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Introduction
Proteins enable the proper functioning of human organisms by regulating their biologi-
cal processes and enabling cells to react in response to external and internal stimuli. Pro-
teins are produced in ribosomes during the translation process from mRNA molecules.

The quantity of circulating mRNA (mRNA expression level) is crucial in understand-
ing transcription and translation processes, as according to Liu and Vogel  [1, 2] it is 
responsible for 40–50% of the variability in protein levels.

Organisms store the information that regulates their biological processes in DNA, 
which can be sequenced and written as a sequence of four letters representing the 
four amino acids (ACGT, Adenine, Cytosine, Guanine, and Thymine, respectively). 
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However, the mechanism from DNA sequence to mRNA levels is not straightforward, 
and many processes are still unknown.

Post-transcriptional regulators are known to regulate the expression levels through 
covalent or structural mRNA modifications. Among post-transcriptional regula-
tors, miRNAs are small RNA molecules, usually 22 bp long [3], which can repress the 
mRNA translation by binding to target mRNAs.

Depending on the extent of the mRNA-miRNA binding site, different repression 
mechanisms can occur:

• slicing of the mRNA,
• shortening of the poly-A cap of the mRNA, leading to the degradation of the 

mRNA,
• inhibition of mRNA translation, making it less efficient.

To the best of our knowledge, while some state-of-the-art (SOTA) works investigate 
the miRNA regulatory effect, none currently incorporate miRNA expression levels in 
predicting mRNA levels from the DNA sequence.

In this work we present miREx, a Convolutional Neural Network (CNN) model for 
predicting mRNA expression levels from gene sequence and miRNA post-transcrip-
tional information. miREx’s architecture is inspired by Xpresso [4], a SOTA model for 
mRNA level prediction that exploits DNA sequence and gene features (e.g., number 
of exons/introns, gene length).

miREx predicts mRNA levels in four primary sites from The Cancer Genome Atlas 
(TCGA), namely lung, kidney, breast, and corpus uteri. The results show that by 
including selected miRNA expression levels, the model reaches higher performances.

Related works
The ability to predict mRNA expression levels is fundamental for understand-
ing the transcription process and the roles different regulatory molecules play. 
Indeed, some models leverage gene expression levels for patient stratification  [5] 
and for predicting mRNA expression levels using other features instead of the DNA 
sequence. Commonly used features are TFs [6–8], chromatin features [9, 10], histone 
modifications  [11], or their combination  [12, 13]. These models usually outperform 
methods that use only the DNA sequence (like [14, 15]).

Concerning models that use the DNA sequence only, the ones with better perfor-
mances exploit deep learning architectures. For instance, previous studies includ-
ing Xpresso  [4, 16, 17] use convolutional architectures, while models including 
Enformer [18, 19] use Transformers.

Indeed, Enformer is a state-of-the-art (SOTA) model with a transformer archi-
tecture. One of its inherent limitations is the challenge of incorporating informa-
tion beyond the sequence it was designed to process. This limitation stems from the 
sequential nature of transformers, which excel at capturing long-range dependen-
cies within sequences but are less accomodating for integrating additional contextual 
information. In contrast, models with convolutional architectures are more flexible in 
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this regard. CNNs are well-suited for handling multi-channel inputs and can incorpo-
rate external information to enhance their performance. Indeed, recently, CNNs have 
been exploited in many medical and biological tasks [20–22].

The CNN-based SOTA model for mRNA level prediction from DNA sequence is 
Xpresso, that  receives two inputs: the DNA sequence surrounding the Transcription 
Start Site (TSS) and the mRNA half-life features associated with each gene. The mRNA 
degradation rate impacts the steady-state mRNA levels [23], and the half-lives of mRNA 
molecules are one way to consider this process in the model.

It was shown in  [24, 25] that features linked to mRNA half-life encompass specific 
aspects of gene structure. These include the length and CG content of particular gene 
regions, such as the 5’ UnTranslated Region (UTR), Open Reading Frame (ORF), and 
3’ UTR, intron length and exon junction. These eight half-life features are considered 
in the Xpresso and miREx models.

Materials and methods
In the following sections, we provide a comprehensive description of our methodology, 
encompassing a description of the data, the processing, and the architecture used.

Data description

In this section, we provide an overview of the different data used by the model, along 
with references to sources for data acquisition. miREx predicts mRNA expression levels 
by exploiting a portion of the gene DNA sequence, mRNA half-life features, and miRNA 
targets.

Sequences and half‑life features

Sequences and mRNA half-life features were obtained from  [4].  A critical role in the 
transcription process is played by the promoter, a region of the DNA sequence, usually 
located upstream of the TSS [26] and spanning a few thousand base pairs. In addition, 
other regulatory sequences around the promoters have an essential role in transcription. 
Therefore, Xpresso and miREx models use a sequence centered on the TSS, thus includ-
ing the promoter and parts of other regulatory elements. The sequence used has a length 
of 10,500 bases, 3000 preceding the TSS and 7500 following it.

miRNA targeting

TargetScan [27] is a state-of-the-art database for miRNA annotation and target descrip-
tion. Cumulative Weighted Context++ Scores (CWCS) from TargetScan were down-
loaded to embed miRNA target-specific information in the model. This score is a metric 
to assess the likelihood of a given miRNA binding to a target mRNA. Consequently, for 
each miRNA-gene pair, we have a CWCS. Therefore, our model also considers the effec-
tiveness of miRNAs in the repression of gene expression.

mRNA and miRNA expression values

mRNA and miRNA data are obtained from the Genomic Data Commons (GDC) por-
tal [28] for four primary sites: lung, kidney, breast, and corpus uteri. Each primary site 
can contain data from different cancer subtypes.
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Lung Data from LUng ADenocarcinoma (LUAD) and LUng Squamous Cell carcinoma 
(LUSC) was downloaded. Mesothelioma (MESO) data was discarded since miRNA 
expression levels were unavailable. The dataset is composed of 982 samples (507 for 
LUAD and 475 for LUSC).

Kidney Data from KIdney CHromophobe (KICH), KIdney Renal Papillary cell carci-
noma (KIRP), and KIdney Renal Clear cell carcinoma (KIRC) was downloaded. Sarcoma 
(SARC) was excluded due to the low number of samples. The dataset is composed of 871 
samples (66 for KICH, 290 for KIRP, and 515 for KIRC).

Breast Data from Breast Invasive Carcinoma (BRCA) was downloaded. Diffuse Large 
B-Cell Lymphoma (DLBC) was excluded due to the low number of samples. The dataset 
is composed of 1076 BRCA samples.

Corpus Uteri Data from Uterine Corpus Endometrial Carcinoma (UCEC) was down-
loaded. Sarcoma (SARC) was excluded due to the low number of samples. The dataset is 
composed of 536 UCEC samples.

Data processing

In each of the four datasets acquired, we preserved only those samples that included 
mRNA and miRNA expression values.

To make a fair comparison with Xpresso [4], histone and Y chromosome genes were 
discarded, and only protein-coding genes were kept. Ultimately, 18,377 genes were used 
by Xpresso. Out of these, 18,347 genes also had corresponding expression values in the 
GDC dataset and were subsequently employed by miREx. The miRNA expression values 
data downloaded from GDC comprises 1881 miRNAs. Of those, only 243 had known 
gene targets in the TargetScan database and were used in our model. The CWCS was 
extracted for each remaining miRNA-target pair from TargetScan.

We computed the mean expression levels of each gene and miRNA across all cancer 
primary sites. In cases where multiple subtypes were present within a primary site, we 
also calculated the overall mean expression across all subtypes for that site. The raw 
counts of mRNA and miRNA were log-normalized x ← log10(x + 0.1) to reduce the 
right skew of the data.

Method

MiREx exploits  the Xpresso CNN architecture  as a backbone. It consists of convolu-
tional and max-pooling layers applied on the one-hot encoded DNA sequence. The max 
pooling output is flattened and concatenated to the previously described eight half-life 
features. A complete figure describing the Xpresso backbone is reported in Fig. 1. In our 
model, miRNA expression levels are also concatenated to the DNA sequence and half-
life features, as shown in Fig. 2. Finally, two densely connected layers output the results.

Post-transcriptional information is exploited, providing gene-specific miRNA expres-
sion levels after the last max pooling layer as a vector. Each element of the vector x 
encodes miRNA i. x is specific for each gene, according to which miRNAs target it. For 
each gene, xi is the expression level of miRNA i if miRNA i targets the gene, 0 otherwise. 
Table 1 reports an example of x vectors for some genes.

The dataset was partitioned into training, validation, and test sets. For a fair com-
parison, we employed the same split used by Xpresso (16,348 genes in training, 1000 
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in validation, and 999 in test). We used an early stopping procedure to avoid overfit-
ting. Indeed, the training was stopped if the loss on the validation set did not improve 
for 20 epochs. The rectified linear unit (ReLU) was used as the activation function 
for convolutional and dense layers. Stochastic Gradient Descent (SGD) served as the 

Fig. 1 The encoded input sequences are processed by the Xpresso backbone architecture and concatenated 
to the half-life features [4]

Fig. 2 MiREx incorporates miRNA expression and targeting information by concatenating it with sequence 
and gene features

Table 1 Example of matrix obtained by miRNA targeting

miRNA1 miRNA2 ... miRNAN

Gene1 0 1.34 0

Gene2 0 0 1.26

...

GeneN 1.1 0 0
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optimization algorithm. The Mean Square Error (MSE) is minimized during the net-
work training.

Performances were evaluated with the coefficient of determination ( R2 ), which meas-
ures how well the model predicts the ground truth. Given the vector with ground truth 
expression levels y, their mean value ȳ , and the vector with the predicted expression lev-
els ŷ , the Residual Sum of Squares and the Total Sum of Squares are defined as follows:

Finally, the value of R2 is computed as:

The parameters used for the training of the model are shown in Table 2.
Xpresso does not consider the effect of regulatory molecules. Therefore, upregulated 

genes (e.g., genes regulated by enhancers that increase the transcription rate) should 
have positive residuals, and downregulated genes (e.g., genes targeted by miRNAs that 
repress transcription) should have negative residuals. Where residuals are computed as 
mRNA ground truth value −mRNA predicted value.

We train a model using all miRNAs for which we have both expression levels and 
miRNA targeting information. In the results section, we call this model  AllMirna. 
This method considers targeting information but not the CWCS information from 
TargetScan.

A gene targeted by a miRNA can have negative residuals that depend on the miR-
NA’s effectiveness at repressing transcription. TargetScan provides the CWCS, a meas-
ure of the likelihood of miRNA binding for each target gene. The lower the CWCS, the 
greater the probability that the miRNA will bind to the mRNA, repressing its transcrip-
tion. Consequently, there should be a positive correlation between CWCS and residu-
als (the more negative the residual, the more negative the CWCS). Therefore, for each 
miRNA, we computed the Spearman correlation between the residuals and the CWCS, 
and the ten miRNAs with the highest correlation were chosen. Our model, miREx, uses 
target information from those ten miRNAs.

Although miRNAs can directly impact translation, lowering mRNA expression, indi-
rect regulations could lead to the opposite effect. We also considered the correlation 

RSS =

n

i=1

(yi − ŷi)
2

TSS =

n

i=1

(yi − ȳ)2

R2
= 1−

RSS

TSS

Table 2 Parameter configuration values

Parameter name Parameter value

Batch size 32

Learning rate 0.0005

Number of epochs 100

Early stopping patience 20
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between the absolute values of the residuals and the CWCS. The ten miRNAs with the 
highest correlation were selected to train another model. In the results section, we call 
this model AbsCorr.

In the end, four different models were trained:

• proposed model: miREx,
• sota competitor: Xpresso,
• additional configuration: AllMirna,
• additional configuration: AbsCorr.

The models were trained for each primary site and cancer subtype. Multiple runs were 
executed, and the best ten were considered for the results.

Results
In this section, we present the results obtained from the four datasets.

As previously outlined in Sect. Materials and methods, our approach involves training 
four distinct models. miREx, our proposed model, leverages multiple aspects of miR-
NAs (expression levels, targeting, and CWCS) as well as sequence and gene features. 
In contrast, the state-of-the-art model (Xpresso) only uses sequence and gene features. 
AllMirna includes expression levels and targeting of miRNA but does not take into 
account the CWCS. Finally, AbsCorr, similarly to miREx, considers all available informa-
tion for miRNAs; however, AbsCorr examines indirect regulation.

In all the plots in the results section, we display the mean of the R2 values along with 
their corresponding 95% confidence intervals.

Lung

Figure 3 shows the results obtained on the lung dataset. MiREx and the other models 
were trained with three targets: LUAD, LUSC, and their mean.

Firstly, we compared the Xpresso results with those obtained with the AllMirna 
model. The R2 decreased with the inclusion of miRNA expression levels in all three 

Fig. 3 Results obtained on lung dataset
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cases (LUAD, LUSC, and mean). The differences are statistically significant, with 
p-values < 0.05. MiREx and AbsCorr were trained using only a subset of the miR-
NAs, and while both approaches lead to higher R2 in comparison to Xpresso, statisti-
cal tests show that only miREx’s results are statistically significant (p-values < 0.05).

Table  3b contains the subsets of ten miRNAs selected by the two methods in the 
three categories mean, LUAD and LUSC.

There is a significant overlap in the miRNAs chosen by the models in the three cat-
egories. Table 3 shows that, with miREx, seven miRNAs are common in the three cat-
egories, and two are common between mean and LUSC. Table 3a shows the miRNAs 
chosen by AbsCorr. Four miRNAs are common, and five are in two categories: mean 
and LUAD.

There are almost no miRNAs in common between the two methods. mir-23a and 
mir-23b are the only two in common.

Kidney

Figure 4 shows the results obtained on the kidney dataset. The models were trained 
with four targets: KICH, KIRC, KIRP, and the mean of all three classes.

We can see that in all four cases, the AllMirna model leads to worse results. In two 
classes (KICH and KIRP), we can see that using a selected subset of miRNAs leads to 
better predictions when compared to Xpresso. In particular, with miREx, the results 
are statistically significant (p-value << 0.05). The third class, KIRC, has a different 
trend. In this case, our model does not seem to bring an improvement in the results. 
The results on the mean of all three subtypes show an improvement with our model. 
However, it is not statistically significant.

Table  4b displays the miRNAs selected  by MiREx and AbsCorr. Again, there is a 
high overlap between miRNAs chosen by the same method in the different classes, 
while there is a low overlap between the two techniques.

Table 3 Lists of miRNAs chosen for each cancer subtype of the lung site by miREx and AbsCorr 
methods

Common miRNAs are in bold text

(a) miREx (b) AbsCorr

 Mean LUAD LUSC Mean LUAD LUSC

mir-23a mir-23a mir-23a mir-15a mir-15a mir-15a
mir-23b mir-23b mir-23b mir-15b mir-15b mir-15b
mir-101-2 mir-101-2 mir-101-2 mir-200c mir-200c mir-200c
mir-145 mir-145 mir-145 mir-340 mir-340 mir-340
mir-199b mir-199b mir-199b mir-23b mir-23b mir-130a

mir-206 mir-206 mir-206 mir-195 mir-195 mir-130b

mir-655 mir-655 mir-655 mir-424 mir-424 mir-301b

mir-19a mir-20b mir-19a mir-429 mir-429 mir-301a

mir-506 mir-93 mir-506 mir-497 mir-497 mir-454

mir-140 mir-101-1 mir-381 mir-200b mir-23a mir-506
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Breast

Figure 5 shows the results obtained on the breast dataset. The models were trained 
with a single breast cancer subtype: BRCA.

The results are similar to those obtained with the other datasets: including all miR-
NAs leads to worse predictions than Xpresso (p-value < 0.05) while adding a subset of 
miRNAs leads to better results, where miREx is the best model. While it is true that 
the models using a subset of miRNAs have higher mean R2 , in this case, both miREx 
and AbsCorr have p-values > 0.05, with miREx coming close (0.06) but not enough to 
be considered statistically significant.

Table 5b shows the miRNA selected by miREx and AbsCorr. The two methods show 
a limited overlap of miRNAs, as only three are in common.

Fig. 4 Results obtained on kidney dataset

Table 4 Lists of miRNAs chosen for each cancer subtype of the kidney site by miREx and AbsCorr 
methods

 Common miRNAs are in bold text 

miREx AbsCorr

 KICH KIRP KIRC Mean KICH KIRP KIRC Mean

mir-1 mir-1 mir-1 mir-1 mir-124-1 mir-124-1 mir-124-2 mir-124-1
mir-124-1 mir-124-1 mir-124-1 mir-124-1 mir-30a mir-30a mir-30a mir-30a
mir-124-2 mir-124-2 mir-124-2 mir-124-2 mir-30b mir-30b mir-30b mir-30b
mir-142-1 mir-142-1 mir-142-1 mir-142-1 mir-30c mir-30c mir-30c mir-30c
mir-142-2 mir-142-2 mir-142-2 mir-142-2 mir-30d mir-30d mir-30d mir-30d
mir-145 mir-145 mir-145 mir-145 mir-340 mir-340 mir-340 mir-340
mir-199a mir-199a mir-199a mir-199a mir-429 mir-429 mir-506 mir-429
mir-206 mir-206 mir-206 mir-206 mir-30e mir-30e mir-23c let-7i

mir-506 mir-506 mir-506 mir-506 mir-200b mir-200b mir-23a let-7g

mir-199b mir-325 mir-199b mir-199b mir-200c mir-200c mir-23b let-7b
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Fig. 5 Results obtained on breast dataset

Table 5 Lists of miRNAs chosen for the BRCA cancer subtype of the breast site by miREx and 
AbsCorr methods

(a) miREx (b) AbsCorr
BRCA BRCA 

mir-1 mir-124-1

mir-124-1 mir-124-2

mir-124-2 mir-15a

mir-142-1 mir-15b

mir-142-2 mir-16

mir-199a mir-195

mir-199b mir-200b

mir-206 mir-340

mir-325 mir-497

mir-506 mir-506

Fig. 6 Results obtained on corpus uteri dataset
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Corpus Uteri

Figure  6 shows the results obtained on the corpus uteri dataset. The models were 
trained with a single corpus uteri cancer subtype: UCEC.

In this dataset, AllMirna and AbsCorr lead to worse results than Xpresso. MiREx 
improves the prediction (p-value < 0.05).

Table 6b displays the miRNAs chosen by miREx and AbsCorr. The overlap of miR-
NAs is minimal, as only two are in common.

Discussion
As shown in the results Sect. Data description, training the model using all the miR-
NAs led to lower R2 values. Most genes are not targeted by a high number of miR-
NAs. Because of that, the data in the vectors created for each gene was very sparse. It 
is possible that the model could not extract the information effectively.

To solve this problem, we propose miREx, a model that only uses a subset of miR-
NAs with a high impact on transcriptional regulation. Since the regulation of miR-
NAs can be indirect, a second model that considers indirect regulatory mechanisms 
was trained. Both models lead to higher R2 , but the results show that direct regulation 
has a greater effect. Indeed, the miREx model is the one with the best performance.

We examined the miRNAs selected for each model to see if they regulate specific 
genes and explain why they have a more significant impact. As expected, the two 
methods chose different miRNAs since they looked at miRNAs with direct or indirect 
effects on gene regulation. Instead, when there are multiple classes for the same can-
cer primary site, the miRNAs chosen by the same method in the different categories 
are very similar.

Many of the miRNAs selected by these methods are known to play various roles in 
cancer-related processes. For example, miR-23a is involved in many cancers [29], and, 
in particular, in non-small cell lung cancer (NSCLC) [30, 31], which is a class of lung 
cancers that includes LUAD and LUSC, two subtypes used in this work. At least one 
method chose miR-506 for all four datasets. This miRNA is known for its association 
with different cancers, including kidney [32] and lung [33].

Table 6 Lists of miRNAs chosen for the UCEC cancer subtype of the corpus uteri site by miREx and 
AbsCorr methods

(a) miREx (b) AbsCorr
UCEC UCEC

mir-1 mir-124-1

mir-124-1 mir-15a

mir-124-2 mir-15b

mir-142-1 mir-16

mir-142-2 mir-195

mir-145 mir-200b

mir-199a mir-200c

mir-206 mir-340

mir-325 mir-424

mir-506 mir-506
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Conclusions
This work aimed to build a model that considers the post-transcriptional regulation of 
miRNAs to predict mRNA levels. MiREx, the model proposed in this paper, is a CNN 
that takes as input the one-hot encoded sequence of a portion of a gene, mRNA half-life 
features, and includes information about miRNA expression levels and targeting to pre-
dict mRNA expression levels.

Future works might use these methods to predict protein expression levels. MiRNAs 
should have a more significant impact on protein expression levels since multiple regula-
tion mechanisms would be considered. With mRNAs, the regulatory mechanism under 
consideration is the one where the miRNAs cause the degradation of the mRNA mol-
ecule so that it will not be translated. For proteins, we expect to be able to see the effects 
of miRNAs on translational inhibition of mRNA without causing its degradation.
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