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Introduction
Over the last two to three decades, the rapid development of the genome sequencing 
technology has made it into reality to measure the expression level of thousands of genes 
from a biological sample simultaneously. Since gene expression data is extracted by vari-
ous gene profiling technologies, direct reflecting the physiological state and disease of 
the human body [1], many computational technologies such as regression, classification 
and clustering can be applied on it to uncover disease mechanisms, propose novel drug 
targets, provide a basis for comparative genomics, and address a wide range of funda-
mental biological problems [2].
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Nevertheless, the gene expression profile data are fundamentally limited in sample 
size, diversity, and the speed at which they can be gathered [3], due to the ethical chal-
lenge [4] and high expenses of money for gathering gene expression data through bio-
logical experiments. For example, the per person costs were US$604-1932 for exome 
sequencing, and US$2006-3347 for whole genome sequencing in 2018 [5]. In addition, 
much bias or noise, which results from the errors in the splicing process of short reads 
[6] and various batch effects [7], makes it a great challenge to take advantage of the gene 
expression data effectively. Therefore, it is desired to generate biologically plausible syn-
thetic gene expression data, which can be applied in such downstream tasks as marker 
gene detection, cell type clustering, gene association identification, cancer stages predic-
tion, and so on [3]. In recent years, data augmentation (DA) methods, being capable of 
enriching data sets, mitigating data imbalance and data noise issues, have been exten-
sively studied in the area of generating synthetic gene expression data.

To the best of our knowledge, there are generally three categories of data augmen-
tation methods for generating gene expression data, such as sample-based, simulator-
based, and generative adversarial network-based. The sample-based methods include 
random sampling [8], mean sampling [9], resampling [10], and oversampling [11, 12], 
which are prone to the problem of overfitting [13] or distribution marginalization [14]. 
The simulator-based methods [15, 16] generate synthetic transcriptomics datasets based 
on known regulatory networks. Since they perform similarly to the random simulators 
[2], the key features of gene expression data can not be simulated [17]. With the rapid 
development of deep learning technology, the Generative Adversarial Network (GAN)-
based method, being able to produce more diverse and higher quality samples than the 
former two methods, has received major attention [1, 2]. It is also studied in this paper.

In 2020, Chaudhari et al. [18] firstly proposed modified generator GAN (MG-GAN), 
which is fed with original data along with minimalistic multivariate noise to generate 
data with Gaussian distribution. In 2021, Kwon et al. [19] indicated that GANs are not 
effective with whole genes, and expanded RNA expression data for selected significant 
genes using GANs. Both of the two methods adopt the original unconditioned genera-
tive model, which has no control on modes of the data being generated [20]. In 2022, 
Ahmed et al. [21] developed method omicsGAN to integrate two omics data and their 
interaction network into a Wasserstein Generative Adversarial Network (WGAN) [22]. 
Nevertheless, gradient explosion is common when training WGAN. In 2020, Marouf 
et  al. [23] adopted conditional single-cell generative adversarial neural networks (csc-
GAN) to produce single-cell RNA-seq data. It learns non-linear gene-gene dependencies 
from complex, multiple cell type samples and uses this information to generate realistic 
cells of defined types. In 2022, Han et al. [1] put forward the method Gene-CWGAN, 
which stabilizes the distribution of generated samples with a dataset partition method, 
and adopts constraint penalty term to improve the diversity of generated samples. In 
the same year, Viñas et  al. [2] proposed a new simulator (it is called as S-WGAN-GP 
in this paper) based on WGAN-GP (Wasserstein Generative Adversarial Network with 
Gradient Penalty) [24]. S-WGAN-GP concatenates the sample covariates with the input 
features and samples the class labels from the real distribution. The S-WGAN-GP simu-
lator can be used at a higher scale to produce tissue- and organ-specific transcriptomics 
data.
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In the process of training generative adversarial networks, mode collapse is a serious 
issue to be concerned about. It may be an effective channel to alleviate the problem to 
improve the diversity of training samples as well as feedback signals. Among the above 
mentioned approaches, the diversity of feedback signals may be constrained for just one 
discriminator being adopted in the GANs. Therefore, in this paper, the collaboration of 
multiple discriminators is explored. The main contributions of this paper are summa-
rized as follows: 

1.	 The multiple discriminator WGAN-GP (MDWGAN-GP) model is proposed. It can 
ensure the high quality of the generated gene expression data. Multiple discrimina-
tors are adopted prevent mode collapse via providing more feedback signals to the 
generator.

2.	 A novel approach based on linear graph convolutional network (GCN) is put for-
ward to enrich training samples, avoiding over-fitting or mode collapse caused by 
small sample size in high dimensional data.

3.	 The pan-cancer gene expression datasets were produced to demonstrate the effec-
tiveness of the MDWGAN-GP approach. A data preprocess method is conducted to 
select the genes with high confidence or top ranking from protein-protein interac-
tion networks, so as to relieve the curse of dimensionality encountered in the train-
ing. Extensive experiments were implemented to compare the quality of generated 
gene expression data between the MDWGAN-GP method and other state-of-the-art 
ones.

Preliminaries
Conditional generative adversarial network

The conditional generative adversarial network (CGAN) [20] attempts to generate sam-
ples of specified labels through input labels and noise. As the normal generative adver-
sarial network (GAN) [25], a CGAN model consists of a generation network G and a 
discrimination network D. Given some noise z and conditional information y (e.g. cat-
egory labels, data with different modalities), the generator G learns to produce syn-
thetic samples similar to the real distribution. The discriminator D needs to distinguish 
whether the input sample is from authentic sample p(x) or from sample p(z) produced by 
the generator G. The loss function of CGAN can be formulated as:

Conditional Wasserstein generative adversarial network with gradient penalty

Different from CGAN, the Wasserstein generative adversarial network (WGAN) [22] 
tries to generate samples with just input noise. It applies the Wasserstein distance 
instead of the Jensen-Shannon (JS) divergence to evaluate the distribution distance 
between the real samples and the generated ones, making the training process more sta-
ble and faster than the normal generative adversarial network. The Wasserstein genera-
tive adversarial network with gradient penalty (WGAN-GP) [24] is an modified model 
based on WGAN, penalizing the norm of gradient of the discriminator with respect to 
its input. In 2020, Zheng et al. [26] further improved the WGAN-GP model from the 

(1)min
G

max
D

V (D,G) = Ex∼p(x)[logD(x|y)] + Ez∼p(z)[log(1− D(G(z|y)|y))]
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addition of conditional information and proposed the CWGAN-GP model, whose loss 
function can be formulated as:

where Ex̂∼p(x̂)[(||∇x̂D(x̂|y)||2 − 1)2] is the gradient penalty term.

Graph convolutional network

The emerging graph convolutional networks (GCNs) [27–29] are able to extract well 
spatial correlation in non-Euclidean structures and maintain shift-invariance. Let G=(V, 
E) be an undirected graph, where V and E represent the set of nodes vi ∈ V  (i=1,2,...,n) 
and edges ( vi,vj)∈ E , respectively. A ∈ Rn×n is the adjacent matrix of G, where Aij indicates 
whether there is an edge between vi and vj , or the similarity between them basing on a 
similarity measure. Let H (l) represent the graph node representations at the l-th ( l ∈ N  ) 
layer, the propagation rule for calculating the graph node representations at the (l + 1)

-th layer is formulated as:

where f(· ) is a no-linear activation function, A=A+I, and W (l) is the weight matrix of the 
l-th layer. D̃− 1

2 ÃD̃− 1
2 is a symmetric normalized Laplacian matrix, where D̃ii=

∑n
j=1 Ãij.

Proposed method
Recently, Viñas et al. [2] proposed a WGAN-GP based simulator S-WGAN-GP to gen-
erate specific tumour gene expression data. Though conditional restrictions are added, 
model collapse or over-fitting may not be exempted for small training samples due to 
just one discriminator is adopted. In addition, some inherent defects are also harboured 
in WGAN-GP, such as training unstable and failing to generate diverse samples [1, 30]. 
Therefore, in this section, an improved data augmentation approach, the multiple dis-
criminator WGAN-GP (MDWGAN-GP) model, is proposed. We begin with enriching 
the training samples with linear graph convolution [31, 32], then a generative adversar-
ial network with multiple discriminators is devised based on WGAN-GP. The concrete 
descriptions are as follows. The source code of method MDWGAN-GP can be down-
loaded from https://github.com/lryup/MDWGAN-GP.

Enriching training samples

It is generally regarded that enriched training samples contribute to GAN capturing the 
original distribution [33]. Inspired by methods exerted on image data to enrich training 
samples, i.e., rotation, flipping, and cropping, a novel approach suitable for gene expres-
sion data is proposed. Given a raw gene expression matrix X1 with n rows (samples) and m 
columns (genes), where each entry represents the expression level of a given gene in a par-
ticular sample. A pair of K-Nearest Neighbors (KNN) graphs [34, 35] GE and GC are built 
from matrix X1 based on Euclidean distance and Cosine distance, respectively. Each vertex 
of them denotes a sample, and the edge demonstrates that there is a strong relationship 

(2)
min
G

max
D

V (D,G) = Ex∼p(x)[D(x|y)] − Ez∼p(z)[D(G(z|y)|y)]+

�Ex̂∼p(x̂)[(||∇x̂D(x̂|y)||2 − 1)2],

(3)H (l+1) = f
(
D̃− 1

2 ÃD̃− 1
2H (l)W (l)

)
,



Page 5 of 20Li et al. BMC Bioinformatics          (2023) 24:427 	

between the connected two samples. Linear graph convolution is performed to update the 
vertices (samples), i.e., aggregating the information of their neighbor ones. The updated 
gene expression matrices X2 and X3 are depicted as follows:

where f(· ) is a linear activation function. ÃE=AE+I (resp. ÃC=AC+I), where AE and 
AC are the adjacency matrices of graphs GE and GC , respectively. D̃E ii=

∑n
j=1 ÃE ij , D̃C ii

=
∑n

j=1 ÃC ij.

Adversarial simulator for augmenting gene expression data

It has been regarded that the adoption of multi discriminators can improve the stability of 
optimization process [33]. In this subsection, an adversarial simulator MDWGAN-GP with 
three discriminators is devised, as shown in Fig. 1.

Figure 1a shows the S-WGAN-GP model, and Fig. 1b illustrates the structure of MDW-
GAN-GP proposed in this paper. In the MDWGAN-GP model, the distribution of the orig-
inal data are expected to be learned from two updated gene expression matrices X2 and X3 
besides raw gene expression matrix X1 . Hence two more discriminators D2 as well as D3 are 
added and fed with X2 and X3 , respectively. Nevertheless, it is worth noticed that the gener-
ator is still anticipated to learn from the raw samples X1 principally rather than the updated 
ones, which play auxiliary roles in the process of training.

The objective function

In a generative adversarial network, the generator tries to produce samples that look real 
enough to trick the discriminator, while the discriminator attempts to distinguish the gen-
erated samples from the real ones. Here the objective functions are designed for one gen-
erator and three discriminators in MDWGAN-GP, as illustrated in Equation (6):

(4)X2 =f

(
D̃
− 1

2
E ÃED̃

− 1
2

E X1

)
,

(5)X3 =f

(
D̃
− 1

2
C ÃCD̃

− 1
2

C X1

)
,

(6)
V (Di,G) = EXi∼p(Xi)[Di(Xi|Y )] − EZ∼p(Z)[Di(G(Z|Y )|Y )]+

�EX̂i∼p(X̂i)
[(||∇X̂i

Di(X̂i|Y )||2 − 1)2], i = 1, 2, 3,

Fig. 1  the structures of the S-WGAN-GP model and the MDWGAN-GP model
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where Y indicates the conditional labels. � is a hyperparameter determining strength of 
gradient penalty EX̂i∼p(X̂i)

[(||∇X̂i
Di(X̂i|Y )||2 − 1)2] . Xi is the real samples, Z denotes the 

noise samples, X̂i represents the samples randomly chosen from the real ones or the gen-
erated ones. The whole optimization objective functions of generator and discriminator 
are formulated as Equation (7) and Equation (8):

where �g and �d denote two small adjustable parameters assisting model learning. All 
discriminators are trained through weight sharing to improve model performance [33].

Architecture

Figure 2 shows the architecture of the proposed simulator MDWGAN-GP. The gen-
erator G receives noise vector Z and conditional label Y as input and produces vector 
X ′ of synthetic expression values. The discriminator Di (i=1,2,3) takes either a real 
gene expression sample Xi or a synthetic sample X ′ , in addition to a conditional label 
Y, and tries to distinguish whether the input sample is real or fake. Matrices X2 and X3 
are respectively produced with a linear graph convolution of sample graphes GE and 
GC , which are respectively constructed from matrix X1 based on Euclidean distance 
and Cosine distance.

(7)min
G

V (D1,D2,D3,G) = V (D1,G)+ �g

2
[V (D2,G)+ V (D3,G)],

(8)max
D1,D2,D3

V (D1,D2,D3,G) = V (D1,G)+ �d

2
[V (D2,G)+ V (D3,G)],

Fig. 2  The structure diagram of MDWGAN-GP model
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Experimental details
The effectiveness of MDWGAN-GP is verified through extensive experiments. 
We began with comparing the model performances of CGAN [20], CWGAN [36], 
CWGAN-GP [26], Gene-CWGAN [1], S-WGAN-GP [2], and MDWGAN-GP with the 
similarity dist(· , · ) on fifteen datasets, and the diversity of samples generated by these 
models through sample dimension visualization. Then we compared the model perfor-
mances with the classification ability of generated samples. Next, we compared the per-
formances among these models in terms of the correlations among key genes. Finally, 
we compared the differentially expressed genes, identified using the generated datasets, 
with those identified using the real ones.

Data preparation and parameter settings

In the experiments, real biological datasets are acquired from four databases:
(1) The Cancer Genome Atlas (TCGA). It is a public biospecimen repository which 

aims to augment the understanding of the molecular mechanisms of cancers. The data-
base contains high-throughput genomic data from over 20,000 primary cancer and 
matched healthy samples spanning 33 cancer-types.

(2) The Genotype-Tissue Expression (GTEx). It is also a public resource built to study 
tissue-specific gene expression and regulation. It contains samples collected from 54 
non-diseased tissue sites across nearly 1000 individuals [37].

(3) The String dataset. String is a database which records known and predicted pro-
tein-protein interactions, including physical as well as functional connections. The latest 
Human Protein Interaction Network version 11.5 was adopted in the experiments.

(4) The HumanNet dataset. HumanNet [38] is a database that covers 99.8% of human 
protein-coding genes. The latest functional gene network (HumanNet-FN) version 3 [39] 
was adopted in the experiments.

The data preparation was conducted was follows. Firstly, the raw RNA-seq sample 
datasets of TCGA and GTEx were acquired from Wang et  al. [40]. Fifteen common 
tissues between TCGA and GTEx datasets were selected to construct the GT dataset, 
which consisted of 9,147 samples and 18,154 genes. Secondly, the String PPI network 
were consisted of 11,938,499 edges and 19,385 proteins, and 360,783 edges as well as 
14,220 proteins were retained through filtering out the edges with a score less than 800. 
The transfer from protein ID to gene ID, then to gene name was conducted with the 
Genome Reference Consortium Human Build 38 Organism (GRCH38) database, and R 
packages AnnotationDbi and org.Hs.eg.db. Then 13,035 genes were remained by drop-
ping duplicate ones, for some proteins correspond to multiple genes. Thirdly, among the 
977,495 edges and 18,458 genes of HumanNet, 15,443 genes and 97,749 edges were left 
by choosing the top 10% more reliable edges. Finally, the genes that were not belong to 
the String or the HumanNet PPI networks were dropped from the GT dataset, and 9147 
samples and 10612 genes were remained. Both logarithmic transformation and z-score 
were adopted to normalize the gene expression values. The number of samples of the 
fifteen common tissues were illustrated in Table 1.

In the experiments, 10% of the samples in all datasets were randomly selected as 
the training set, while the 90% rest ones were as the test set. Both the generator and the 
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discriminator models included two layers of fully connected hidden layers, each of which 
had 256 nerves. The hidden layer adopted the ReLU activation function, and the output 
layer did not use any. The RMSProp optimizer was executed with a learning rate of 0.0005 
[41]. Some hyperparameters were set as follows: �=10 [24], �g=0.2, and �d=0.02 [33]. The 
training process was terminated when the validation score dist(DX , DZ ) was not improved 
for 20 consecutive times, or it reached the maximum iterations of 500.

Evaluation index

In this section, evaluation indexes for estimating the performance of generative model are 
described. Assume that Xm1×n and Zm2×n are a pair of matrices recording real and syn-
thetic gene expression observations, respectively. The rows of them respectively denote a 
set of m1 real cancer samples and m2 synthetic ones, the columns of them denote a set of n 
genes, and the entries of them are real numbers, i.e., xij , zij ∈ R . Let DX and DZ be a pair of n 
× n symmetric matrices corresponding to X and Z. In matrix DX (resp. DZ ), each entry dXjk 
(resp. dZjk ) records the pairwise distance between the j-th and the k-th genes, i.e., the pear-
son correlation coefficient between columns x−j (resp. z−j ) and x−k (resp. z−k ), as defined 
in Equation (9) (resp. Equation (10)):

where x̄−j=

m1∑
i=1

xij

m1
 , x̄−k=

m1∑
i=1

xik

m1
 , z̄−j=

m2∑
i=1

zij

m2
 , z̄−k=

m2∑
i=1

zik

m2
.

(9)dXjk =

m1∑
i=1

(xij−x̄−j)

m1∑
i=1

(xik−x̄−k )

√
m1∑
i=1

(xij−x̄−j)
2

√
m1∑
i=1

(xik−x̄−k )
2

(10)dZjk =

m2∑
i=1

(zij−z̄−j)

m2∑
i=1

(zik−z̄−k )

√
m2∑
i=1

(zij−z̄−j)
2

√
m2∑
i=1

(zik−z̄−k )
2

Table 1  The number of samples of the fifteen common tissues

Tissue GTEx TCGA​ Normal Cancer Total Samples

Bladder 11 379 28 362 390

Breast 89 1092 199 982 1181

Cervix 11 261 13 259 272

Colon 339 423 390 372 762

Esophagus_gas 150 0 150 0 150

Esophagus_muc 267 0 267 0 267

Esophagus_mus 242 194 253 183 436

Kidney 32 897 158 771 929

Liver 115 383 172 326 498

Lung 313 1102 423 992 1415

Prostate 106 474 154 426 580

Salivary 55 502 97 460 557

Stomach 192 413 225 380 605

Thyroid 318 494 371 441 812

Uterus 82 211 105 188 293

Counts 2322 6825 3005 6142 9147
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Let dist(DX , DZ ) represent the similarity between matrices DX and DZ , measuring 
whether the pairwise correlation between genes from the real data are correlated with 
those from the synthetic data, as defined in Equation (11) [2]:

where µ(DX ) and σ(DX ) are defined as Equation (12) and Equation (13), and µ(DZ) and 
σ(DZ) are defined accordingly.

In addition, the classification performance obtained by taking advantage of the synthetic 
gene expression data is also adopted to measure the performance of generative model, as 
depicted from Equation (14) to Equation (18):

where TP (resp. TN) denotes the number of positive (resp. negative) samples correctly 
labeled by the classifier. FP (resp. FN) represents the number of negative (resp. positive) 
samples incorrectly labeled as positive (resp. negative) ones. Mcc denotes Matthews cor-
relation coefficient.

Comparison of similarity dist(· , · ) of different models

In Table 2, the performance of similarity dist(· , · ) is compared among different models. 
For each dataset, the generated sample set has the same size as the corresponding test 
set. From this table we can see that the presented model MDWGAN-GP outperforms 
other models in 11 of the 15 datasets. Its average dist(· , · ) among all of the datasets is 
0.704, which is apparently higher than those of other five models.

(11)dist(DX ,DZ) =
n−1∑
i=1

n∑
j=i+1

(
dXij −µ(DX )

σ (DX )
)(

dZij −µ(DZ )

σ (DZ )
),

(12)µ(DX ) = 2
n(n−1)

n−1∑
i=1

n∑
j=i+1

dXij

(13)σ(DX ) =
√

2
n(n−1)

n−1∑
i=1

n∑
j=i+1

(dXij − µ(DX ))
2

(14)Accuracy = TP + TN

TP + FP + FN + TN

(15)Precision = TP

TP + FP

(16)Recall = TP

TP + FN

(17)F1− score =2× Precision× Recall

Precision+ Recall

(18)Mcc = TP × TN − FP × FN√
(TP + FN )× (TP + FP)× (TN + FN )× (TN + FP)
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In addition, as shown in Figs.  3 , 4 and    5, the comparisons of distributions are 
demonstrated between the generated samples and the real samples for the first 11 
genes, reflecting intuitively the diversity of generated samples. In all figures, the hor-
izontal coordinates indicate the number of genes, and the vertical ones denote the 

Table 2  Comparisons of similarity between the real and generated samples

Bold value indicates the best result acquired for a certain tissue

Tissues CGAN CWGAN CWGAN-GP Gene-CWGAN S-WGAN-GP MDWGAN-GP

Bladder 0.008 0.432 0.641 0.603 0.594 0.596

Breast 0.011 0.437 0.766 0.763 0.759 0.788
Cervix 0.013 0.438 0.521 0.534 0.503 0.550
Colon 0.007 0.392 0.791 0.844 0.831 0.853
Esophagus_gas 0.004 0.204 0.387 0.500 0.462 0.511
Esophagus_muc 0.007 0.300 0.407 0.469 0.479 0.489
Esophagus_mus 0.008 0.386 0.810 0.820 0.748 0.818

Kidney 0.008 0.378 0.773 0.777 0.773 0.813
Liver 0.006 0.334 0.643 0.740 0.758 0.731

Lung 0.008 0.416 0.750 0.749 0.751 0.754
Prostate 0.011 0.362 0.687 0.742 0.728 0.739

Salivary 0.011 0.393 0.570 0.604 0.599 0.648
Stomach 0.007 0.453 0.759 0.766 0.750 0.774
Thyroid 0.008 0.296 0.730 0.771 0.792 0.795
Uterus 0.008 0.422 0.673 0.629 0.666 0.706
Average 0.008 0.376 0.660 0.687 0.680 0.704

Fig. 3  The real and the generated distribution plots of the kidney dataset
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Fig. 4  The real and the generated distribution plots of the colon dataset

Fig. 5  The real and the generated distribution plots of the esophagus_mus dataset
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gene expression values. The red line represents the real samples, and the blue one 
represents the generated samples.

From Figs. 3 , 4 and   5 we can see that compared with the samples generated by 
the other five models, those generated by model MDWGAN-GP generally have dis-
tributions more similar to the real samples. The samples generated by model CGAN 
concentrate in a very narrow range, indicating that original data distribution and 
the generated data distribution hold a negligible overlapping area, for JS divergence 
adopted by model CGAN may lead to gradient disappearance and mode collapse 
[42]. CWGAN adopts Wasserstein distance to solve the problem of mode collapse. 
However, it generates samples deviating from the original values due to gradient 
explosion resulting from the absence of gradient penalty [24]. CWGAN-GP avoids 
gradient explosion effectively with the addition of gradient punishment. Neverthe-
less, because the true value range of each feature is unknown and the output layer 
activation function of CWGAN-GP forcibly limits the generation space [1], the 
diversity of its samples remains poor at the distribution margins. Gene-CWGAN 
expands the generation space of the generation model by removing the tanh acti-
vation function of the CWGAN-GP generation model, and avoids the expansion 
of learning fluctuation with a constraint penalty term [1]. Nevertheless, the gener-
ated samples may deviate from the original ones. As shown in Fig.  4d, the maxi-
mum original values of the 0-th and the 3-th genes are respectively 7 and 8, while 
the maximum generated values of them are respectively close to 9 and 10. Similar to 
Gene-CWGAN, S-WGAN-GP also expands the generation space by removing the 
tanh activation function, and it can generate sample data with specified conditions. 
In order to further improve model stability and the diversity of generated samples, 
enriched training samples are produced with the aid of multiple discriminators in 
the MDWGAN-GP method. As shown in Fig. 3 , 4 and   5, the samples generated by 
MDWGAN-GP have more satisfying diversity at the distribution margins.

Table 3  Comparisons of classifying the normal and the cancer samples (Accuracy%)

Bold value indicates the best result acquired for a certain tissue

Methods Real CGAN CWGAN CWGAN-GP Gene-CWGAN S-WGAN-GP MDWGAN-GP

RF 97.63 39.47 55.49 96.70 97.29 97.72 97.74
KNN 96.91 64.04 64.61 96.68 97.11 97.21 97.20

MLP 98.55 48.87 59.56 97.54 97.64 97.75 97.82

Table 4  Comparisons of classifying the normal and the cancer samples (F1-score%)

Bold value indicates the best result acquired for a certain tissue

Methods Real CGAN CWGAN CWGAN-GP Gene-CWGAN S-WGAN-GP MDWGAN-GP

RF 97.62 32.30 54.97 96.72 97.28 97.72 97.74
KNN 96.91 55.23 57.10 96.69 97.12 97.21 97.21
MLP 98.56 49.42 58.51 97.55 97.64 97.76 97.83
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Comparison of classification ability of samples generated based on different models

As illustrated in Tables 3, 4 and 5, the classification ability of generated samples is 
evaluated in terms of classifying the normal and the cancer samples. In the experi-
ments, three kinds of classical classification methods, i.e., random forests (RF) [43], 
K-nearest neighbors (KNN) [44], and multi layered perceptron (MLP) [45], were 
adopted. The number of trees nestimators was 200 for RF, the number of neighbours 
K was 5 for KNN, and two hidden layers with 128 units and the ReLU activation 
function were adopted for MLP. For each method, the average results of ten runs 
are calculated and presented. It can be seen from the three tables that among the 
three methods the samples generated with the MDWGAN-GP model perform the 
best classification ability in the vast majority of cases. Furthermore, basing on the 
classification methods RF and KNN, the samples generated with the MDWGAN-
GP model even present superior classification performance than the real samples 
(denoted as “Real” in the three tables).

Furthermore, in order to intuitively reflect the clustering ability of the samples 
generated by model MDWGAN-GP, we compare the cluster results on the real sam-
ples with those on the generated ones. As shown in Figs.  6 and 7, there datasets 
such as Colon, Thyroid and Lung were adopted. The dimensionality of each sample 
was reduced to two with t-SNE [46]. From Fig. 6 we can discover that the generated 
samples almost overlap with the real ones. Moreover, the clustering results in Fig. 7 
demonstrate that the generated samples present better linear separability than the 
real ones, indicating that it might be better to perform differential analysis between 
normal and cancer tissues using the generated datasets.

Table 5  Comparisons of classifying the normal and the cancer samples (Mcc%)

Bold value indicates the best result acquired for a certain tissue

Methods Real CGAN CWGAN CWGAN-GP Gene-CWGAN S-WGAN-GP MDWGAN-GP

RF 94.61 2.17 -2.39 92.76 93.83 94.83 94.89
KNN 92.99 -1.37 1.97 92.59 93.49 93.67 93.68
MLP 96.73 -11.88 5.02 94.52 94.70 94.97 95.12

Fig. 6  The overlap of the real and the generated samples
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Ablation experiments

As mentioned before, the training samples were enriched with linear graph convolu-
tion in method MDWGAN-GP. Here a series of ablation experiments were conducted 
on the GT dataset. The training set was constructed by randomly selecting 10% of the 
samples from each tissue, and the remaining 90% of the samples were chosen as the 
test set. Figure 8 compares the similarity between the real data and the generated one 
in terms of dist(· , · ). In this figure, MDWGAN-GP-C (resp. MDWGAN-GP-E) repre-
sents the model adopting only Cosine distance (resp. Euclidean distance). As can be 
seen from the figure, the MDWGAN-GP model has the highest dist(· , · ) among the 

Fig. 7  Comparisons of clustering results on the real and the generated samples

Fig. 8  Comparisons of similarity dist(· , · ) between the real and generated samples
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four models. In the subsequent two subsections, experiments were conducted to fur-
ther test the usability of samples generated with method MDWGAN-GP.

Comparison of the correlations among key genes

Ten most frequently mutated genes in human cancers [47] were chosen as key genes. The 
correlations among them are calculated and presented based on the generated and the 
real expression data, respectively. As can be seen in Fig. 9, a pair of 10× 10 symmetric 
matrices record the distance djk (j,k=1,2,...,10) among the ten key genes. Figure 9a repre-
sents the correlations based on the real samples, while Fig. 9b represents those based on 
the generated samples of model MDWGAN-GP. It can be seen that the distances among 
genes calculated basing the two different kinds of samples are close, indicating the cor-
relations among genes in the generated data well approximate to those in the real data.

Comparison of differentially expressed genes (DEGs)

As analyzed above, compared with using the real datasets, it might be better to conduct 
differential analysis between normal and cancer tissues using the generated ones. In this 
section, comparisons were further performed between the differentially expressed genes 
identified based on the generated datasets and those identified based on the real ones. 
Eighty percent of all pan-cancer samples were randomly selected as the training set, and 
the same number of samples were generated with model MDWGAN-GP. DESeq2 pack-
age of R was called to calculate the difference fold and p-value for each gene by using the 
denormalized generated expression data, and the genes with |log2(fold change)| greater 
than 3 and p-values less than 0.05 were selected as differentially expressed genes. For the 
convenience of description, we use “real-DEGs” and “fake-DEGs” to denote the DEGs 
ascertained based on the real and the generated datasets, respectively.

As shown in Table 6, for most cancer types, the number of fake-DEGs approximates 
to that of real-DEGs. Additionally, breast cancer was taken as an example to analyze 
the association between DEGs and cancers. Firstly, among the top 286 real-DEGs (resp. 
fake-DEGs), 165 (resp. 177) breast cancer related genes were ascertained basing on the 

Fig. 9  Comparisons of the correlations among 10 key genes
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DisGeNET database (v7.0) [48]. It is obvious that the number of breast cancer related 
DEGs obtained from the generated data are greater than that obtained from the real one.

Secondly, package clusterProfiler of R [49] was called to conduct enrichment analysis 
for the DEGs based on the KEGG database [50]. As displayed in Fig. 10, both real-DEGs 
and fake-DEGs are enriched in nine biological pathways. The color of bars indicates the 
degree of significance, and the length of them counts the number of DEGs enriched. 
Among the two groups of enriched biological pathways, seven breast cancer related 
pathways are enriched by both real-DEGs and fake-DEGs. The PPAR signaling pathway 
has been reported as a potential biomarker for the diagnosis of breast cancer [51–53]. 
Cytokine-cytokine receptor interaction plays an important role in the metastasis of 
breast cancer and its development [54]. Aberrant AMPK signaling pathways may play 
a role in the regulation of growth, survival and the development of drug resistance in 
triple-negative breast cancer [55]. IL-17 signaling pathway has been demonstrated to 
promote the proliferation, invasion and metastasis of breast cells, and is significantly 
associated with the poor prognosis of breast patients [56]. Regulation of lipolysis in adi-
pocytes pathway promotes the proliferation and migration of breast cancer cell [57]. 

Table 6  Comparisons of the number of differentially expressed genes

Tissue Real-DEGs Fake-DEGs Intersection

Salivary 294 256 176

Uterus 528 438 310

Colon 321 341 239

Prostate 43 12 9

Liver 226 248 158

Bladder 393 451 201

Breast 286 300 203

Stomach 114 138 59

Kidney 270 244 172

Thyroid 134 131 102

Lung 388 375 283

Esophagus_mus 927 798 695

Fig. 10  Comparisons of pathways enriched by real-DEGs and fake-DEGs
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Tyrosine metabolism pathway regulates the development of breast cancer [58]. Proximal 
tubule bicarbonate reclamation pathway indirectly regulates the proliferation of breast 
cancer cell through TASK-2 [59]. In addition, a pair of breast cancer related biological 

Fig. 11  The five top pathways enriched by real-DEGs

Fig. 12  The five top pathways enriched by fake-DEGs
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pathways, i.e., Viral protein interaction with cytokine and cytokine receptor and Adipo-
cytokine signaling pathway, are also enriched by the fake-DEGs. Viral protein interaction 
with cytokine and cytokine receptor has been reported to be significant for breast cancer 
[60]. Adipocytokine signaling pathway can mediate the survival, growth, invasion, and 
metastasis of breast cancer cells through different cellular and molecular mechanisms, 
thus reducing survival time and contributing to malignancy [61]. Figure 11 (resp. Fig-
ure 12) further illustrates the five top pathways enriched by real-DEGs (resp. fake-DEGs) 
in term of adjusted p-values. The steelblue nodes represent the pathways, and the size of 
which indicates the number of DEGs enriched. Other colored small nodes represent the 
DEGs, and the color of which indicates its value of log2(fold change).

Conclusions and future directions
Since it is both difficult and expensive for gathering gene expression data with biologi-
cal experiments, generating them through computational approaches has aroused great 
attentions. In this study, a generative adversarial network model MDWGAN-GP, having 
multiple discriminators, is put forward. A novel method is designed for enriching train-
ing samples based on linear graph convolutional network. Compared with other state-
of-the-art methods, the MDWGAN-GP method can produce higher quality generated 
gene expression data in most cases. In addition, some critical biomarkers, enriching in 
some significant biological pathways, are identified based on the generated data. All of 
these have been verified through extensive experiments performed on real biological 
data.

However, during the process of experiments, we found that GAN and its improved 
versions have the inherent defect of being difficult to train. It has been reported that 
the diffusion model can ensure sample diversity by means of adding and removing noise 
step by step [62]. It is anticipated to do well in generating high quality and diverse gene 
expression data, which will be studied in the future.
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