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Abstract 

Background: Acute myeloid leukaemia (AML) is characterised by the malignant 
accumulation of myeloid progenitors with a high recurrence rate after chemotherapy. 
Blasts (leukaemia cells) exhibit a complete myeloid differentiation hierarchy hiding 
a wide range of temporal information from initial to mature clones, including genesis, 
phenotypic transformation, and cell fate decisions, which might contribute to relapse 
in AML patients.

Methods: Based on the landscape of AML surface antigens generated by mass cytom‑
etry (CyTOF), we combined manifold analysis and principal curve‑based trajectory 
inference algorithm to align myelocytes on a single‑linear evolution axis by consider‑
ing their phenotype continuum that correlated with differentiation order. Backtrack‑
ing the trajectory from mature clusters located automatically at the terminal, we 
recurred the molecular dynamics during AML progression and confirmed the evolution 
stage of single cells. We also designed a ‘dispersive antigens in neighbouring clusters 
exhibition (DANCE)’ feature selection method to simplify and unify trajectories, which 
enabled the exploration and comparison of relapse‑related traits among 43 paediatric 
AML bone marrow specimens.

Results: The feasibility of the proposed trajectory analysis method was verified 
with public datasets. After aligning single cells on the pseudotime axis, primitive clones 
were recognized precisely from AML blasts, and the expression of the inner molecules 
before and after drug stimulation was accurately plotted on the trajectory. Applying 
DANCE to 43 clinical samples with different responses for chemotherapy, we selected 
12 antigens as a general panel for myeloblast differentiation performance, and obtain 
trajectories to those patients. For the trajectories with unified molecular dynamics, 
CD11c overexpression in the primitive stage indicated a good chemotherapy out‑
come. Moreover, a later initial peak of stemness heterogeneity tended to be associated 
with a higher risk of relapse compared with complete remission.

Conclusions: In this study, pseudotime was generated as a new single‑cell fea‑
ture. Minute differences in temporal traits among samples could be exhibited 
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on a trajectory, thus providing a new strategy for predicting AML relapse and monitor‑
ing drug responses over time scale.

Keywords: Acute myeloid leukaemia, Mass cytometry (CyTOF), AML progression, 
Trajectory inference, Prognosis evaluation

Background
Despite advancements in clinical therapy, the relapse of acute myeloid leukaemia (AML) 
occurs in approximately 50% of patients achieving complete remission after initial treat-
ment, thus resulting in high mortality rates owing to a lack of accurate relapse predictors 
at preliminary diagnosis [1]. Significant heterogeneity generated by disease progression 
is associated with AML relapse. Leukaemia stem cells (LSCs) harbour various founding 
mutants that exhibit different surface antigen profiles among individual patients, includ-
ing  CD34+/CD38−,  CD34−, and  CD38+ [2, 3]. During differentiation, mutant clones 
yield descendants with diverse phenotypes and physiological behaviours [4], and finally 
form a branching evolution hierarchy with varying degrees of differentiation blockade 
involving an abundance of malignant progenitors and a few mature myelocytes [5–7]. 
Previous studies related to the development of the condition have utilized the similar 
phenotypic progression between abnormal and healthy haematopoiesis to match each 
leukemic cell to the nearest healthy subpopulation with a constant differentiation stage 
[8], or have tracked molecular changes of one patient from initial diagnosis to the relapse 
and post-relapse stage [9]. However, the actual pattern of AML development exhibits a 
continuous hierarchy with intermediate-state cells between the granular subpopulations 
[10]; thus, neglecting this hierarchy leads to a biased classification of the intermediate 
cell using these existing methods. Therefore, to fully describe the hierarchy, we first need 
to capture specific variations to examine AML blasts at the single-cell level.

In this study, we profiled the single-cell landscape of 36 surface antigens by cytom-
etry time-of-flight (CyTOF, or mass cytometry) [11] for obtaining the phenotype of each 
cell. We hypothesized that a complete myelocytic lineage exists during proliferation; 
although this lineage is skewed, the molecular dynamics involved will be similar to that 
of the healthy hematopoietic process. Using specific algorithms, single cells were auto-
matically aligned according to the phenotype continuum derived from AML progres-
sion, which enabled re-constructing the complete myeloid hierarchy using single-cell 
datasets. We then validated this approach to search for temporal information related to 
AML chemotherapy outcomes prediction using datasets of paediatric AML patients.

Methods
Patient samples

Bone marrow mononuclear cells from 43 paediatric patients with AML were provided 
by the Chinese Academy of Medical Science, Institute of Haematology, including 17 
males and 16 females between the age of 1–14 years old. The cells were suspended in 
cell-saving liquid (NCM Biotech) and stored in liquid nitrogen. The cells were thawed 
at 37℃, washed in warm medium [complete RPMI (Hyclone) supplemented with 10% 
foetal bovine serum (Gibco)], and then cultured for 30  min in medium containing 15 
units of DNase I (Lucigen). Nineteen patients achieved complete remission (CR) after 
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chemotherapy treatment, seven showed non-remission (NR), one showed partial remis-
sion, seven patients relapsed, six died due to complications, and three did not have 
complete follow-up information. Detailed information is provided in Additional File 1: 
Table S1.

Mass cytometry measurements and data pre‑processing

Mass cytometry reagents were supplied by Fluidigm Inc. Lanthanide metal labelling and 
surface antigen-target antibody staining were performed using MaxPAR antibody con-
jugation and MaxPAR antibody labelling kit protocols, respectively. Each stained sam-
ple was labelled with a unique barcode using Cell-ID 20-Plex Pd Barcoding Kit for mass 
cytometry detection within a mixture. According to the manufacturer instructions, each 
mixture dataset was collected with 3 ×  105 cells per sample. FCS files created for the 
mixed barcoded specimens were separated into individual datasets using Debarcoder 
software (https:// www. fluid igm. com/ produ cts- servi ces/ softw are), and then each sample 
was filtered to preserve living myeloid cells according to specific metal signals and bio-
markers using Flowjo (version x.0.7) (Additional File 1: Fig. S1). The lanthanide-antibody 
panel, article numbers, and gating strategy are shown in Additional File 1: Table S2.

Feasibility test of the trajectory inference method with public datasets

Subsequent analyses were performed using R (version 4.0.0). The workflow for differ-
entiation trajectory analysis was verified using a public dataset with samples SJ03, SJ05, 
SJ11, and SJ16 reported by Levine et al. [12]. Following the extraction of myeloid cells, 
3000 sampled myelocytes were visualized by PhenoGraph [12] and uniform manifold 
approximation and projection (UMAP) [12] algorithms with default parameter to align 
the myelocytes according to their differentiation order and phenotypic similarity. The 
SCORPIUS package [13], a tool for linear trajectory inference that automatically links 
initial, intermediate, and terminal clusters based on principal curve analysis, was then 
used to draw a differentiation trajectory on the two-dimensional visualized blast. Based 
on its position on the trajectory, a single cell was endowed a “pseudotime” value as its 
degree of maturation, and the hierarchical changes of the tested molecules were visual-
ised in a time-series heatmap.

The early-stage blast was chosen by selecting cells with a pseudotime value < 0.1; these 
were then visualized on a CD34-CD38 plot by overlapping raw data cells. Furthermore, 
five reported hierarchical signal pathway responses, G-CSF → pSTAT3, SCF → pAkt, 
G-CSF → pSTAT5, Flt3-L → pAkt, and IL-10 → pSTAT3, were respectively visualized 
with an integrative presentation of temporal expression changes before and after stimu-
lation. In brief, temporal changes of each inner molecule in two situations were fitted by 
locally weighted regression (LOESS) and integrated into a time-expression coordinate 
system.

Dispersive antigens in neighbouring clusters exhibition (DANCE) feature selection strategy

We optimized the trajectory inferred by the proposed pipeline with the myeloid blasts 
of the 43 clinical samples described above. Following data collection and pre-pro-
cessing, 8000 cells in each sample were selected at random and 20 surface antigens 
involved in normal hematopoietic processes were used for differentiation-related feature 

https://www.fluidigm.com/products-services/software
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selection. For each sample, molecules with positive expression (raw data value > 10 in up 
to 5% cells) were selected. These data were then subjected to hyperbolic arcsine (arcs-
inh) transformation and clustered using Phenograph for DANCE selection. We created 
a distance matrix representing the Euclidean distance between each of the two clusters 
and selected the three shortest-distance neighbouring clones to every cluster. Thus, each 
cluster would comprise a four-neighbouring group. In every group, the expression lev-
els of single molecules fluctuating on different scales were calculated according to the 
variance of an antigen in each group; if the variance was < 0.5 in up to 25% of groups, 
the surface antigen would be preserved. After counting the occurrence of the DANCE-
selected antigens among the 43 patients, we identified eight antigens that were selected 
in the majority of samples, which were combined with the constant differentiation mark-
ers CD45, CD38, CD11b, and CD34 to obtain a final antibody combination, which we 
refer to as the 12-antigen differentiation panel. The new panel was then used to recon-
struct the trajectory for each sample. Next, the CellAlign algorithm [13] was adopted 
to test the correct direction of the trajectories by the normalized dissimilarity value. A 
typical differentiation trajectory (favourable model fitting and a  CD45high/CD11b+ clone 
as the mature terminal landmark) was applied as a reference to determine the direction 
of query one for determining the trajectory direction. The correct direction of the query 
trajectory generated a lower normalized dissimilarity value.

Misaligned expression and stemness heterogeneity temporal distribution

The 32 samples exhibiting excellent trajectory fitting and with complete follow-up infor-
mation available after chemotherapy were selected for further misaligned expression 
analysis (Additional File 1: Fig. S2). After obtaining pseudotime values via the 12-anti-
gen differentiation panel, the cells were ranked linearly in temporal order and the sin-
gle-cell expression level of CD11c was plotted along the vertical coordinates. Regarding 
cells with a pseudotime value < 0.6 as primitive clones and others in the mature stage, the 
mean expression levels of the two stages in each sample were calculated. The samples 
were then divided into four groups according to CD11c expression and response/relapse 
status. The CD11c expression levels in the two stages among the four groups were then 
compared and integrated into two boxplots and used t-test for significance test.

To explain the temporal features of specific antigen combinations related to AML 
relapse, we selected 26 samples with a lower mean dissimilarity value than the oth-
ers (threshold < 0.25, Additional File 1: Fig. S2). After obtaining single-cell pseudo-
time values via trajectory inference of the 12-antigen differentiation panel, 15 reported 
stemness-related antigens were used to re-cluster the blasts and then stemness clusters 
were generated for each cell. According to the differentiation pseudotime of single cells, 
the trajectory was separated into 10 components on average. The stemness heteroge-
neity of each time component was then obtained using the population count and type 
of each contained stemness cluster. In brief, the formula for calculating the stemness 
heterogeneity index was based on Shannon entropy [H(x) = − ∑p(x) × logp(x)], which 
was calculated as [H(x) = − ∑  (Ni/Ntotal) × log  (Ni/Ntotal)], where  Ni is the cell number 
of cluster i in a given time period and  Ntotal is the count of test cells along the complete 
trajectory. The stemness heterogeneity index of each time component was then plotted 
as a histogram with temporal order on the horizontal axis and the dynamics were fitted 
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by LOESS regression. After detecting the time point of the appearance of the first peak 
in each sample, we integrated the peak time location in 14 patients with CR, 7 with NR, 
and 5 with relapse.

Analysis of 10X genomics single‑cell RNA‑sequencing (scRNA‑seq) data

Raw scRNA-seq datasets in FASTQ format were supplied by Ruijin Hospital affiliated 
to Shanghai Jiao Tong University School of Medicine derived from seven specimens of 
adult AML bone marrow, including four patients with relapse and three who achieved 
CR after initial chemotherapy treatment. Data alignment and pre-processing were per-
formed according to a previous study [14]. After visualisation using Phenograph and 
UMAP, specific molecule-expression clusters were used to determine specific cell types, 
including CD3D (T lymphocytes), IGJ (B lymphocytes), and CA1 (erythrocytes). Mye-
loid blasts were selected and re-arranged in the UMAP space according to a reported 
monocyte differentiation-related panel [15]. The trajectory was then inferred via 
SCORPIUS and the expression patterns of molecules in mature myeloid blasts (FCN1 
and CD14), monocytes (LYZ), abnormal monocytes (PRTN3), and  CD34+/CD117+ 
clones (CRIP1 and NPW) were determined along with the differentiation ranking of the 
sample.

Molecules involved in the 17-gene stemness score assessment [16] were applied as 
parameters of the 17-gene stemness heterogeneity distribution; the index was calculated 
by CyTOF. Finally, the 17-gene stemness score and temporal dynamics of each sample 
were used to test the results of stemness heterogeneity.

Results
Continuous trajectory inference and LSC identification

LSCs are considered to be responsible for drug resistance, although their identification 
has long been hindered by the surrounding complex blood system that contains cells 
with different phenotypes. Here, we tracked a complete myeloid lineage to identify 
populations from the initial, intermediate, and mature differentiation stages [15]. The 
inferred trajectory was drawn on the UMAP reduced space that preserves the global 
similarity of AML cells, and the evolution trail was constructed by linking the principal 
single-cell alignment;  CD11b+/CD45high blasts, which are generally regarded as mature 
myelocytes [17], were automatically arranged at the terminus as a confirmed landmark. 
We assumed that backtracking the trajectory from mature populations would reveal the 
initial clones, enabling the entire dynamics of molecules to be described along the tra-
jectory. To verify the feasibility of this strategy, we adopted public datasets and Pheno-
graph algorithm published by Levine et al., which robustly perform cell clustering and 
recognise primitive and mature clones of AML with both surface antigens and inner sig-
nal pathway molecules, and attempted to build a surface antigen-based differentiation 
trajectory to obtain the same results as found in the literature.

In sample SJ03, the myeloid cells were spread along the UMAP space to present a 
phenotypic continuum, and then each cell was allocated a pseudotime value by the 
SCORPIUS algorithm to reflect its degree of maturity (Fig.  1a). Next, clones with a 
pseudotime < 0.1 were selected as primitive blasts that display a  CD34+ phenotype, 
which shared a similar but narrow range in two-antigen expression coordinates as the 
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results in Levine et al. The subpopulation with the similar range in the CD34/CD38 
coordinate system has the pseudotime < 0.8 (Fig. 1b). Instead of classifying leukocytes 
into granular states as published, a progressive heatmap was produced to profile the 
temporal changes of single-cell molecules along the continuous hierarchy. For exam-
ple, the HLA-DR expression level was higher in the middle phase, whereas CD64 
expression was only present in a few mature cells and CD117-positive cells were 
mostly found during the middle stages of AML progression (Fig. 1c).

This strategy created a pseudotime value for not only single cells but also for all 
tested molecules expressed on individual cells. Published results relating to the sig-
nal responses to drugs included the following significant patterns: G-CSF → pSTAT3, 
SCF → pAkt, G-CSF → pSTAT5, Flt3-L → pAkt, and IL-10 → pSTAT3, which were 
also evident on the trajectory of surface molecules described herein. The continuous 
temporal hierarchy of sample SJ03 showed that pSTAT3 and pSTAT5 expression was 
upregulated in the early stages via G-CSF induction (Fig. 1d, e), pAkt showed a slight 
response to the effect of Flt3L and SCF (Fig. 1f, g), and pSTAT3 expression increased 
during the intermediate and late stages after IL-10 induction (Fig. 1h).

Fig. 1 Recognition of  CD34+CD38− LSC clones using differentiation trajectory and changes in signal 
molecules in time‑series before and after cytokine induction. a Differentiation trajectory inference in SJ03; b 
primitive cells emphasized in red with  CD34+CD38− phenotype, cells with 0.1 < psudotime < 0.8 is labelled 
by green; c time‑series heatmap of the reported penal in which mature blasts express  CD11b+CD45high (blue 
arrow); d, e pSTAT3 and pSTAT5 expression increases in the early stage of G‑CSF induction; f, g Akt showed 
a slight response to the effect of Flt3L and SCF; h Increased expression of pSTAT3 after IL‑10 induction was 
observed in the intermediate and late stages
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Ignoring the plastic phenotype of LSCs with various genetic backgrounds and phe-
notypes, our workflow efficiently dealt with samples in which atypical initial clones 
exhibited a  CD34– or  CD38+ phenotype. In sample SJ11, the starting clones were 
labelled with  CD34–/CD38+, but on a smaller scale than that described in the origi-
nal report (Fig. 2a, b). According to the time-series heatmap of this sample,  CD11b+/
CD45high blasts occupied the end of the trajectory, CD117 and CD33 expression 
was upregulated in the early stage, and CD64 expression increased in mature cells 
(Fig. 2c). The inner signal molecules also showed behaviours similar to those reported 
in the literature. In primitive clones, pSTAT3 and pAkt showed slightly unregulated 
responses to G-CSF and SCF stimulation (Fig. 2d, g), in which G-CSF stimulated an 
overall increase of pSTAT5 (Fig.  2e), whereas pAkt and pSTAT3 expression levels 
increased in mature blasts in response to Flt3L and IL-10 stimulation (Fig. 2f, h). The 
expression behaviours of other samples on the differentiation timeline are shown in 
Additional File 1: Figs. S2 and S3, suggesting that our methodology was accurate and 
thus feasible for analysing the progression of AML development.

Fig. 2 Differentiation trajectory analysis in samples with untypical LSC blast. a Differentiation trajectory 
inference in SJ11; b Primitive cells emphasized in red with  CD38+ phenotype; c Time‑series heatmap of the 
reported panel in which mature blasts express  CD11b+CD45high (blue arrow); d and g pSTAT3 and pAkt 
in primitive clones showed slightly unregulated responses to G‑CSF and SCF; e overall increase of pSTAT5 
expression after G‑CSF induction; f, h pAkt and pSTAT3 in mature blasts upregulated with the effect of Flt3L 
and IL‑10
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Selection of differentiation‑related features using clinical samples

Using surface antigen panel in Levine’s work, we verified that our continuous time-series 
analysis strategy described herein recurred the published granular progression results, 
including primitive subpopulation recognition and inner signal change during AML 
development. Even though the strategy could deal with individual sample, the panel in 
the reference used for healthy blood classification to generate metacluster (MC) may not 
be suitable for our workflow, which directly build trajectory based on AML blast. To 
efficiently reflect the actual progression process of AML, we designed a feature selection 
method to extract surface antigen panel and simplify the myeloid differentiation trajec-
tory with more convergency on a single trail created by SCORPIUS.

Since there a similar molecular dynamics in haematopoiesis of normal and diseased 
cells, we utilized 20 surface antigens expressed during normal myeloid differentiation 
as an alternative selection panel [18] (Additional File 1: Table S2) for the 43 paediatric 
AML samples. The AML evolution trajectory for redundant features generally presents 
a branching pattern, including node markers that determine the cell fates and diver-
gent markers expressed in certain branching trails [19, 20]. In addition, a few molecules 
with low expression ratios might have no function and exist randomly in the blasts. To 
exclude these three types of molecules, we designed the DANCE method for the selec-
tion of differentiation-related antigens (Fig. 3a).

Considering sample 570,407 for example, of the 20 surface antigen candidates, 16 with 
an expression ratio > 5% in AML blasts were firstly selected (Fig. 3b). The remaining fea-
tures were then filtered by DANCE, which preserved 13 antigens that retained CD34, 
CD38, CD11b, and CD45 (Fig. 3c). The single-cell pseudotimes of the two selection steps 
were generated by SCORPIUS and compared by correlation plots, which indicated no 
changes in the cell stages after DANCE selection (R = 0.91) (Fig.  3d). After applying 
DANCE to the samples of all 43 patients, a new panel was obtained for each sample for 
subsequent statistical analyses (Additional File 1: Table S3). We eventually determined 
eight antigens, including CD64 (25/43), CD117 (27/43), HLA-DR (25/43), CD33 (35/43), 
CD44 (35/43), CD18 (30/43), CD4 (30/43), and CD13 (28/43), that were expressed in the 
majority of patients. These were then combined with the mature (CD11b and CD45) and 
primitive (CD34 and CD38) biomarkers to constitute a novel panel containing 12 surface 
antigens (referred to as the 12-antigen differentiation panel). The pseudotime correlation 
between the selected and final panel of sample 570,407 is shown in Fig. 3e, thus con-
firming that there were no major changes to the pseudotime point of cells after DANCE 
selection and determination of the final panel (R = 0.9).

After feature selection, every sample would exhibit a differentiation trajectory with a 
similar 12-antigen dynamic pattern. We then used the CellAlign algorithm to compare 
the global dynamics of each pair of trajectories and measured the normalized distance 
as their dissimilarity. In general, a pair of similar trajectories produces a lower normal-
ized distance and diagonal alignment in a dissimilarity matrix. According to the distance 
value and matrix of every pairwise trajectory, CellAlign was able to estimate the correct 
direction of a query trail. To determine the optimal alignment of sample 569,255, which 
lacked  CD11b+/CD45high cell blasts in two terminals of the trajectory showed in Fig. 4a, 
we compared this sample with the reference sample 326,944, which involved a conven-
tional terminus  (CD11b+CD45high located at the right of trajectory heatmap with largest 
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pseudotime) and expected expansion in UMAP plot (Fig. 4b). After attempting to adjust 
the direction, the correct cell rank of sample 569,255 matched that of sample 326,944 
with a low normalized distance, ranging from 0.343 to 0.208, indicating an alignment 
closer to the diagonal in the dissimilarity matrix (Fig. 4c, d). CellAlign was also used to 

Fig. 3 Differentiation conservative feature selection strategy and its application in sample no. 570407. a 
“Dispersive antigens in neighbouring clusters exhibition (DANCE)” feature selection strategy: AML branching 
evolution model is generated by excess surface antigens. A group of neighbouring clusters (blue frame) 
was assembled by Euclidean distance and each molecule in the group (grey frame) presented with 
diverse variance (represented by V). There are several neighbouring groups (orange frames) generated for 
differentiation feature counting; b time‑series heatmap derived from 16 markers with a higher expression 
rate identified each cell with a primitive pseudotime; c time‑series heatmap derived from the panel after 
DANCE selection and identified each cell with a pseudotime based on selected panel; d pseudotime 
correlation between primitive and selected panel‑inferred trajectory (R = 0.91); e pseudotime correlation 
between feature selected and final panel‑derived from the DANCE panel of 43 clinical samples (R = 0.90)
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Fig. 4 Differentiation orientation pinpoint with the reference of typical trajectory. a Time‑series heatmap of 
sample no. 569255 could not pinpoint the trajectory direction without  CD45high/CD11b+ cluster landmark; 
b time‑series heatmap of sample no. 326944 (trajectory with typical mature blast at right terminal) as 
reference trajectory; c dissimilarity heatmap of sample no. 326944 and reverse sample no.569255 trajectory; 
d dissimilarity heatmap of sample no. 326944 and correct sample no.569255 trajectory; e, f trajectory 
inference with local reverse did not match with the sample on dissimilarity matrix. Red frame emphasized the 
error‑directed local; g, h correct trajectory direction with a diagonal presentation. Red frame emphasized the 
local with correct direction
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determine the local trajectory. The primitive stage of sample 274,360 presented an error 
direction under the default parameters of SCORPIUS, which was unmatched to the ref-
erence sample 296,083 with a normalized distance of 0.338 (Fig. 4e, f ). By changing the 
relative parameters, the early trajectory showed an inverse fit, thus obtaining a dissimilar 
diagonal line with a lower dissimilarity value (0.139) (Fig. 4g, h). Therefore, the 12-anti-
gen differentiation panel revealed the commonality of AML evolution patterns, demon-
strating its potential utility for comparing temporal traits between patients.

Misaligned expression and the evaluation of prognosis

Asynchronous expression implies that early and mature antigens are co-expressed 
when detected by flow cytometry. Conventional detection methods in bulk cells gen-
erally consider progenitor molecules as a reference; hence, their occurrence with late-
stage markers such as the  CD117+/CD15+ phenotype, might predict clinical outcomes 
[21]. However, flow cytometry cannot separately reflect molecular temporal behaviour 
directly, and the uncertain phenotype makes it difficult to identify the precise state of 
a molecule (i.e., CD34 for initial clones). Instead of analysing asynchronous expression 
according to the expression of such relatively dubious temporal markers, we analysed 
the dynamics of every single molecule on the trajectory and revealed their typical or 
misaligned expression stage among the 32 clinical samples with complete prognosis (fol-
low-up) information and good trajectory fitting (Additional File 1: Fig. S4).

On the differentiation trajectories constructed using the 12-antigen differentiation 
panel, the dynamics of other tested molecules (Additional File 1: Table  S2) could be 
ascertained along the pseudotime axis. Next, we observed different behaviours of CD11c 
among patient samples, which is a molecule that is commonly expressed on the surface 
of dendritic cells [22], monocytes [23], and B cells [24]. Typically, CD11c was signifi-
cantly more highly expressed at the end of the trajectory than at the early stage (Fig. 5a). 
However, four patients with CR, one with NR, and one with relapse had aberrantly high 
levels of CD11c in the primitive stage (Fig. 5b shows the results for the four CR sam-
ples). After identifying each specimen’s expression of CD11c in the primitive (pseudo-
time < 0.6) and mature stages, we separated the 32 samples into the following groups: 
complete remission with  CD11c– in the early state [CR  (CD11c−), n = 14], complete 
remission with  CD11c+ in the early state [CR  (CD11c+), n = 4], NR (n = 7), and relapse 
(n = 7). Statistical analysis was used to investigate the expression levels of CD11c in the 
two stages of the four groups: the mean expression levels were higher in both stages of 
the CR  (CD11c+) group compared with those of the other three groups, with the great-
est difference in comparison with the CR  (CD11c–) group (p < 0.001); the temporal 
changes in most NR and relapse patients were significantly (p < 0.05) lower than those in 
the CR  (CD11c+) group in the two states (Fig. 5c, d). As shown in Table 1, significantly 
higher levels were detected in NR samples at their mature stage when compared with 
those of the CR group  (CD11c–) (p = 0.0033). In contrast to the CR  (CD11c+) group, 
which showed significant improvement in CD11c expression in the two stages com-
pared with that of the CR  (CD11c–), the NR group exhibited a higher CD11c level only 
in the mature stage. Of the six patients with high CD11c levels in the primitive stage, 
four achieved CR, thus indicating the potential prediction of a good prognosis in AML 
diagnosis. In addition, most patients with poor clinical outcomes had slightly higher 
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expression levels of CD11c during the primitive stages as compared with those in the CR 
 (CD11c+) group.

Distribution of stemness heterogeneity along the differentiation trajectory

Before further evaluating the 12-antigen differentiation trajectory, we selected sam-
ples with highly similar differentiation patterns for the comparison of temporal fea-
tures. According to the distribution of dissimilarity values between each sample with 
the others, we identified 26 (CR, n = 14; NR, n = 7; relapse, n = 5) with a lower mean 

Fig. 5 Two CD11c temporal expression patterns and the statistic of CD11c abundance in primitive and 
mature stages of samples. a Expression behavior of CD11c on the trajectory in most patients; b CD11c 
expression was high in the primitive stage of 4 samples with complete‑remission outcome; c CD11c 
abundance in different prognosis types in the early stage; d CD11c abundance in different prognosis types in 
the late stage

Table 1 Differences in the expression of CD11c in four groups (p value)

Primitive Mature

CR  (CD11c−) CR  (CD11c+) NR Relapse CR  (CD11c−) CR  (CD11c+) NR Relapse

CR  (CD11c−)  < .001 0.23 0.66  < .001 0.0033 0.61

CR  (CD11c+)  < .001 0.012 0.019  < .001 0.024 0.019

NR 0.23 0.012 0.95 0.0033 0.024 0.18

Relapse 0.66 0.019 0.95 0.61 0.019 0.18
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dissimilarity value (< 0.25, Additional File 1: Fig. S4) to ensure a consistent temporal 
molecular behaviour for analysis.

Several antigens and transcription factors affect the function and targeting of the ini-
tial clones, thus supporting therapeutics selection and prognosis evaluation. However, 
existing stem cell-related markers exhibit variability in both type and abundance among 
different patients, thus generating uncertain combinations that make it difficult to deter-
mine the status of LSC blasts by specific biomarkers. Instead of attempting to identify a 
non-specific LSC blast, we focused on stemness as a trait to investigate the proliferation 
and self-renewal capability of single cells along with the stemness temporal dynamics 
during differentiation.

Shannon entropy is a concept that is used to generally evaluate system complex-
ity, including the quantification of morphological and molecular diversity in AML via 
flow cytometry [26], and has also been used to predict prognosis from single-cell RNA-
sequencing data [27]. To investigate stemness by surface antigen profiling, we selected 
15 stem-related surface antigens from a previous publication [28] (Additional File 1: 
Table S2) and proposed a ‘stemness heterogeneity’ index for the measurement of expres-
sion complexity of the 15 antigens (Fig. 6a). Subsequently, the blasts were divided into 
10 parts according to the pseudotime values of single cells. The stemness heterogeneity 
index of each time period was calculated and plotted on the differentiation axis (Fig. 6b). 
According to the distribution of every sample, samples with CR (n = 14) and NR (n = 7) 
presented an earlier mean peak time (Fig. 6c). The first peak of heterogeneity appeared 
earlier in the CR group (Fig. 6d, 9/13 samples with the peak early than time point 3) than 
in the relapse group (Fig. 6e 4/5 samples with the peak after time point 3) (p = 0.24), sug-
gesting that the time peak could serve as an indicator of relapse at the proteomic level. 
In addition, there was an earlier trend of peak time point of stemness heterogeneity in 
the NR samples than in the CR samples (p = 0.056), which might be related to the pro-
liferation dynamics of blood system that would be discussed later, but makes NR group 
hardly to be distinguished with CR. Together, these results indicated the potential for the 
stemness heterogeneity temporal distribution to be used for diagnostic prediction. The 
dynamics of stemness heterogeneity for each sample is shown Additional File 1: Table S4 
and Fig. S6 shows the stem-entropy dynamics of the five relapse samples.

Hierarchical stemness heterogeneity and 17‑gene stemness score at the single‑cell RNA 

level

Finally, we tested the proteome-based stemness heterogeneity dynamics using scRNA-
seq of three CR patients and four relapse patients. After pre-processing and cell filtering, 
the remaining monocytes aligned on the trajectory depended on differentiation-related 
RNA molecules [15]. Specific markers representing the differentiation stages of AML 
were matched to the data reported in the original article, including mature molecules 
such as FCN1 and CD14 and early markers such as CRIP1 and NPW (Fig. 7a) [14]. The 
datasets were integrated to ensure a unified UMAP space distribution and trajectory. 
After inference with the SCORPIUS algorithm, the trajectory of each sample was drawn 
and a pseudotime value was assigned for each cell as an indicator of the degree of differ-
entiation, similar to the analysis workflow of mass cytometry.
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Stem-related RNA molecules were obtained from the molecules detected in the 
17-gene stemness scoring system; the 17 core transcriptional molecules were sig-
nificantly expressed in LSCs and showed potential for predicting a poor outcome. 
Stemness heterogeneity depends on the 17 stem-related molecules that were calcu-
lated in a manner similar to the mass cytometry. By comparing the time point of the 
initial stemness heterogeneity peak, we identified the late appearance of the first peak 

Fig. 6 Surface stemness antigen expression heterogeneity peak point distribution on the differentiation 
trajectory. a Stemness clusters derived from 15‑antigen stemness panel distribute on pseudotime axis; b 
stemness heterogeneity temporal distribution diagram. Cells with stemness clusters and counts in each 
time period were extracted, and stemness heterogeneity was calculated based on shannon entropy [H(x)]. 
Then the stemness heterogeneity of every time period was ordered along pseudotime axis with wavy 
shape; c stemness heterogeneity peak time counted in different prognosis type of samples; d, e stemness 
heterogeneity temporal distribution of complete‑remission (CR) (no. 277523) and relapse (no. 381905). The 
peak timepoint was labelled by yellow arrow
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in most of the relapse samples (3/4, p = 0.19); the peak time point occurred after time 
3, in contrast to the first peak point at time 1 or 2 in the CR samples (Fig. 7b). Con-
sidering the correlation between gene transcription and protein production, it follows 
that the distribution of stemness heterogeneity at the single-cell RNA level could con-
firm the results arising from mass cytometry, thus predicting a poor prognosis via the 
late appearance of the first stemness heterogeneity peak.

The progression of AML is accompanied by an overall down-regulation of founding 
genes and formation of mature phenotypes. During this process, changes of stemness 
along the trajectory implied an alternation between earlier and later molecules. 
Therefore, we assumed that the first peak of stemness heterogeneity was attributed to 
the initial molecules and that stemness would gradually reduce over time due to com-
petition with evolution-related molecules. We used the 17-gene stemness score as a 
benchmark to evaluate the risk for AML relapse. The pseudotime point of the first 
trough in the 17-gene stemness score was defined as the remaining AML-founding 
factor capability. We found that four relapse patients approached the time point of 
this first trough later than the three patients who achieved CR; these patients showed 
relatively consistent stemness heterogeneity (Fig. 7c). However, the difference in the 
peak time point for the 17-gene stemness score was less significant (p = 0.59) than 
that of the 17-gene stemness heterogeneity (p = 0.19), which might indicate a better 
utility of a Shannon entropy-based stemness molecular complexity index.

Fig. 7 Stemness heterogeneity distribution was tested at single‑cell RNA level. a Reported specific 
biomarkers expressed hierarchically in the blast. Respectively, mature myeloid blasts always express FCN1 
and CD14, monocytes express LYZ, abnormal monocytes in ealier stage express PRTN3 and located in 
intermediate stage, while CRIP1 and NPW express in  CD34+/CD117+ clones are regarded as primitive 
biomarker as published results; b stemness heterogeneity peak time point distribution in pseudotime. 
The stemness‑related RNA molecules referred to the genes in 17‑gene stemness score system; c 17‑gene 
stemness score trough point distribution in pseudotime
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Discussion
Significant heterogeneity builds up during AML progression, thus generating blasts 
with temporal information of drug resistance, relapse, and phenotype transformation. 
To explore these dynamics of heterogeneity with regard to specific timescales, we 
chose mass cytometry to profile the surface antigen landscape of single myelocytes. 
As a multi-protein single-cell detection technique, mass cytometry provides a simi-
lar but more elaborate form of analysis than conventional flow cytometry, thus creat-
ing greater alignment between results and clinical indices. Using the surface antigen 
landscape, we were able to capture similarities and differences among cells, which 
were then used in the screening of temporal features among clinical samples for AML 
prognosis prediction.

In this study, we abandoned the conventional strategy of considering healthy myeloid 
clones as granular “landmarks” and developed a new method for continuous time-series 
analysis in AML research. The new workflow proposed herein yields a differentiation 
pseudotime for not only each cell but also every tested molecule. On the continuous dif-
ferentiation trajectory, we were able to narrow down the primitive clones by selecting 
the initial period, and in analysing drug efficacy, we were able to clarify signal responses 
much more precisely at certain time points: at the initial, very early, mid-to-late, and 
end stages. In addition, we found that a small number of surface antigens (12 identified 
from the dataset used in the present study) is sufficient to allocate a correct pseudotime 
to each cell. This approach provides the capability of optimizing detection channels for 
other aspects of medical research, such as signal molecule drug responses and the evalu-
ation of prognosis based on stemness.

In contrast to earlier analyses, which investigated more branches or nodes and thus 
led to a more complex differentiation trajectory, we adopted a single-linear trajectory 
inference algorithm to simplify the pattern of AML differentiation. First, we selected 
12 antigens by DANCE to identify the commonality of differentiation patterns among 
patients and then investigated the intra- and inter-tumour heterogeneity along the tra-
jectory. Although we were able to incorporate the temporal behaviour of molecules as a 
similar temporal ‘yardstick’ in this study, the commonality of different trajectories needs 
further improvement to apply this method to a greater number of patients. Here, we 
conceived a group of artificial references for which biomarkers related to standard dif-
ferentiation were added to specimens before mass cytometry detection. These references 
are expected to align more efficiently with cells on a uniform trajectory. In addition, the 
pipeline for analysis and algorithms require certain modifications if they are to automat-
ically recognize the correct global and local direction of a trajectory.

The trajectory analysis workflow provides us new perspective of AML heterogene-
ity, and the temporal pattern might indicate prognosis evaluation potential. CD11c 
early expression is an indicator of good prognosis, but the research is restricted by 
the sample size. To find out the mechanism of CD11c during AML development, we 
assumed that CD11c was normally expressed on the surface of mature blasts. As an 
adhesion molecule, it plays a role in cell-to-cell interaction and recognition, which 
might influence the chemotherapy prognosis of AML cells. To test the first hypoth-
esis, we investigated the CD11c-CD18 interaction in the STRING website (https:// 
cn. string- db. org/) (co-expression score: 0.998). According to the literature, the early 

https://cn.string-db.org/
https://cn.string-db.org/
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expression of CD11c and CD18 form integrin for the binding of C3b complement 
[25], thus indicating an immune enhancement to the AML blast, especially primitive 
clones (Figure S5).

The prognosis evaluation factors identified herein not only act alone in a single mol-
ecule but also act in combination. For example, to consider the plastic phenotype 
related to AML relapse, we regarded relapse-related stemness as a feature of each cell 
and proposed a stemness heterogeneity index based on Shannon entropy to reflect the 
expression complexity of 15 stemness-related molecules. This indicator fully consid-
ers the plasticity of stemness-related surface molecules, which are expressed without 
regularity and modality and with no standard landscape in different patients. Although 
we observed trends of change between samples from patients with CR and relapse out-
comes, the difference of stemness heterogeneity at the protein level was not significant 
as expected. Therefore, this prognosis evaluation index needs to be further optimized for 
the prediction of poor outcomes in a more efficient and precise manner.

The 17-gene stemness score provides specific parameters relating to stemness hetero-
geneity at the scRNA level. This analysis also suggested that RNA, inner signal proteins, 
or other molecules could be useful stemness-related factors for relapse prediction, which 
might require the use of single-cell multi-omics platforms for further detection. Future 
research relating to stemness heterogeneity should be expanded beyond the tested mol-
ecules to include not only surface antigens but also intracellular signals or transcrip-
tional factors. Moreover, it might be valuable to considering weighting the importance 
of each molecule to increase the accuracy of the model. In addition, the scRNA-seq 
datasets derived from adult patients produced the same trend for mass cytometry-
deduced stemness heterogeneity as found for the paediatric specimens, thus suggest-
ing that this index might be suitable for all AML samples. Owing to the limited number 
of samples, we could not investigate more temporal features associated with classified 
phenotypes and genotypes. However, we have provided analytical strategies that focus 
on commonalities of the blood system in each patient without considering the disease 
sub-type or molecular abnormalities. Furthermore, our definition of stemness hetero-
geneity measures the stemness of each cell. Consequently, it can be assumed that the 
degree of stemness between healthy and AML cells at the same stage would differ; that 
is, stemness is lower in healthier states than in disease states. If our hypothesis is valid, 
then the stemness heterogeneity index will eliminate the influence of healthy myeloid 
cells that are resident in AML blasts.

Additionally, we speculated the earliest peak times of stemness heterogeneity dis-
tribution in NR samples are associated with their proliferation rate, which might be 
influenced by various genomic alterations and heterogeneity of initial clones. The 
beginning sub-clones interact with each other to survive. In the relapse group, few 
resistant cells need to remain dormant among other proliferating populations before 
being selected by chemotherapy drugs, while the non-remission samples have a more 
stable blood system with lower competition. Therefore, the NR blood systems might 
have a lower differentiation rate. The apoptosis rate is higher in CR group than NR 
in reported result [28], which could also indirectly explain the different peak time 
between these two patients. The future work could closely test the speculation about 
competition and proliferation rate with the different molecular platforms.



Page 18 of 20Shao et al. BMC Bioinformatics          (2023) 24:450 

In summary, further research should focus on optimization of the analysis pipeline, 
including consistency improvement, precise cell-stage determination, and the expansion 
of test molecules to other detection platforms, or even multi-omics research. In future 
clinical research, it will be important to test a greater number of AML specimens (both 
paediatric and adult) to identify indicators to guide the therapeutic strategy in the early 
stages. Furthermore, since differentiation induction therapy has shown good efficacy for 
AML treatment (ATRA to M3 AML patients) [29], this new form of temporal analysis 
exhibits good potential as a tool for differentiation induction, drug response monitoring, 
and the assessment of efficacy.

Conclusion
In this study, we developed a novel trajectory analysis pipeline that recreates the pheno-
typic dynamics of AML progression based on a single-cell surface antigen landscape. We 
then optimized the model by determining a common evolution pattern among patients 
through the proposed DANCE feature selection strategy. The continuous presenta-
tion of AML progression reflects an actual differentiation order of single cells and their 
expressed molecules. On the hierarchy, we identified that abnormal CD11c expression 
at the primitive stage of AML differentiation predicts a good chemotherapy outcome. 
We further proposed stemness heterogeneity as an indicator of relapse risk, suggesting 
that detection of the initial stemness maintenance might contribute to a more accurate 
prognosis evaluation. Overall, our proposed temporal analysis strategy provides insight 
into the heterogeneity of AML and may serve as a reference for clinical diagnosis and 
prognosis.
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