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Abstract 

Background: Correlation metrics are widely utilized in genomics analysis and often 
implemented with little regard to assumptions of normality, homoscedastic-
ity, and independence of values. This is especially true when comparing values 
between replicated sequencing experiments that probe chromatin accessibility, such 
as assays for transposase-accessible chromatin via sequencing (ATAC-seq). Such data 
can possess several regions across the human genome with little to no sequencing 
depth and are thus non-normal with a large portion of zero values. Despite distributed 
use in the epigenomics field, few studies have evaluated and benchmarked how cor-
relation and association statistics behave across ATAC-seq experiments with known dif-
ferences or the effects of removing specific outliers from the data. Here, we developed 
a computational simulation of ATAC-seq data to elucidate the behavior of correlation 
statistics and to compare their accuracy under set conditions of reproducibility.

Results: Using these simulations, we monitored the behavior of several correlation 
statistics, including the Pearson’s R and Spearman’s ρ coefficients as well as Kend-
all’s τ and Top–Down correlation. We also test the behavior of association measures, 
including the coefficient of determination R2 , Kendall’s W, and normalized mutual 
information. Our experiments reveal an insensitivity of most statistics, including Spear-
man’s ρ , Kendall’s τ , and Kendall’s W, to increasing differences between simulated 
ATAC-seq replicates. The removal of co-zeros (regions lacking mapped sequenced 
reads) between simulated experiments greatly improves the estimates of correlation 
and association. After removing co-zeros, the R2 coefficient and normalized mutual 
information display the best performance, having a closer one-to-one relationship 
with the known portion of shared, enhanced loci between simulated replicates. When 
comparing values between experimental ATAC-seq data using a random forest model, 
mutual information best predicts ATAC-seq replicate relationships.

Conclusions: Collectively, this study demonstrates how measures of correlation 
and association can behave in epigenomics experiments. We provide improved 
strategies for quantifying relationships in these increasingly prevalent and important 
chromatin accessibility assays.
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Background
Epigenetic modifications play an important role in regulating multiple cellular processes 
ranging from DNA replication to gene expression. These covalent additions to DNA and 
histone proteins do not alter the underlying DNA sequence, but rather, help modulate 
chromatin structure resulting in distinctive phenotypes. Genome-wide epigenetic mod-
ifications can be determined using several techniques: the gold-standard is chromatin 
immunoprecipitation followed by sequencing (ChIP-seq) [1–3]. Chromatin accessibility, 
or the analysis of the regions that are available for DNA:protein interactions potentially 
resulting in gene expression, is measured using an enzyme-driven assay called trans-
posase-accessible chromatin via sequencing (ATAC-seq) [4]. These two methods have 
distinct advantages in probing the state of the epigenome, and both approaches generate 
paired-end sequencing libraries. These data are mapped to the genome to determine the 
loci that are occupied with a particular epigenetic modification or the loci that are local-
ized within an open, accessible region. Epigenetic modifications and chromatin acces-
sibility are visualized as peaks resulting from the aggregation of sequencing reads [5]. 
As such, many software platforms used for analysis of ChIP-seq and ATAC-seq data sets 
use ‘peak calling’ to determine locations of epigenetic modifications or accessible chro-
matin regions [6–9].

To ensure significance and consistency of identified peaks, best practices have been 
defined for quantifying reproducibility across experimental replicates [8, 10]. These 
include several quality control metrics and workflows that standardize analysis and 
enable comparison among different experiments [10]. These standards apply to the 
total number of sequenced reads, total number of identified significant peaks, and con-
centration of sequenced reads within said peaks. For example, pseudo-replication was 
developed for ChIP-seq analysis to assess the amount of variation between biological 
replicates [8]. In this protocol, synthetic replicates are created from true, experimentally 
derived data: to do this, aligned reads are merged from two true replicates and randomly 
reassigned into new alignments to create two synthetic replicates. This permutation 
practice homogenizes (and splits) signals present within the true, observed replicates, 
generating the null hypothesis of near perfect correlation between pseudo-replicates. 
Peak calling is then also conducted on pseudo-replicates, and the read counts of peaks 
conserved between the two pseudo-replicates are compared to the observed peaks in the 
true replicates. Landt et al. proposed that experiments, whose number of observed peak 
counts (among true replicates) divided by the total number of pseudo peaks (between 
pseudo-replicates), which nears a value of one, are broadly reproducible [8]. The 
ENCODE project has since extended this practice to ATAC-seq experiments [11, 12].

To better understand experimental reproducibility, many studies also conduct correla-
tion analysis on binned signals between ATAC-seq replicates [13–15]. In such analyses, 
for each replicate, the genome is binned into smaller, contiguous regions, for example 
using windows of ten kilobase pairs [13]. The number of mapped sequenced fragments 
(defined by a pair of mapped reads) that overlap these bins are counted and standard-
ized to fragments per kilobase pair per million reads (Fpkm) [16]. These Fpkm counts 
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are then compared between replicates using correlation and association statistics such as 
Pearson’s R or the coefficient of determination (R2 ), respectively. Values from these sta-
tistics trending toward a value of one generally indicate a reproducible experiment [17].

Correlation analysis is a useful tool, not singularly purposed for the analysis of repro-
ducibility in ATAC-seq experiments. Such analysis can be found within studies of chro-
mosome accessibility in cancer, ageing of human stem cells, cellular diversity, or new 
ATAC-seq protocols [18–23]. Furthermore, correlation analyses are ubiquitous, found in 
the fields of genetics, RNA-seq experiments, and in studies of 3D chromatin architecture 
[16, 24–30]. Given their popularity and use in genomic and epigenetic studies, software 
suites—for example deeptools and HiCExplorer—have developed methods and tools for 
calculating correlation metrics between replicates and experiments [13, 31–34].

The natural properties of data from genomic and epigenomic experiments make the 
application of commonly used correlation and association statistics, for example Pear-
son’s R and R2 , potentially problematic as none of these data (ATAC-, ChIP-, or Hi-C 
seq) are normally distributed [35]. Both ATAC- and ChIP-seq experiments are defined 
by numerous, loci-specific peaks of signal generated by the accumulation of sequenc-
ing reads [3, 4]. Mapped sequenced fragments may overlap contiguous genomic bins 
used in analysis, producing non-independent data points [24]. Conversely, regions lack-
ing assayed modifications or with inaccessible chromatin will have little to zero signal 
for ChIP-seq or ATAC-seq data, respectively. Furthermore, during correlation analysis, 
several genomic bins may overlap an inaccessible chromatin region that is reproducible, 
appearing in both the ATAC-seq replicates (or experiments) being compared. As such, 
each of these bins will acquire zero Fpkm and within the bi-variate distribution formed 
between the replicates. These data points, which appear as zero Fpkm in both replicates, 
are referred to here as co-zeros. Some analysis programs, like deeptools, HiCExplorer, 
and HiCcompare, offer options to remove co-zeros prior to analysis [29, 31, 34]. How-
ever, there is no published guidance on this practice, and while the co-zero values are a 
feature common across genomic and epigenomic data sets [36], the effect of removing 
such features on correlation statistics has not been explored. Despite the known features 
of genomic and epigenomic data, and the underlying assumptions of statistical tests, 
there have been few studies that explore their expected behavior, accuracy, and use of 
alternative statistics determining reproducibility of such data [26, 27].

Here, we present a computational approach to generate synthetic ATAC-seq replicates 
to explore the behavior of various correlation and association metrics for epigenomics 
datasets. These synthetic ATAC-seq replicates are generated from eight true data sets 
to capture features uniquely present within ATAC-seq experiments. We have devel-
oped a random subsampling strategy to generate synthetic replicates with varying por-
tions of shared peaks, as a proxy for reproducibility. Across our simulations, we apply 
the Pearson’s R [37–39] and Spearman’s ρ [40] and monitor their behavior, including the 
effect of removing co-zeros. Additionally, we demonstrate the behavior of other statis-
tics, including non-parametrics such as Kendall’s τ [41–44] and an information theoretic 
approach, normalized mutual information [45, 46], to determine their utility in assessing 
epigenomics data. Finally, we build a random forest model [47] using the normalized 
mutual information and R2 coefficient between experiments to predict the biological 
relationships between replicates. Overall, our results demonstrate an improvement in 
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the expected behavior of all statistics after removing co-zeros and normalized mutual 
information emerges as a promising statistic for measuring association between ATAC-
seq samples.

Results
ATAC‑seq data characteristics and subsamping strategy for synthetic replicate generation

To study the behavior of correlation measurements between ATAC-seq replicates 
(Fig. 1A), we analyzed data from three experiments using the A549, human lung cell line 
and implemented a subsampling paradigm to generate synthetic replicates. Across these 
experiments, the total number of reads mapped to the human reference genome var-
ied from 15 million to nearly 43 million (Table 1). The number of genome-wide peaks 
found in the ATAC-seq samples varied across experiments and between replicates, rang-
ing from approximately 80 to 130 thousand (Table 1). The fraction of sequenced read-
pairs mapped in peaks (i.e.  the FrIP score as defined by the ENCODE project [8, 11]), 
was greater than 0.34 for all of the A549 ATAC-seq samples (Table 1). These samples 
displayed high spatial correlation of peaks across replicates (Fig. 1B). Counting all whole 
fragments per kilobase per million (WFpkm), every ten kilobases, we observed a high 
statistical correlation between replicates, with average Pearson’s R of 0.86, 0.87, and 0.94 
(p-values < 0.05 ) between the technical replicates of the three biological replicate exper-
iments (Fig. 1C).

For simulations, synthetic replicates were generated using the paired-end read align-
ment profiles from the eight ATAC-seq samples we generated. For each simulation, two 
synthetic replicates were initiated by duplicating a given true ATAC-seq experiment 
(Fig. 2A). Within the true ATAC-seq data set, reproducible, significant peaks were iden-
tified (see Methods). From these, a random portion of peaks was chosen to vary between 
the two synthetic replicates. This was accomplished by subsampling and removing 85% 
of the aligned sequenced fragments within each of the randomly chosen peaks between 

Fig. 1 ATAC-seq profiles of chromosome 9 form A549 cells. A TN5 binds to open chromatin, cutting DNA and 
adding primers to generate a paired-end sequencing library. B A549, ATAC-seq replicates along chromosome 
9. Samples were generated using fresh cells (green) and previously cryo-preserved cell cultures (orange 
and brown). Positively (black) and negatively oriented genes are annotated along the bottom. C Pair-wise, 
bi-variate scatter plots of whole fragments per kb per million values (x- and y-axis) using 10 kb genomic bins 
between A549, ATAC-seq replicates. Sample names are annotated along the diagonal. Pair-wise Pearson’s 
correlation statistic is annotated within subplots
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the two synthetic replicates (Fig. 2B, C). This process was repeated fifteen times for each 
of the eight real ATAC-seq samples, randomly varying the common peaks from 5 to 99% 
of peaks between the two synthetic replicates. Finally, across all 120 simulations, for each 
pair of synthetic replicates, the WFpkm values were calculated in ten kilobase windows 
and used in statistical comparisons (Fig. 3A).

Top–down correlation displays best behavior in correlation analysis across simulations

Across the 120 down sampling simulations, correlation and association statistics were 
calculated between each pair of synthetic replicates. The Wfpkm counts were used 
between synthetic replicates in statistical analysis (Fig. 3A). The values of correlation 
(Fig.  3B) and association (Fig.  3C) statistics were calculated within each simulation 
as a function of the number of shared peaks between synthetic replicates. For each 
examined statistic, the area under the curve (AUC), formed by the statistical values 
calculated across portions of shared peaks, for each simulation was used in compari-
sons (Additional file  1: Fig.  S1). Of the correlation statistics, the Top–Down corre-
lation statistic had the smallest average AUC of 0.6881 (95% CI 0.6860–0.6906) and 
was significantly smaller than the average AUC of the Pearson’s R, at 0.8284 (95% CI 
0.8237–0.8335, p-value = 0 , bootstrapped difference of mean AUC). Both the two 
non-parametric statistics, Spearman’s ρ and Kendall τ , had significantly larger aver-
age AUCs compared against the Pearson’s R (p-values = 0 , bootstrapped difference of 

Table 1 ATAC-seq experiments used, mapped reads, peak counts and FrIP scores

Sample title Cell line Mapped reads MACS2 peaks FrIP Source

A549000 A549 259,029,456 201,532 0.5898 ENCSR032RGS

A549001 A549 329,679,445 194,975 0.5994 ENCSR032RGS

A549002 A549 211,291,691 206,536 0.5596 ENCSR032RGS

A549100 A549 23,987,725 110,323 0.588 This study

A549101 A549 22,605,005 81,917 0.3404 This study

A549102 A549 17,618,743 82,496 0.3702 This study

A549200 A549 35,069,198 90,386 0.3515 This study

A549201 A549 15,377,297 79,933 0.4202 This study

A549300 A549 42,567,716 130,475 0.636 This study

A549301 A549 28,744,542 107,737 0.6391 This study

A549302 A549 35,836,016 117,087 0.6595 This study

GM12878400 GM12878 46,889,870 114,746 0.7159 ENCSR095QNB

GM12878401 GM12878 49,588,811 134,743 0.6452 ENCSR095QNB

HepG2500 HepG2 48,113,686 173,756 0.4257 ENCSR042AWH

HepG2501 HepG2 48246,610 135,767 0.4605 ENCSR042AWH

IMR-90600 IMR-90 47,543,633 178,156 0.5363 ENCSR200OML

IMR-90601 IMR-90 61,359,070 200,216 0.6104 ENCSR200OML

K562700 K562 48,217,636 178,230 0.5112 ENCSR483RKN

K562701 K562 52,270,533 176,789 0.5196 ENCSR483RKN

RWPE2800 RWPE2 55,152,003 166,239 0.474 ENCSR080SNF

RWPE2801 RWPE2 43,166,947 177,496 0.4555 ENCSR080SNF

RWPE2802 RWPE2 48,162,285 154,758 0.4652 ENCSR080SNF

WTC11900 WTC11 74,558,506 245,677 0.5505 ENCSR541KFY

WTC11901 WTC11 79,335,328 277,824 0.5732 ENCSR541KFY
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mean AUC). However, they demonstrated nearly identical AUC profiles compared to 
each other, with average AUC of 0.9140 (95% CI 0.9118–0.9162) and 0.9096 (95% CI 
0.9074–0.9120) respectively (p-value = 0.037 , bootstrapped difference of mean AUC).

Fig. 2 Synthetic replicate generation via peak down-sampling. A An example region along chromosome 17 
of true, A549 ATAC-seq data. Real ATAC-seq signal (brown lines) is used to initialize two synthetic replicates. 
Red and black horizontal bodies depict negatively and positively oriented genes, respectively. B A portion of 
the genome-wide significant peaks (ranging from 0 to 1) are chosen randomly between the two synthetic 
replicates. Within one of the replicates, 85% of paired reads (blue and orange rectangles connected by grey 
dotted line) are removed to down-sample signal within that locus. C Example of two synthetic replicates with 
a known portion of peaks varying between them
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Across the metrics of association, Kendall’s W, normalized mutual information, 
and the R2 coefficient, between replicates, the R2 coefficient exhibited the great-
est sensitivity to the change in portion of shared peaks between synthetic replicates 
(Fig. 3C). Across simulations, the average AUC of the R2 coefficient was 0.7026 (95% 
CI 0.6951–0.7102). This average AUC was significantly smaller than the average AUC 
of the Kendall’s W and normalized mutual information, with values of 0.957 (95% CI 
0.9559–0.9581) and 0.8197 (95% CI 0.8153–0.8241), respectively (p-value = 0 , boot-
strapped difference of mean AUC).

Removal of co‑zeros improves estimates of correlation and associations

Using this simulation paradigm, we evaluated the efficacy of removing co-zeros from 
the analysis to determine the impact on correlation and association statistics. Co-
zero values were defined as value counts in ATAC-seq experiments that appeared 
to have zero aligned fragments in a genomic bin of ten kilobases between two rep-
licates (Additional file 2: Fig. S2). On average, these values can make up nearly 5% of 
a given bi-variate distribution formed between real ATAC-seq replicates (Additional 
file  3: Fig. S3). Across all the correlation and association statistics examined here—
except for Top–Down correlation—removing the co-zero values significantly reduced 
the average AUC (Table  2, Fig.  3B, C, Additional file  1: Fig. S1). The large reduc-
tion observed in the AUC after removing co-zeros from analysis was unexpected, 
as co-zeros are a modest portion of the bi-variate distribution formed between two 
replicates.

After removing co-zeros, all the correlation statistics, Top–Down correlation, Pear-
son’s R, Spearman’s ρ , and Kendall’s τ , displayed nearly identical sensitivity to the change 
in shared peaks between replicates across simulations (Fig. 3B). However, the Pearson’s 
R had the largest average AUC of 0.6965 (95% CI 0.6946–0.6984) followed by the Top–
Down statistic (AUC of 0.6872, 95% CI 0.685–0.6895, p-value = 0 , bootstrapped differ-
ence of mean AUC). The Spearman’s ρ (mean AUC: 0.6686, 95% CI 0.6665–0.6705) and 
Kendall’s τ (mean AUC: 0.6673, 95% CI 0.6654–0.6691) statistics had the smallest and 
identical average AUC after removing co-zeros (p-value = 0.208 , bootstrapped differ-
ence of mean AUC). Furthermore, the AUC of the Top–Down correlation statistic was 
unaltered by the exclusion of co-zero values between synthetic replicates (Fig. 3B, Addi-
tional file 1: Fig. S1, Table 2, p-value = 0.635 , bootstrapped difference of mean AUC). 
This observation was not surprising given how Top–Down correlation places emphasis 
on larger values, down-weighting smaller values, such as co-zeros [48].

Fig. 3 Synthetic replicate bivariate plots and statistical profiles. A Scatter plots displaying counts per 
genomic bin (10 kb in size) of whole fragments per kilobase per million (WFpkm) between two synthetic 
replicates (x- and y-axis) generated in process Fig. 2A–C. The percentage of shared peaks decreases between 
the two simulated replicates from top to bottom. B Correlation values (y-axis) as a function of percentage of 
shared peaks between synthetic replicates (x-axis). C Association scores (y-axis) as a function of the percent of 
shared peaks between synthetic replicates (x-axis). In B and C, red and grey curves depict the mean and 95% 
confidence interval (respectively) across simulations. A dashed line marks a one-to-one relationship between 
the x- and y-axis. Left and right columns display change in values as a function of removing co-zeros

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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Normalized mutual information best estimates difference between replicates

Removing co-zero values had a similar effect on association metrics, attenuating and 
improving the average AUC across the portion of shared peaks between synthetic repli-
cates (Fig. 3C, Additional file 1: Fig. S1). Apart from Kendall’s W, the R2 coefficient and 
normalized mutual information, on average, displayed a nearly one-to-one relationship 
with the portion of shared peaks between replicates (Fig. 3C). The average AUC of nor-
malized mutual information was 0.5055 (95% CI 0.5045–0.5065) and was smaller than 
the average AUC of the R2 coefficient, with a value of 0.5346 (95% CI 0.5324–0.5368, 
p-value = 0 , bootstrapped difference of mean AUC). This difference in average AUC 
indicates that normalized mutual information better follows the designed proportion of 
shared peaks between synthetic replicates across our simulations, compared to the R2 
coefficient.

As introduced earlier, one parameter in this simulation is the removal of a percentage 
of aligned read-pairs from within randomly selected peaks (Fig. 2B). Initially set at 85%, 
this parameter was altered to simulate ATAC-seq replicates that are nearly reproducible 
(at 50%) at every selected peak or broadly unreproducible (at 95%) across all selected 
peaks. Comparing the results between the two simulation sets with 85 and 95% of reads 
removed, we observed no significant difference between the two simulations (Additional 
file 4: Fig. S4, Additional file 5: Fig. S5). This is somewhat expected when considering the 
small difference in magnitude between removing 85 and 95% of reads from within peaks. 
In simulations with only 50% of read pairs removed from selected peaks, after removing 
co-zeros, the two statistics that showed the largest response in our simulation were the 
R2 coefficient and normalized mutual information.

Co‑zeros inflate estimates of correlation and association in epigenomic assays

After successfully implementing normalized mutual information between simulated 
replicates, we next examined how this statistic behaves when used on replicates from 
real epigenomic experiments. We also monitored how dropping co-zeros affects esti-
mates of correlation (and association) between samples. For these analyses, additional 
experiments were downloaded from the ENCODE project public repository [11]. These 
included additional ATAC-seq experiments (Table 1) as well as ChIP-seq experiments, 
specifically twenty and ten assays for the H3K27ac and H3K4me3 modifications, respec-
tively (Additional file  10: Table  S2). The Spearman’s ρ , Pearson’s R, R2 coefficient, and 

Table 2 Mean area under the curve across simulations

a The p-value represents the test of differences in mean AUC after removal of co-zeros
b Variation values were calculated during analysis of data from true ATAC-seq experiments

Statistic Mean (95% CI) Mean (95% CI)—
Co‑zeros removed

p‑valuea
σ
2b

Top–down correlation 0.6881 (0.6860–0.6906) 0.6872 (0.6850–0.6895) 0.635 –

Pearson R 0.8284 (0.8237–0.8335) 0.6965 (0.6946–0.6984) 0.0 0.0201

R2 0.7026 (0.6951–0.7102) 0.5346 (0.5324–0.5368) 0.0 0.0329

Spearman ρ 0.9140 (0.9118–0.9162) 0.6686 (0.6665–0.6705) 0.0 0.0136

Kendall τ 0.9096 (0.9074–0.9120) 0.6673 (0.6654–0.6691) 0.0 –

Kendall W 0.9570 (0.9559–0.9581) 0.8343 (0.8333–0.8353) 0.0 –

Normalized Mutual Information 0.8197 (0.8153–0.8241) 0.5055 (0.5045–0.5065) 0.0 0.016
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normalized mutual information were calculated between these replicates. Correlation 
and association values were also calculated between non-replicates within each of the 
three assays. We then repeated these comparisons, eliminating co-zeros from calcu-
lations. With this design, we were able to gauge the effect of masking co-zeros within 
replicates, between non-replicates (within the same assay), and across different types of 
epigenomic data. Between real experiments, excluding co-zeros from analysis signifi-
cantly decreased the computed correlation and association statistics (p-value < 1

−10 , 
Wilcoxon signed-rank test). This reduction is seen in the distributions of the Spearman’s 
ρ , Pearson’s R, R2 coefficient, and normalized mutual information (Additional file  6: 
Fig. S6) across all three assays, ATAC-seq (Fig. 4A), H3K27ac (Fig. 4B), and H3K4me3 
(Fig. 4C). Further investigation revealed that omitting co-zeros primarily alters estimates 
of correlation and association between non-replicates (black lines and dots in Fig.  4), 
which were significantly decreased (p-value < 1

−19 , Wilcoxon signed-rank tests). The 
correlation and association values between true replicates from H3K27ac and H3k4me3 
assays were unaltered when ignoring co-zeros (p-value > 0.001 , Wilcoxon signed-
rank tests). However, a significant alteration in correlation (and association) estimates 
between replicate ATAC-seq experiments (red lines and dots in Fig. 4A) was detected 

Fig. 4 Correlation and association statistics across epigenomic experiments. For samples from (A) ATAC-seq 
and ChIP-seq (assays for (B) H3K27ac and (C) H3K4me3 modifications) experiments, the Spearman’s ρ , 
Pearson’s R, R2 coefficient, and normalized mutual information (y-axis of columns left to right, respectively) 
were calculated on WFpkm counts between replicates, with and without co-zeros (x-axis). Red and black 
dumbbells represent calculations between replicates or non-replicates, respectively, and connect calculations 
across the co-zero handling strategy
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(p-values < 0.0009 , Wilcoxon signed-rank tests). Moreover, excising co-zeros expanded 
the difference in the average estimates of correlation and association between replicates 
and non-replicates, across all three assays (Fig.  4, Additional file  11: Table  S3). Thus, 
removing co-zeros produced lower estimates of correlation and association for most 
samples, and overall improves the ability to differentiate pairs of replicates from non-
replicates in real epigenomic data.

A random forest prioritizes mutual information for predicting replicate relationships

After removing co-zeros, the R2 and normalized mutual information metrics per-
formed best in simulation. Furthermore, when tested on real ATAC-seq experiments, 
these two metrics produced the largest difference (on average) between replicates and 
non-replicates. Given the comparable behavior of normalized mutual information and 
the R2 coefficient on true ATAC-seq data we set out to further assess their usefulness 
in predicting the relationships between experiments. To do this we combined our A549 
ATAC-seq samples with ATAC-seq samples from the ENCODE project. These included 
additional biological replicates of the A549 cell line, as well as ATAC-seq experiments 
in the HepG2, RWPE2, GM12878, IMR-90, K562, and WTC11 cell lines (Table 1). With 
these combined data, comparisons between any two ATAC-seq experiments were clas-
sified into one of three discrete, replicate classes; (1) between independent ATAC-seq 
experiments in different cell lines, (2) between independent experiments using the 
same cell line, or (3) between true replicates. Plotting the normalized mutual informa-
tion and R2 coefficient calculated between ATAC-seq experiments with the above clas-
sifications revealed clustering of the classes between replicates (Fig.  5A). Between the 
two statistics, the R2 coefficient displayed the largest variation across compared experi-
ments (Table 2) and the most mixing of the three class labels (Fig. 5A). We also observed 
a strong co-linear relationship between the calculated R2 coefficient and normalized 
mutual information scores (Additional file 7: Fig. S7, Pearson’s R = 0.96 , p-value < 1

−10 ). 

Fig. 5 Random forest prediction of experimental relationships. A Distributions of the coefficient of 
determination (R2 ) and normalized mutual information scores calculated on binned counts of WFpkm 
between ATAC-seq experiments. Blue, orange, and green dots mark comparisons between independent 
experiments, independent experiments using the same cell line, and true experimental replicates, 
respectively. B Example confusion matrix from a random forest model using R2 and normalized mutual 
information as features to predict experimental relationships (y-axis) presented in A (x-axis). The confusion 
matrix depicts results of model on a hold-out set (40% of data, accuracy = 95.12%). Light to dark colors 
depict the number of counts per class. C Bi-variate plot displaying the change of paired importance scores 
from ten-fold cross validation between the normalized mutual information (x-axis) and R2 (y-axis) features. 
Dashed lines depict the uni-variate means of the normalized mutual information and R2 scores. Blue and 
yellow colors depict the level of accuracy for each fold
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This finding is not surprising given that both metrics attempt to measure the same rela-
tionship between samples.

To quantify which statistic (the R2 coefficient or normalized mutual information) bet-
ter estimates experimental relationships between replicates, we built a random forest 
model. This model uses the reported values of the R2 coefficient and normalized mutual 
information between ATAC-seq experiments as features to predict the replicate class (as 
defined above). We utilized ten-fold cross validation, stratifying on the replicate class to 
build our random forest. An example confusion matrix from one of these folds demon-
strates the model had difficulty distinguishing between independent experiments using 
the same cell line and true experimental replicates (Fig. 5B). This difficulty also mani-
fested as lower f1-scores and recall for this class (Additional file 8: Fig. S8). The accuracy 
across these folds ranged from 88 to 98% (Fig. 5C). Across the folds, the feature impor-
tance score of the R2 coefficient was inverted with that of normalized mutual informa-
tion (Fig. 5C). Overall, we observed a greater feature importance score for normalized 
mutual information, with a significant average pair-wise difference between the R2 coef-
ficient and normalized mutual information of 6.78% (p-value < 0.05 , Wilcoxon signed-
rank test).

Discussion
To improve the assessment of reproducibility in epigenomic data sets, we sought to 
investigate the use of several correlation and association statistics on binned genomic 
signals. Our findings suggest that best practices should include analyzing association 
between compared replicates (or experiments) via normalized mutual information with 
binned, Fpkm counts rounded to the nearest whole integer, after the removal of co-zero 
values as input. In choosing a correlation statistic, after removing co-zero values, our 
results indicate little difference in the outputs from the Pearson’s R, Spearman’s ρ , Kend-
all’s τ , or Top–Down correlation statistics. Notably, from simulations, we observed that 
the Top–Down correlation statistic was unaffected by the removal of co-zeros values. As 
such, this statistic should serve as an alternative for investigators if binned co-zeros val-
ues between replicates are retained.

As part of this study, we generated highly correlated, new ATAC-seq experimental 
replicates of the A549 cell line. Our data highly correlates with previously published 
ATAC-seq data of the A549 cell line generated by the ENCODE project. Using these 
data, we generated a novel simulation that utilizes down sampling to generate replicates 
with known varying signals. While similar simulation studies have been conducted on 
Hi-C sequencing data [30], to our knowledge, no prior study has examined the behav-
ior of statistical metrics on ATAC-seq data. That said, there are several statistics and 
methodologies that may be used to analyze this data type, such as Poisson regression 
[49]. Improving on this simulation design could help generate a framework that allows 
researchers to develop new statistical tools for hypothesis testing.

In our simulations, we observed that most statistics overestimate the correlation of 
signal between replicates. One specific strategy we investigated to reduce this inflation 
was the removal of co-zeros, which is an option present in several bioinformatic soft-
ware suites [29, 31, 34]. Our analysis demonstrated that removal of these values can 
provide a more accurate estimate of correlation between replicates as measured by the 
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known number of peaks between replicates. Interestingly, we never observed a correla-
tion value that perfectly trends with the designed number of peaks between synthetic 
replicates. We also did not observer negative correlation values between the replicate 
Fpkm counts. The first of these observations can be explained by background autocorre-
lation still present within our synthetic replicates. The second of these observations may 
point to a limitation in the design of our simulation, as negative correlation values have 
been observed in true ATAC-seq profiles [20, 31].

In epigenomics and chromatin accessibility data sets, biological interpretation of the 
data is dependent upon visualization of “peaks” where accumulation of sequenced reads 
denotes the presence of a modification or an accessible region. Regions with zero (or 
nearly zero) aligned sequenced reads are deemed unmodified or inaccessible and largely 
ignored when interpreting data. Correlation statistics should provide biologists with the 
confidence that replicates are truly comparable. As stated above, the inclusion of co-
zeros seems to inflate values of most correlation and association statistics. Thus, removal 
of co-zeros formed by the genomic bins that overlap and account for inaccessible regions 
may be warranted.

Using our simulation, we also examined the behavior of three association statistics, 
which we distinguish from the set of correlation statistics as those metrics ranging in 
value from zero to one. These association statistics were the R2 coefficient, normalized 
mutual information statistic, and Kendall’s W. Prior to the removal of co-zeros, the only 
association statistic that displayed any sensitivity to the change in shared peaks between 
replicates was the R2 coefficient. Co-zeros inflate the value of this statistic by reduc-
ing the total summed error between data points during calculation. Similarly, co-zeros 
increase the information gained between replicates when calculating the normalized 
mutual information score. In other words, knowing a replicate has a value of zero at a 
given genomic bin provides information that there is a zero at the corresponding bin 
within the other replicate. After removing co-zeros, we saw a large improvement in the 
sensitivity of both these statistics.

Curiously, Kendall’s W displayed the least sensitivity to the designed peak counts 
between synthetic replicates. This statistic was of interest given Kendall’s W is capable 
of simultaneously examining the ranks of more than two input samples [41, 50]. This 
would have provided researchers with a statistical tool capable of examining correlation 
among a full set (triplicate) of replicates within a single test, rather than multiple pair-
wise comparisons. Removing co-zeros did little to improve the sensitivity of this statistic. 
The other statistic from Kendall, Kendall’s τ , displayed similar performance to the other 
non-parametric statistic, Spearman’s ρ . This finding is contrary to other studies of Kend-
all’s τ conducted in the fields of signal processing and psychology [43, 44]. For analysis of 
genomic data, the Spearman’s ρ is standard in deeptools’ correlation functions [13].

We also examined the effect of dropping co-zeros when estimating correlation 
between real ATAC-seq and ChIP-seq samples. Much like our results from analysis 
on simulated ATAC-seq replicates, expunging co-zero values from correlation (and 
association) calculations reduced the value of the reported statistics between real 
samples. These effects were primarily seen in the correlation and association scores 
calculated between non-replicates within the examined assays. In particular, the 
correlation and association values between true H3K27ac and H3K4me3 replicates 
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were unaffected by eliminating co-zeros. These correlation scores were high and 
remained high after excising co-zeros from calculations. This may be due to higher 
overall signal in these assays. Importantly, omitting co-zeros from analysis produced 
a larger difference in the average correlation between groups of replicates and non-
replicates. Thus, excluding co-zeros from analysis is an important step for quality 
control procedures looking to identify errant samples.

Of the statistics examined here, the R2 coefficient and normalized mutual infor-
mation score were the most sensitive to the change in shared peaks between rep-
licates (when co-zeros were removed). Comparison of these two statistics revealed 
that normalized mutual information was the better-behaved statistic. This behavior 
manifested as smaller AUC within simulations, less variation in values, and larger 
differences in values between groups of replicates and non-replicates. Similarly, the 
computational evidence provided by our random forest model suggests that nor-
malized mutual information was better at estimating experimental relationships 
between true ATAC-seq replicates. Taken together, these results indicate that of the 
two metrics, normalized mutual information may be the stronger association metric 
for ATAC-seq data. Information theoretic approaches, such as normalized mutual 
information, have been utilized in several other biological fields, ranging from can-
cer genomics to fungal genetics [51–57]. Regarding ATAC-seq data, a handful of 
other studies have specifically used mutual information in data integration, analysis, 
and deep-learning of single-cell ATAC-seq profiles [58, 59]. For those investigator 
interested in using information theoretic approaches, several of these functions are 
made easily available within the python, scikit learn library [46].

To perform correlation and association analyses as seen here, we have generated 
python code and an executable for public use. These software, installation instruc-
tions, and a tutorial written as a jupyter notebook are hosted on the Github listed 
within the data availability section. We hope these tools will benefit investigators 
and students in their exploration of the mutual information statistic and the effect of 
excluding co-zero values in their epigenetic data.

Sparsity and zero mapped sequenced reads are not unique properties of ATAC-seq 
data. These extend to genomic, Hi-C, ChIP-seq, and RNA-seq data sets. Imputation 
along with modified zero-inflated models have been used with success for studying 
RNA sequencing data sets and detecting regions with differential expression [60]. 
Simulations and models of sampling zero-genomic count data have been developed 
to understand the effects of these values, particularly in the context of differential 
analysis [36]. Previous simulation studies of ATAC-seq have been focused on gen-
erating ATAC-seq data, for pipeline development, or single-cell ATAC-seq samples, 
to examined different approaches in their analysis [61, 62]. To our knowledge, this 
is the first example of using a simulation approach for studying reproducibility and 
association of ATAC-seq samples. Adapting strategies from these previous studies 
will help improve our simulation and expand it to other genomic and epigenomic 
sequencing data. The current results of our study strongly suggest that normalized 
mutual information is an appropriate metric for measuring reproducibility in chro-
matin accessibility assays.
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Conclusions
For this study, we produced eight ATAC-seq experiments using the A549 Cancer cell 
line. Across replicates, these ATAC-seq samples are well correlated and reproducible. 
For investigations of chromatin accessibility (particularly in the A549 cell line), these 
experiments are an additional resource for developing analysis pipelines, peak detection 
algorithms, and machine learning approaches.

Leveraging the A549 ATAC-seq experiments, we designed a computational simulation 
to generate simulated replicates. Specifically, synthetic replicates were coded that share 
a known, fixed portion of significantly enriched loci. Using these replicates, correlation 
metrics—the Pearson’s R, Spearman’s ρ , Top–Down, and Kendall’s τ—and association 
statistics (ranging from zero to one)—the R2 coefficient, Kendall’s W, and normalized 
mutual information—were tested for accuracy. Overall, the reported value of these sta-
tistics was inflated and much larger than the fixed portion of shared, significant loci 
between replicates.

Removing specific outliers from ATAC-seq data, specifically the removal of co-zeros, 
improved estimates of correlation and association. We estimate that co-zero values, 
when comparing WFpkm counts between two real ATAC-seq experiments, occupy 
nearly five percent of a bi-variate distribution. While only a small portion of the total 
data, filtering these values from analysis greatly improves the measurements of most cor-
relation and association statistics between samples, in simulation. Applied to real ATAC-
seq and ChIP-seq data, removing co-zero values from comparison significantly reduced 
the reported correlation and association statistic, matching results from simulation.

One of the association statistics examined here is normalized mutual information, an 
information theoretic approach that is less well known across the (epi)genomics field. 
After removing co-zero values, normalized mutual information displayed the lowest 
inflation relative to the similarity between simulated replicates. The R2 coefficient also 
performed well in simulations (after removal of co-zeros), displaying good sensitivity to 
differences between simulated replicates. Of these two association metrics, a random 
forest model selected normalized mutual information as the stronger feature when esti-
mating experimental relationships between real ATAC-seq experiments. From these 
results we conclude that normalized mutual information is a powerful, non-parametric 
approach for estimating association between ATAC-seq experiments.

Methods
Construction of A549 ATAC‑seq libraries

ATAC-seq experimental libraries were generated using A549 human lung carcinoma 
epithelial cells (ATCC, VA, catalog #CCL-185) [63–65]. Three biological replicate librar-
ies were prepared from freshly harvested cells using an ATAC-seq kit (Active Motif, 
53150) following the manufacturer’s protocol. The remaining five libraries were prepared 
using cryopreserved cells following methods outlined in Milani et al.  with modifications 
[18]. Briefly, A549 cells were cultured in T75 flasks and harvested by trypsinization using 
0.25% (w/v) Trypsin-EDTA (0.5%) solution (Gibco, 15400054). Harvested cells were cen-
trifuged and pellets resuspended in freezing media containing DMEM (Gibco, 11885-
084), 10% FBS (Corning, 35-015-CV), and 10% DMSO (ATCC, 4-X). Pellets were frozen 
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using an isopropyl alcohol chamber (Thermo Fisher Scientific, 5100-0001) at − 80
◦ C. 

After 24 h, frozen cells were transferred to liquid nitrogen for long term storage. To per-
form experiments, cryopreserved cells were transferred to − 80

◦ C for several days, and 
the tube was immersed in 37◦ C water bath for approximately two minutes on the day 
libraries were prepared. Thawed cells were resuspended in 1X PBS with protease inhibi-
tor cocktail (Thermo Fisher Scientific, 78430). Cell counts and viability were assessed 
and aliquots containing 80,000 cells per sample were processed into ATAC-seq libraries.

Sequencing, alignment and filtering

ATAC-seq libraries were sequenced at the sequencing facility at Los Alamos National 
Laboratory on an Illumina NextSeq2000 sequencer in paired end mode (PE151) using P3 
chemistry. With Fastp, raw reads were trimmed and filtered to remove Nextra adaptors 
and reads with repetitive sequences [66]. Additionally reads were also filtered to remove 
bases with low quality scores (q < 15 ). These processed reads were aligned to the new, 
telomere-to-telomere human reference genome, version 2 [67] via bwa [68]. After align-
ment, duplicate sequenced pairs were marked via samblaster and removed from analysis 
[69]. Read pairs mapping to the mitochondria were also removed (see Additional file 9: 
Table S1).

Other data used

Raw ATAC-seq data, in the form of paired fastq.gz files, was downloaded from the 
ENCODE project for the A549, HepG2, RWPE2, GM12878, IMR-90, K562, and WTC11 
cell lines [11, 70]. The ENCODE file experiment and replicate accession numbers are 
included in Table 1. For alignment, these data were passed through the same pipeline 
described above for ATAC-seq samples generated here, and aligned to the human, tel-
omere-to-telomere, reference genome [67].

For ChIP-seq experiments, twenty and ten assays of the H3K27ac and H3K4me3 epi-
genetic modifications (respectively) were downloaded (also) from the ENCODE project 
as raw alignments in bam file format. The ENCODE accession numbers of these files 
are listed in Additional file 10: Table S2. Each of these raw alignments were made with 
the GRCh38 (v1.5.1) human reference genome. Filtered bam files were generated via 
samtools view command and the following flags: -F 4 -F 256 -F 512 -F 
1024 -F 2048 -q 30. When comparing differences between correlations and asso-
ciation values within experiments, between calculations with and without co-zeros, and 
between groups of replicates and non-replicates, a Bonferroni correction was used to 
calculate the adjusted p-value = 0.05/(12× 3) ∼ 0.00139 , for establishing significance.

Peak calling, peak filtering and reproducibility

After filtering, sample alignments were analyzed to identify loci displaying significant 
enrichment of paired-end reads. This peak calling was conducted using MACS2 [6, 71]. 
Specifically, after removing duplicates and mitochondrial mapped reads, samples were 
further filtered using samtools with the following flags:
-F 4 -F 256 -F 512 -F 1024 -F 2048 -q 30 and then passed to MACS2 

in BAMPE mode [72, 73].
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Between true, biological replicates, reproducible peaks were identified via irreproduc-
ible discovery rate thresholding [74]. Using ChIP-R, replicate narrow peak files were 
filtered to retain only those peaks that were consistent across all replicates; in ChIP-R, 
where command line parameter, m = number of biological replicates [75]. In addition to 
this setting the ’-fragment’ option was also invoked. These sets of final peak counts 
were retained for further analysis.

Genomic down‑sampling and simulation design

For each of the eight ATAC-seq experiments of A549 cells generated in this study, syn-
thetic replicates were generated by duplicating a given sample into two copies and then 
randomly, varying the total number of shared peaks between them. Specifically, for a 
given ATAC-seq experiment, a set portion of peaks was chosen at random, such that 
within one of the synthetic replicates, a given selected peak was depleted, randomly 
removing a portion of the alignments within the peak bounds (as defined by MACS2). 
These sets of peaks were randomly selected from the set of reproducible peaks for that 
sample and its associated biological replicates (see above). Three sets of simulations 
were conducted, removing 50, 85 and 95% of reads within selected peaks. This proce-
dure results in two synthetic ATAC-seq replicates, generated from a single, true parent 
ATAC-seq data set. These synthetic ‘sister’ ATAC-seq data sets have identical genome-
wide alignments except within a sub-set of loci that vary between them. From each true 
ATAC-seq data set, synthetic sister replicates were generated by varying the total per-
centage of shared peaks from 99 to 5%, with a delta of 5%. For each simulation, across 
the change in portion of shared peaks, a common random seed was used to preserve 
autocorrelation across this axis. This process was repeated fifteen times for each of the 
eight, A549 ATAC-seq samples, totaling a one hundred and twenty simulations.

Genomic binning, fragment counts, and standardization

On both synthetic samples from simulation studies or replicates from (true) ATAC-seq 
experiments, a genomic binning approach was used to estimate correlation and associa-
tion statistics between samples. For each chromosome, contiguous bins were established 
5’–3’, every ten kilobases. Within each of these bins, the number of sequenced fragments 
is counted and standardized to fragments per kilobase per million. These counts were 
rounded up to their nearest whole integer generating standardized counts of whole frag-
ments per kilobase per million (WFpkm).

Calculating correlation and association metrics

In python scripts, using the scipy-stats module [76], the Pearson’s R, Spearman’s ρ , and 
Kendall’s τ were calculated on the WFpkm counts between pairs of ATAC-seq replicates. 
Functions for the Top–Down correlation metric [48] and Kendall’s W rank statistic 
[41, 50] were also developed using custom python code. The R2 coefficient was calcu-
lated using the square of the Pearson’s R. The normalized mutual information statistic 
from pythons sklearn module [46] was used in association studies. Between any pair of 
WFpkm counts, the bi-variate distribution was examined to identify instances were both 
profiles contained a value of zero WFpkm. For studies of the effects of co-zero inflation, 
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these co-zero values were removed, and the correlation (or association) statistics recal-
culated on these filtered distributions.

For correlation analysis on ATAC-seq experiments conducted here using A549 cells, 
the Pearson’s R correlation statistic was calculated on WFpkm values between replicates 
with co-zeros removed. Similarly, co-zeros were removed prior to calculating correla-
tion and association statistics between replicates of ATAC-seq data downloaded from 
the ENCODE project public repository.

Statistical tests on area under the curve

Across simulations, values of correlation and associations statistics were calculated as a 
function of the designed portion of peaks between synthetic replicates. For each statistic 
tested, the 95% confidence interval of the average area under the curve was calculated 
via bootstrapping, with a thousand iterations. This was done for statistical profiles from 
simulations with and without co-zero values. For comparisons of the average area under 
the curve, either between statistics or within the same statistic after removing co-zeros, 
one thousand permutations were used to calculate the null distribution of the difference 
between the mean area under the curve [77]. The proportion of these differences greater 
than or equal to the true observed difference was used as the p-value. A significance 
level of 0.05 was used to reject the null hypothesis, H 0 : no difference in mean area under 
the curve, in favor of our alternative hypothesis, H 1 : difference of mean area under the 
curve.

Design of random forest model

A random forest model was built in python using the scikit learn module [46, 47]. Asso-
ciation statistics from the ATAC-seq data generated in this study on A549 cells and addi-
tional ATAC-seq data downloaded from the ENCODE project was used as input (see 
Table  1). As features in this random forest, the R2 coefficient and normalized mutual 
information were calculated between every pair of ATAC-seq experiments using 
WFpkm counts, across ten kilobase pair, genomic bins and removing co-zero values. 
The comparison of each unique pair of experiments (totaling 276) were discretized as 
(1) between independent ATAC-seq experiments in different cell lines, (2) independent 
experiments using the same cell line, and (3) between true replicates. The total number 
of comparisons distributed among these three classes was 213, 45, and 18 (respectively). 
Given the over-representation of comparison between independent ATAC-seq experi-
ments in different cell lines, 39 of the 213 comparisons were chosen randomly to rep-
resent the total, unique comparisons between experiments with unique cell lines. This 
down sampling resulted in 39, 45, and 18 comparisons between independent experi-
ments in different cell lines, independent experiments using the same cell line, and true 
replicate experiments, respectively.

For the testing and training of the model, test and training sets of the classes defined 
above were selected using a stratified, 40:60 split of the data. Additionally, ten-fold, strat-
ified cross validation was used to train and test the model [78]. A hundred estimators 
with the entropy selection criterion were used along with default settings in the python 
random forest classifier function within scikit learn [46].
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Additional file 1: Figure S1. Boxplots displaying the area under the curve (y-axis) across statistics (x-axis) with co-
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Additional file 2: Figure S2. Bi-variate plot of WFpkm counts (across 10 kb genomic bins) between replicates of real, 
A549ATAC-seq experiments. Dark red to blue colors and marker size designate the density (log10 (WFpkmcounts)) of 
counts between replicates. Co-zero values appear as an orange dot in lower left corner. A dashedgrey line represents 
a one-to-one relationship between the two replicates.

Additional file 3: Figure S3. The percent of co-zero values in bi-variate WFpkm distributions between real ATAC-seq 
experiments.Sample names are annotated along the x- and y-axis.

Additional file 4: Figure S4. Correlation and association values (y-axis) as a function of percentage of shared peaks 
betweensynthetic replicates (x-axis). Red and grey curves depict the mean and 95% CI (respectively) values across-
simulations. A grey, dashed line marks a one-to-one relationship between the x- and y-axis. Left and rightcolumns 
display change in values as a function of removing co-zeros. Results are from simulations with 50%paired reads 
within selected peaks removed.

Additional file 5: Figure S5. Correlation and association values (y-axis) as a function of percentage of shared peaks 
betweensynthetic replicates (x-axis). Red and grey curves depict the mean and 95% CI (respectively) values across-
simulations. A grey, dashed line marks a one-to-one relationship between the x- and y-axis. Left and rightcolumns 
display change in values as a function of removing co-zeros. Results are from simulations with 95%paired reads 
within selected peaks removed.

Additional file 6: Figure S6. Correlation and association statistics across epigenomic experiments. For samples 
from AATAC-seq and ChIP-seq (assays for B H3K27ac and C H3K4me3 modifications) experiments, the Spearman’sρ, 
Pearson’s R, R2 coefficient, and normalized mutual information (x-axis of columns left to right, respectively) were 
calculated on WFpkm counts between replicates, with (blue) and without co-zeros (orange).

Additional file 7: Figure S7. The coefficient of determination (R2) versus the normalized mutual information (y- and 
x-axis,respectively) calculated on binned counts of WFpkm between ATAC-seq experiments. Blue triangles, orangeXs, 
and green circles mark comparisons between independent experiments, between independent experimentsusing 
the same cell line, or true experimental replicates, respectively.

Additional file 8: Figure S8. The f1-scores, recall, and precision of the random forest model with ten-fold, stratified 
cross validation. Blue, orange, and green colorsdenote experimental relationship class.

Additional file 9: Table S1. Read counts of ATAC-seq experiments.

Additional file 10: Table S2. Fragment counts of ChIP-seq experiments from the ENCODE project.

Additional file 11: Table S3. Difference of mean correlation and association values between replicates and 
non-replicates.
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