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Abstract 

Background:  Microhaplotypes have the potential to be more cost-effective than SNPs 
for applications that require genetic panels of highly variable loci. However, develop-
ment of microhaplotype panels is hindered by a lack of methods for estimating micro-
haplotype allele frequency from low-coverage whole genome sequencing or pooled 
sequencing (pool-seq) data.

Results:  We developed new methods for estimating microhaplotype allele frequency 
from low-coverage whole genome sequence and pool-seq data. We validated these 
methods using datasets from three non-model organisms. These methods allowed 
estimation of allele frequency and expected heterozygosity at depths routinely 
achieved from pooled sequencing.

Conclusions:  These new methods will allow microhaplotype panels to be designed 
using low-coverage WGS and pool-seq data to discover and evaluate candidate loci. 
The python script implementing the two methods and documentation are available 
at https://​www.​github.​com/​delom​ast/​mhFro​mLowD​epSeq.

Keywords:  Low-depth whole genome sequencing, Skim-seq, Pool-seq, 
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Background
As the cost of obtaining genetic information has decreased, more applications for this 
information have been created. Genotypes are now used across medicine, forensics, 
agriculture, and natural resource management to inform decisions [1–5]. For a subset 
of applications, such as genomic selection, pedigree/relationship inference, and genetic 
stock identification, it is often necessary for a given program to genotype a large number 
of individuals [6–8]. To make these applications cost-effective, only a moderate number 
of loci (often a few hundred) can be genotyped [9–11], which limits the statistical power 
of the panel.

Genotyping microhaplotypes instead of SNPs can increase the variability of a 
given genetic panel without increasing the number of loci genotyped. A microhap-
lotype locus contains multiple SNPs that are close enough to be genotyped in the 
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same sequencing read, and so genotyping a microhaplotype locus via sequencing 
(e.g., amplicon sequencing) uses the same resources as genotyping a locus with one 
SNP using the same technology. Because microhaplotypes can display more than 
two alleles, they can achieve higher variability than a biallelic SNP. The use of micro-
haplotype panels has been demonstrated to increase power compared to SNP pan-
els for applications in forensics [12], genetic stock identification [13], and pedigree 
inference [14, 15]. While their utility for genotype imputation has not been directly 
evaluated, imputation is known to be more accurate when informed by larger num-
bers and/or more variable SNPs [9, 10, 16, 17]. Microhaplotypes can therefore be 
expected to outperform single SNPs in this important use case as well.

Several strategies have been used to identify and estimate allele frequencies for 
microhaplotypes in order to design genotyping panels. One opportunistic strat-
egy is to select single SNPs for an amplicon sequencing panel and incorporate any 
additional SNPs that happen to be in the targeted amplicons [18]. A more targeted 
method is to use the reduced-representation technique restriction site-associated 
DNA sequencing (RAD-seq) to identify candidate loci as this allows samples to be 
genotyped for a common set of loci and SNPs to be phased over short distances 
using read-based phasing [, 14, 19, 20]. The main drawback to using RAD-seq is that 
it only covers a small portion of the genome [21]. For projects that require informa-
tion on a larger fraction of the genome or simply require a larger set of candidate 
loci to select from, reduced-representation techniques are not applicable. In these 
cases, whole genome sequencing (WGS) and phasing can be used to identify micro-
haplotypes [22, 23] but has not been widely applied to non-model organisms. Pre-
sumably, this is because of the prohibitive cost to sequence a large enough number 
of individuals to estimate allele frequencies in every population of interest.

When information on a large fraction of the genome is needed but individual 
information is not, two main techniques have been previously utilized. The first is 
to sequence a mixed DNA sample derived from a single population, often referred to 
as pool-seq [24]. Alternatively, low-coverage WGS data from many individuals can 
be analyzed with methods that account for genotype uncertainty [25]. Both tech-
niques allow genome-wide information to be collected at a lower cost than high-
depth WGS. Computational techniques have been developed to infer population 
SNP allele frequencies from these data types [26–30]. For example, Kim et  al. [26] 
describe fitting a mixture model and obtaining maximum-likelihood estimates of 
allele frequency by integrating over individual genotype uncertainty. Raineri et  al. 
[27] consider pool-seq data and describe a Bayesian model that allows the use of 
priors reflective of different experimental situations (e.g., when the ancestral allele 
is known). Additionally, when the set of all possible haplotypes is known, meth-
ods exist to infer haplotype frequencies from these data types [31–33]. However, 
there are no existing tools to estimate haplotype, including microhaplotype, allele 
frequencies without additional information. To address this, we here describe and 
validate methods to estimate microhaplotype allele frequencies from both pool-seq 
and low-coverage WGS data. These methods will enable the cost-effective design of 
microhaplotype panels for applications that benefit from highly variable loci.



Page 3 of 14Delomas and Willis ﻿BMC Bioinformatics          (2023) 24:415 	

Methods
We developed two related methods for estimating microhaplotype allele frequencies. 
The “individual” method addressed low-coverage WGS datasets where reads can be 
assigned unambiguously to individuals. The second, “pool” method addressed pool-seq 
datasets where reads are not able to be assigned to individuals. Both methods utilized 
mixture models to infer allele frequencies. In the individual method, the individual was 
the unit of observation, and the genotype was a latent variable. Component weights were 
genotype frequencies and were linked to allele frequencies by assuming Hardy–Wein-
berg equilibrium (HWE). In the pool method, the read was the unit of observation and 
the allele that it was derived from was a latent variable. Component weights were allele 
frequencies.

Individual method

When sequencing reads can be assigned to individuals but the depth of sequencing is 
too low to definitively call genotypes, methods have previously been used that take gen-
otype uncertainty into account to infer SNP allele frequencies through a maximum like-
lihood approach [26]. We extend this approach to the case of microhaplotypes.

Let π be a vector of genotype frequencies for one locus and Ri be the set of all sequenc-
ing reads for one individual (individual i) that cover one or more SNPs in the target 
locus. The likelihood of π given Ri (probability of Ri given π ) was described by the mix-
ture model equation

where K was the number of genotypes, z was the unknown genotype of the individual, 
and Gj was genotype j. Assuming independence, the likelihood across all individuals 
was calculated as the product of all individual likelihoods. The probability of a set of 
reads given a genotype, P Ri|z = Gj  , was calculated as described by Eqs. (1) and (2) in 
Edge et al. [34]. This likelihood uses the probability that a sequencing call is incorrect, 
which we calculated according to standard probability arguments from a user supplied 
probability that the base was incorrect prior to sequencing (e.g., PCR error in library 
prep, which was set at 0.01 for the current study) and the Phred score that represents 
the probability the base was called incorrectly during sequencing. This model was fit-
ted using an expectation–maximization algorithm and allele frequencies were linked to 
genotype frequencies by assuming HWE.

Pool method

Given sequencing reads that could not be assigned to individuals, we assumed that reads 
were drawn from the entire population of alleles at random. We utilized a mixture model 
to represent the sequencing reads, with the specific allele that a given read originates 
from as a latent variable [31]. The mixture proportions represented the population allele 
frequencies and the likelihood of a read given an allele was calculated as described by 

(1)P(Ri|π) =

K
∑

j

πjP
(

Ri|z = Gj

)

,
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Eq. (1) in Edge et al. [34]. This likelihood uses the probability that a sequencing call is 
incorrect which was calculated as described above. The model for an individual read 
can be represented by Eq. 1 with terms redefined: Ri was a single read, π was a vector 
of population allele frequencies, K was the total number of alleles, z was the unknown 
allele that the read originated from, and Gj was allele j. Assuming independence between 
reads, the likelihood given all reads was calculated as the product of the individual likeli-
hoods. This model was fit using an expectation–maximization algorithm and there was 
no assumption of HWE.

Pruning of alleles considered

In both methods described above, a key parameter was the number of different alleles 
at a given locus. If all possible alleles at a microhaplotype were considered, this would 
grow exponentially with the number of SNPs. When analyzing low-coverage WGS data, 
the number of possible genotypes was also important, and this would grow faster than 
the number of alleles. The number of potential alleles/genotypes would quickly become 
computationally prohibitive if all possibilities were considered. However, strong linkage 
between SNPs in a given microhaplotype causes many of the possible alleles to be non-
existent. To manage the computational burden, we needed a simple, efficient method of 
removing alleles with frequency of zero from consideration.

The method implemented here was to iteratively estimate allele frequencies within 
successively larger subsets of a given locus while removing alleles with estimated fre-
quency close to zero at the end of each iteration. For a locus containing y total SNPs, 
only the first x SNPs were considered in the first iteration. The model was fit and alleles 
with estimated frequency below c were removed from consideration. In the second 
iteration, the first 2x SNPs were considered with haplotypes for the first x SNPs being 
restricted to only those retained at the end of the first iteration. Additional iterations 
were performed (adding up to x SNPs with each iteration) until all y SNPs were con-
sidered in the final iteration. In the final iteration, no alleles were dropped regardless of 
estimated frequency as this would not increase computational efficiency. An example 
can be found in Additional file 1. For the current study, the values of x and c were set to 1 
and 0.001, respectively.

Implementation

These methods were implemented as a python script that takes as input one or more 
bam files, a file containing the known positions of substitution SNPs, and optional user 
specified parameters. Methods of SNP discovery for both data types considered here 
exist [25, 27, 35–37], and so we focused only on estimation of allele frequency given a 
known set of SNPs. The implementation only considers substitution SNPs (not indels 
or complex variants). Both methods described here were applied using a window of 60 
bps to define microhaplotype loci. The window advanced until at least one new SNP was 
included to prevent considering a locus that is a subset of another locus. To avoid situ-
ations that are computationally prohibitive, estimates were not made for any loci where 
one or more SNP had a depth of zero or where the number of alleles being considered 
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was greater than 128 or 256 for the individual or pool methods, respectively. The python 
script utilized the packages Pysam (https://​www.​github.​com/​pysam-​devel​opers/​pysam) 
[38, 39], numpy [40], and numba [41] and is available at https://​www.​github.​com/​delom​
ast/​mhFro​mLowD​epSeq.

Method evaluation

Overview

These methods were tested on three publicly available paired-end sequencing datasets 
from non-model organisms. Two were WGS datasets containing 25 Pacific oysters Cras-
sostrea gigas from Weihai, China [42] and 53 Atlantic salmon Salmo salar from the St. 
John River strain [43] while the third was a RAD-seq data set containing 96 Pacific lam-
prey (80 from the Willamette River in Oregon, USA and 16 from the Yakima River in 
Washington, USA) [44]. Results for the three datasets were highly similar, and so figures 
presented here are for the oyster WGS dataset while corresponding figures for the other 
datasets are available as supplementary material.

For each dataset, we first called genotypes and performed short-range, read-based 
phasing. The resulting genotypes were used to calculate allele frequencies and expected 
heterozygosity for microhaplotypes with a length of 60 bp using a custom java program 
(https://​www.​github.​com/​delom​ast/​mhFro​mLowD​epSeq/​tree/​main/​testV​CFcalc) rely-
ing on the htsjdk API (https://​www.​github.​com/​samto​ols/​htsjdk). These statistics calcu-
lated from the full data are referred to throughout as “observed” allele frequencies and 
expected heterozygosity. Imitation low-coverage sequencing datasets with mean indi-
vidual depth of 0.1, 0.5, 1, and 2 were then created by randomly subsampling aligned 
reads using samtools [39]. All individuals in a given dataset were downsampled using 
the same frequency (probability) of retaining a read to preserve relative differences in 
sequencing depth between individuals. To simulate pool-seq data, individual identifiers 
(read groups) on reads in these downsampled datasets were ignored. The two estimators 
described here were run with the four low-coverage datasets to estimate allele frequen-
cies and expected heterozygosity. Expected heterozygosity was calculated by subtract-
ing the sum of squared allele frequencies from one. We then compared the estimates to 
the observed values with loci binned by the number of reads (across all individuals) that 
informed the estimate. This binned number of reads is not strictly sequencing depth as 
some reads may only cover a subset of the SNPs in a given locus. Estimates from all four 
levels of downsampling were combined into each bin. In cases where a locus appeared 
more than once in a bin, one estimate was randomly selected. Only loci with 2 or more 
SNPs and observed expected heterozygosity greater than 0.1 were considered during the 
evaluation as the focus of these methods is on variable microhaplotypes. When assessing 
estimates of allele frequency, one allele that had an observed frequency greater than 0.01 
was selected at random from each locus in each bin. Bias and mean square error were 
assessed by calculating the error as “observed – estimated” frequency for that allele.

Pacific oyster WGS data

Whole genome sequencing data from 25 Pacific oyster Crassostrea gigas samples from 
Weihai, China described by Li et  al. [42] was downloaded from the NCBI SRA. The 
reads were adapter and quality trimmed using TrimGalore (https://​www.​github.​com/​
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Felix​Krueg​er/​TrimG​alore) which is a wrapper for cutadapt [45] then aligned with bow-
tie2 [46] in end-to-end mode with –score-min L,0,-0.4 and all other parameters taking 
default values to the reference genome cgigas_uk_roslin_v1 (RefSeq GCF_902806645.1) 
[47]. Alignments were filtered to only include reads with both mates aligning concord-
antly to chromosome NC_047565.1 using samtools [39]. Reads were restricted to one 
randomly selected chromosome as this provided sufficient data to evaluate the methods. 
Duplicates were removed using Picard tools (http://​broad​insti​tute.​github.​io/​picard/) and 
samples were genotyped using GATK HaplotypeCaller followed by GenomicsDBIm-
port and GenotypeGVCFs with default settings [48, 49]. The resulting genotypes were 
filtered to only include biallelic SNPs with depth of 5 or greater, genotype quality of 10 or 
greater, variant quality of 100 or greater, minor allele frequency greater than 0.05, and a 
missing genotype rate of 25% or less. Genotypes were phased using WhatsHap [50, 51] 
with default settings. The observed allele frequencies and expected heterozygosity were 
calculated using only genotypes whose phase (within the locus) was able to be unam-
biguously determined. The aligned reads were subsampled, and the two novel estimators 
were applied as described above.

Atlantic salmon WGS data

Whole genome sequencing data from 53 Atlantic salmon Salmo salar samples from the 
St. John River strain described by Gao et al. [43] were downloaded from the NCBI SRA. 
This data was processed as described above for the oyster data set except that reads were 
aligned to the reference genome USDA_NASsal_1.1 (GenBank: GCA_021399835.1) [52] 
and then filtered to only include chromosome CM037941.1.

Pacific lamprey RAD‑seq data

Due to the relative scarcity of whole-genome sequencing datasets containing a large 
number of samples in non-model species, we additionally tested the methods using a 
RAD-seq data set for Pacific lamprey Entosphenus tridentatus described by Hess et al. 
[44]. From this dataset, a subset of 96 individuals (80 from the Willamette River in Ore-
gon, USA and 16 from the Yakima River in Washington, USA) were used. To identify and 
genotype SNPs, this dataset was analyzed with the dDocent pipeline [53] and the ETRf_
v1 (GenBank: GCA_014621495.2) reference genome [54]. The genotypes were filtered to 
only include those with variant quality of 100 or greater, minor allele frequency greater 
than 0.05, and a missing genotype rate of 25% or less. Genotypes were then phased with 
WhatsHap [50, 51] using default parameters.

A major way that single-enzyme RAD-seq data deviates from whole genome sequenc-
ing data is that in paired-end RAD-seq data, one read from each pair starts at a restric-
tion enzyme cutsite. This results in multiple reads that all start at the same position. In a 
WGS dataset, one would expect reads to be closer to randomly distributed. To account 
for this, we excluded any SNPs from consideration that were within one read length of 
a cutsite in the reference genome using a custom python script (https://​www.​github.​
com/​delom​ast/​mhFro​mLowD​epSeq/​blob/​main/​filte​rLamp.​py). This left only SNPs that 
would be sequenced by the read in a pair that did not start at the cutsite. Because the 
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insert size was variable in this library, the positions of these reads are variable and there-
fore a closer approximation of what is expected in a WGS dataset.

Results
Discovery of SNPs in the oyster, salmon, and lamprey datasets yielded 809,951, 139,518, 
and 28,257 SNPs, and grouping these into microhaplotypes gave 356,732, 25,455, and 
7,387 loci containing two or more SNPs within a 60 bp window, respectively. After filter-
ing for loci with expected heterozygosity greater than 0.1, there were 355,285, 25,245, 
and 7,366 loci remaining. The filtered loci had high genotyping success and the vast 
majority of genotypes were able to be phased (Table 1). As a result, exclusion of gen-
otypes from calculations of the observed allele frequencies was predominantly due to 
missing genotypes and not due to unknown phase.

Estimates of allele frequencies were close to unbiased with mean error approximat-
ing zero (Fig. 1, Additional file 2). While the mean error was close to zero regardless of 
the number of reads, the median deviated from zero when very little data was available 
(1–5 reads). The distribution of error was less diffuse and mean square error decreased 
(Fig. 2, Additional file 3) when estimates were informed by more reads, but this effect 
was less pronounced after a minimum of 20 reads was reached. Generally, mean square 
error was lower with the individual method than with the pool method, but this differ-
ence was close to negligible (Fig. 2, Additional file 3).

Microhaplotypes are typically used when highly variable loci are desired. As such, 
expected heterozygosity is a useful metric when selecting microhaplotypes for a panel. 
We therefore examined the error in expected heterozygosity calculated from the esti-
mated allele frequencies produced by the two methods described here. Expected het-
erozygosity was biased downwards at very low read numbers but this bias was minimal 
once 20 or more reads were used (Fig.  3, Additional file  4) corresponding to mean 
individual sample coverage of 0.8x, 0.4x, and 0.2 × in the oyster, salmon, and lamprey 
datasets, respectively. Similar to the case for allele frequencies, mean square error in 
expected heterozygosity decreased with increasing data and was generally lower with 
the individual method than with the pool method (Fig. 4, Additional file 5). However, the 
difference between the individual and pool methods was minor.

Table 1  Summary of loci genotyped and phasing success with WhatsHap in each test dataset

The number of microhaplotype loci, allelic richness, number of phased genotypes, and number of unphased genotypes 
only includes microhaplotype loci with expected heterozygosity of 0.1 or greater. Means are given as mean ± SD. Mean 
sequencing depth was calculated using the number of mapped reads after duplicate removal for the oyster and salmon 
WGS datasets and using the mean depth of called SNP genotypes for the lamprey RAD-seq dataset

Dataset Oyster Salmon Lamprey

Mean sequencing depth 18 ± 2 15 ± 3 22 ± 3

Number of SNPs 809,951 139,518 28,257

Number of microhaplotype loci 355,285 25,245 7366

Mean allelic richness 4.7 ± 2.0 3.0 ± 1.2 3.9 ± 4.1

Mean number of phased genotypes 22.10 ± 2.73 47.21 ± 4.06 82.13 ± 7.06

Mean number of unphased genotypes 0.01 ± 0.10 0.03 ± 0.25 0.05 ± 0.77
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Discussion
We present a new technique for discovering microhaplotype loci from low-coverage 
whole genome sequencing data and demonstrate that this method produces relatively 
unbiased and narrow estimates of allele frequencies and expected heterozygosity at 
sequencing depths beyond approximately 20 reads. These new methods will enable cost-
effective microhaplotype panel design for organisms and populations lacking extensive 
individual WGS data. Many of the potential applications for microhaplotypes, includ-
ing pedigree inference [14, 15], imputation for genomic selection [8], and genetic stock 
identification [13], involve genotyping a large number of individuals. To achieve this 
efficiently, smaller panels (hundreds of loci) are often designed to be population spe-
cific and genotyped through amplicon sequencing [13, 55, 56]. By allowing estimation of 
microhaplotype allele frequencies and expected heterozygosity from low-coverage WGS 
or pool-seq data, the methods developed here will allow microhaplotype panels to be 
designed for use in these applications, thereby increasing the statistical power achieved.

The two methods developed here were essentially unbiased for estimating allele fre-
quencies in the tested data sets and were able to reach an approximate plateau in the 
decrease of mean square error with only a moderate amount of data (20–30 reads/
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Fig. 1  Distribution of error in estimated allele frequencies from the oyster dataset binned by the number of 
reads contributing to the estimate. Sample sizes in bins from left to right: 194,204, 125,410, 54,818, 81,027, 
96,920, 90,745, 75,136, 63,388, 113,454, 97,540
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locus, corresponding to mean individual sample coverage of 0.8–1.2x, 0.4–0.6x, and 
0.2–0.3x in the oyster, salmon, and lamprey datasets, respectively). Outliers were 
observed with errors close to the maximum error possible at very low sequencing 
depths (less than 10 reads) (Fig.  1). These errors, which are presumably a result of 
sampling variation, can be avoided by ignoring estimates with low depth. This dem-
onstrates that the developed methods will allow loci to be evaluated as candidates for 
a genotyping panel given sequencing depths recommended for pool-seq [24].

The estimates of expected heterozygosity were biased low, particularly when little 
data was available. This is in line with expectations based on results for estimating 
expected heterozygosity from individual genotypes, which is known to be biased low 
with bias inversely related to sample size [57]. While a correction exists for calcu-
lations based on individual genotypes [57], the derivation of a correction is not as 
straightforward in the current case. Fortunately, this bias was observed to be mini-
mal with a moderate amount of data (20–30 reads/locus), and so impactfully biased 
estimates can be avoided by ignoring those with very low depth. It is therefore not 
expected to present a practical obstacle to the utilization of this technique. We also 
wish to be clear that with less than 20 reads per locus the method here presented was 
not reliable.
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The individual method slightly outperformed the pool method in mean square 
error, but this difference was small enough that it is likely inconsequential to down-
stream applications. However, the datasets used in the current study were created by 
subsampling individual data where libraries were prepared following the same proce-
dure. In cases where sequencing depth is more variable between individuals, the use 
of the individual method may correct for variance in representation. This could result 
in a larger difference in mean square error if HWE, which is assumed by the individ-
ual method but not the pool method, is a valid assumption.

Applications involving species relevant to aquaculture and natural resource manage-
ment are particularly suited to benefit from the techniques developed here. Both fields 
involve a large number of species of interest, meaning the development of tools (such 
as genotyping panels) often does not benefit from the economies of scale present for 
humans, model species, and terrestrial livestock. Potential benefits from the applica-
tion of modern genetic techniques to these fields have been well documented [58–63], 
including 22–24% increase in mean breeding value prediction accuracy from the appli-
cation of genomic selection to aquaculture species [58]. The barriers cited to achieving 
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these gains include the costs of developing genetic panels and genotyping sufficient 
numbers of samples [58–63], which are directly addressed by the methods presented 
here.

Pool-seq and low-coverage WGS have both been popular methods for cost-effective 
acquisition of genome-wide data, resulting in a multitude of existing datasets [24, 36, 
64–68]. The methods developed here will allow these data to be reanalyzed for the pur-
pose of designing microhaplotype genetic panels. In many cases, this will further reduce 
the cost of panel development by repurposing existing data.

Conclusion
These new methods facilitate cost-effective microhaplotype panel design by allowing 
the use of low-coverage WGS and pool-seq data for estimation of allele frequencies and 
expected heterozygosity in candidate loci. The python script and documentation imple-
menting the two methods described here are available at https://​www.​github.​com/​delom​
ast/​mhFro​mLowD​epSeq.
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