments. For the retina and heart 
cell atlas, some covariate information is available. We used the CVAE to adjust for covar-
iates, as described in the saCVAE section.

Implementation details

In the implementation, the multi-layered perceptrons used in the VAE consist of three 
fully connected layers with ReLU [50] activation. The multi-layered perceptrons in 
the CVAE have only one fully-connected layer with ReLU, BatchNormalization [51], 
and Dropout [52]. The expectation in Equation (4) was computed via the Monte Carlo 
method with a single sample [33], and the network weights were trained using the Adam 
optimizer [53] with the learning rate of 0.001 and the batch size of 128. The parameters 
in UMAP are the number of nearest neighbors and the min-dist, which are specified 
in the lower-dimensional similarity functions. We set K = 30 and min-dist = 0 , which 
showed the best performance in our experiments. Table 1 summarizes the hyperparam-
eters used in our experiments.

Table 1 Hypermarameters used in the model

The choice of � and I is discussed on Additional file 1: section C

Hyperparameters Datasets

Synthetic MNIST Cortex PBMC Retina Heart cell atlas

Distribution Gaussian Binoimal NB NB NB NB

Latent dimension 2 10 10 10 10 10

Hidden dimension 20 512 512 512 512 512

Weight � 103 103 103 103 103 103

Iteration ratio I 5 5 5 5 5 5

Covariate effects No No No No Yes Yes

(CVAE) Hidden dimension None None None None 128 128
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For real-world datasets, our model was compared to UMAP1 [14], DGG2 [16], scvis3 
[18], Ivis4 [20], and scVI5[6, 19]. These baseline models were utilized to find latent 
representations of the various datasets.

The MNIST dataset is different from other single-cell RNA sequencing datasets in 
its likelihood specification. The available DGG code works only on the MNIST dataset 
(because DGG exploits a pre-trained VaDE and the author provided only the trained 
parameters of the MNIST without the training code), while the scVI code cannot be 
used for the MNIST dataset. When not available, those methods are not included in 
the comparison. Because the retina and heart cell atlas datasets are subject to covariate 
effects, we compared our methods with scVI because it is the only other method that 
is equipped with covariate adjustment. Lastly, the implementation of the scvis was too 
outdated to be modified: to alleviate the computational burden, we used PCA to reduce 
the dimension of the features to 100. We also fixed the degree of freedom of the t-distri-
bution at one; the t-distribution was used as the similarity criterion of the scvis method.

For a fair comparison, all methods were trained to learn ten-dimensional latent 
embeddings. We set the hyperparameters of the UMAP to be the same as those of 
saVAE by setting K = 30 and min-dist = 0 . scVI supports many implementation 
options. We set the likelihood and library size availability at NB and False, respec-
tively. The rest of the baseline methods’ hyperparameters were set according to the 
suggested default numbers.

To visualize the latent embeddings in the 2d plots, we ran UMAP again with the 
default parameters ( K = 15 and min-dist = 0.1 ). However, we found that the spectral 
embedding [54], suggested as a default initialization of UMAP, was not suitable for 
this type of dimension reduction. On the other hand, PCA [55] shows fast conver-
gence of UMAP. We thus used PCA initialization for our implementation.
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