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Background
In the life sciences, the structure of living organisms determines the function, and the 
three-dimensional structure of organisms is becoming more and more important for 
the basic research and application of life sciences. Structural biology methods mainly 

Abstract 

Background: Cryo-electron microscopy (Cryo-EM) plays an increasingly important 
role in the determination of the three-dimensional (3D) structure of macromol-
ecules. In order to achieve 3D reconstruction results close to atomic resolution, 2D 
single-particle image classification is not only conducive to single-particle selection, 
but also a key step that affects 3D reconstruction. The main task is to cluster and align 
2D single-grain images into non-heterogeneous groups to obtain sharper single-grain 
images by averaging calculations. The main difficulties are that the cryo-EM single-
particle image has a low signal-to-noise ratio (SNR), cannot manually label the data, 
and the projection direction is random and the distribution is unknown. Therefore, 
in the low SNR scenario, how to obtain the characteristic information of the effective 
particles, improve the clustering accuracy, and thus improve the reconstruction accu-
racy, is a key problem in the 2D image analysis of single particles of cryo-EM.

Results: Aiming at the above problems, we propose a learnable deep clustering 
method and a fast alignment weighted averaging method based on frequency domain 
space to effectively improve the class averaging results and improve the reconstruction 
accuracy. In particular, it is very prominent in the feature extraction and dimensional-
ity reduction module. Compared with the classification method based on Bayesian 
and great likelihood, a large amount of single particle data is required to estimate 
the relative angle orientation of macromolecular single particles in the 3D structure, 
and we propose that the clustering method shows good results.

Conclusions: SimcryoCluster can use the contrastive learning method to perform well 
in the unlabeled high-noise cryo-EM single particle image classification task, making it 
an important tool for cryo-EM protein structure determination
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include X-ray crystallography (X-ray crystallography) [1], nuclear magnetic resonance 
spectroscopy (NMR) [2] and cryo-electron microscopy (Cryo-EM). In recent years, 
technological advances in sample preparation, computation, and especially instrumenta-
tion have made the single-particle cryo-EM method increasingly important in the field 
of structural biology. In Cryo-EM, in order to construct a high-resolution 3D recon-
struction of protein structure using Cryo-EM technology, hundreds of thousands of 
single-particle images extracted must be accurately 2D classification [3]. 2D classifica-
tion is an important intermediate stage in cryo-EM 3D reconstruction [4], and the class 
average results obtained at this stage can be used both as a template for single-particle 
selection and as the basis for the construction of subsequent 3D initial models [4, 5]. 
In the sample preparation process, in order to avoid high dose electron beams causing 
radiation damage to the sample and destroying atomic covalent bonds, low-dose elec-
tron beam imaging is generally selected, which results in a very low SNR of the obtained 
micrographs [6]. In addition, for single-particle low-electron beam imaging in the free 
state, it is impossible to manually label according to the projection angle, and the data 
with real labels cannot be obtained, so that the deep learning classification model that 
currently performs well in supervised classification tasks can not be directly applied in 
Cryo-EM single-particle image classification, and it is difficult to evaluate the quality of 
the classification results. Aiming at the above problems, it is of great significance to find 
a high-precision and effective two-dimensional classification method for the results of 
three-dimensional reconstruction.

Over the past few decades, many different approaches have been proposed for 2D 
classification of cryo-EM single-particle images. The main methods of unsupervised 2D 
classification that are currently popular, the following are: Cross-correlation (CC) and 
multivariate statistical analysis (MSA) enables K-means clustering with reference-free 
alignment [7, 8], Unsupervised maximum likelihood (ML) or maximum posterior (MAP) 
classification [9], statistical manifold learning algorithm (ROME) [10] for unsupervised 
single-particle deep clustering, variational self-encoder (VAE) [11–14] and multi-refer-
ence alignment (MRA) classification [15, 16]. The first two are traditional unsupervised 
classification methods, and the latter two are reference-free clustering methods based 
on deep learning. In the first method, the classification accuracy is affected by the noise-
induced misalignment resulting from false peaks in cross-correlation calculation. Noise 
in single-grain images also affects the calculation of distances in k-means clusters. When 
the SNR is reduced, the performance of this classification method is also degraded. 
Compared to the K-means method, the ML-based method explores the optimal proba-
bility of measuring image similarity and exhibits good robustness in noisy single-particle 
image alignment tasks. A key problem is that the likelihood matching insufficiently dif-
ferentiates structural heterogeneity among similar but critically different views. In each 
set of results after classification, due to structural heterogeneity, the number of valid 
categories is low, while increasing the cycle of ML optimization. In order to overcome 
the shortcomings of the above two traditional reference-free classification methods, 
Jiayi Wu et al. [17] proposed a statistical manifold learning algorithm for unsupervised 
single-particle deep clustering. The algorithm can effectively detect the structural differ-
ences between classes and classes, and improve the detection accuracy. However, there 
is still a lot of room for improvement in accuracy on high-noise images. Subsequently, 
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Guowei Ji et al. [11] proposed a classification method based on variational autoencoders 
(VAE) and multi-reference alignment (MRA) to complete 2D classification. This method 
first uses VAE for noise reduction, and then uses the MRA-based K-means algorithm 
for unsupervised clustering, which can effectively process electron microscopy single-
particle images under low SNR. Vignesh Prasad et al. [12] proposed an image cluster-
ing method using VAE and GMM priors, which jointly learns the prior and posterior 
and in turn learns a latent space representation for accurate clustering. This method 
does not require pre-training and is the first fully unsupervised VAE image clustering 
method. Nina Miolane et al. [13] combined VAE and GAN to learn the latent space of 
cryo-EM images, where the encoder encodes the image into a latent variable and the 
decoder decodes it into a reconstructed image, while the discriminator determines the 
probability that the input image is a real image. This method can compute the orienta-
tion and camera parameters of a given image. Alireza Nasiri et al. [14] proposed a trans-
lational and rotational group-equivariant variational autoencoder architecture, which 
enables learning of translation and rotation-invariant object representation in images in 
an unsupervised manner. However, the performance of this method on the real particle 
image of cryo-EM still needs to be strengthened.

Based on the shortcomings of the above methods, we propose a low SNR single-parti-
cle image classification method based on contrast learning, which performs well in both 
the simulation dataset and the real data set. The main contributions of this article are 
as follows: (1) In this paper, a cryo-EM clustering model based on contrast learning is 
proposed, which is used to complete the feature extraction task of unlabeled cryo-EM 
images, calculate similar features to generate pseudo-label data, and then complete the 
classification. (2) This paper proposes to use the frequency domain spatial interpolation 
method for efficient alignment in each set of data after the classification is completed, 
and then complete the class average calculation.

In this study, we divide the task into three steps. The first is preprocessing, then using 
the deep learning model to develop a good feature extractor for feature extraction, and 
finally to make learnable clustering of the extracted features. The method in this paper 
trained and tested three datasets of 80  S ribosome, superpolarized cyclic nucleotide 
HCN1, polypeptide toxin and gummolycer glyceride toxin complex TRPV1, and in the 
80 s ribosome verification experiment, the ACC could still reach 78.59 at the SNR=0.1, 
thus demonstrating the effectiveness of this method.

Methods
Our SimCryoCluster framework for 2D classification of cryo-EM single-particle images 
is shown in Fig. 1. In this framework, there are two main parts of work, the first part is 
the data preprocessing part, and the second part is the image clustering part, in which 
we propose a new method, which mainly uses a contrast learning model to complete the 
unsupervised clustering task of feature extraction of single-particle images, which can be 
completed without considering the data distribution. This process consists of four main 
stages: data preprocessing, feature extraction based on contrast learning, learnable clus-
tering and reference alignment within the frequency domain space class. In preprocess-
ing stage, several image processing methods are applied to enhance the input cryo-EM 
single particle image such as denoising base on GAN, Contrast Enhancement Correction 
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Fig. 1 SimCryoCluster workflow. The general framework of SimCryoCluster: Learning single-particle 
clustering. The dotted box represents the two phases of the method: preprocessing and particle depth 
clustering. A solid box denotes an analysis step
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(CEC),etc. Feature extraction is the use of contrast learning networks to extract feature 
vectors to reduce the dimensionality of data, similar to sPCA. Without labels classifica-
tion is to maximize the similarity of feature vectors extracted by the network, calculate 
k near neighbors of each sample, and store the neighbor characteristics of each sample 
for subsequent learning clustering tasks. Alignment within the frequency domain spatial 
class is an invariant feature of estimating the rotation of an image, performing in-plane 
rotation and translation alignment on classified data in Fourier space.

Feature extraction and contrast clustering

Due to the random angle, noisy noise, and unknown distribution of cryo-EM single-par-
ticle images, methods based on maximum likelihood do not yield good results. In such 
a low SNR scenario, how to obtain effective features and improve clustering accuracy is 
a key issue in the analysis of single-particle data of cryo-EM. A label-free classification 
network based on contrast learning is constructed on the basis of this problem, which 
in turn accomplishes 2D classification. Before the electron microscopic single particle 
images are fed into the feature extraction network, data enhancement of the input data 
will be performed as a pre-task. First, for each image in the dataset, two enhancement 
combinations are performed (i.e., crop and resize and recolor, resize and recolor, crop 
and recolor, and many other combinations). The two enhanced images are essentially 
different versions of the same image. The two images are fed into the feature extraction 
network model, and each image generates a corresponding feature vector, with the goal 
of training the model to output a similar representation of a similar image. Details can 
be showed on Fig. 2.

For each original image X, through data enhancement, transform into Xi and Xj , and 
then by training the base encoder network f (·) to obtain the feature vector of the enhanced 
image, and then use a small neural network projection head g(·) Map representations to 
the contrast loss space and maximize the contrast loss to ensure consistency of features 
after network training. After the training is complete, we discard the projection head 

Fig. 2 The overall framework of a clustering network. a Cryo-EM image features are extracted to generate K 
near neighbors. b Fuse the output of a for clustering
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g(·) and use the encoders f (·) and the representation h for the downstream task. where 
hi = f (x̃i) = ResNet(x̃i) , where hk ∈ Rd represents the output after averaging pooling. hi is 
the sample feature output after using the backbone network f, and zk is the feature after the 
projected output terminal g.

Since this task needs to output the image as 11 classes, the 512-dim feature is reduced 
to an 11-dim feature vector through a linear layer, and then the eigenvector is converted 
to a probability vector by the softmax layer, and then the cosine similarity function is 
used to calculate the similarity of the probability vector to obtain the final clustering 
result. The main purpose of using probability vectors is to generate pseudo-labels by cal-
culating the probability values in the classification, and when the probability is greater 
than 0.95, it is set as a pseudo-label, and feedback is given to train the network again to 
update the weights.

Alignment based on frequency domain space

Image alignment is a basic and essential step in the 2D classification task of cryo-EM 
single-particle images [18, 19]. The purpose of image alignment is to estimate the three 
parameters of alignment, namely the angle of rotation, and the translational movement 
in the direction of the x- and y-axes. Image rotation alignment and translation are also 
often used in time domain space, but in time domain space it is usually matched by rota-
tion in a certain step, it takes multiple iterations to calculate the alignment parameters, 
and the result is an integer [20]. In frequency domain space, the calculation alignment 
parameters can be calculated directly without enumeration. On this basis,we use an 
alignment algorithm based on two-dimensional neighbor interpolation in the frequency 
domain of the image, which can improve the accuracy of the estimated parameters. 
The specific steps can be divided into rotational alignment and translation alignment, 
for the calculation of rotational alignment, first of all, the two images in the class are 
parallel fast Fourier transform (PFFT), the cross-correlation matrix of the two images is 
calculated, positioned to the maximum value in the matrix, two-dimensional interpola-
tion around the maximum value, and the rotation angle between the two images can be 
directly determined according to the position of the maximum value in the matrix. For 
the calculation of translation alignment, only two images need to perform a fast Fourier 
transform (FFT) on it. In the single particle selection, usually use a certain radius size of 
the circle for selection, when extracting (Extract), the extraction box is usually selected 
not less than the diameter of the circle square box for frame. Therefore, the size of the 
single-grain image we are dealing with can be set to n× n , and the rotational alignment 
used in this article is based on the square image. The main process of rotation alignment 
is to calculate the cross-correlation matrix, complete the two-dimensional interpolation 
of the nearest neighbor, and finally calculate the rotation angle, a total of three steps, the 
specific process can be seen in Fig. 3.

First of all, suppose that the input two images are Ni , Nj , through the parallel fast 
Fourier transform can obtain the two images related spectrogram Fi , Fj , its size is 
(n/2)× 360 , by calculating the spectrum map to calculate the cross-correlation matrix P, 
the specific calculation such as Eq. 1.

(1)P = abs ifft Fi × con j Fj
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where conj(·) denotes the computation of the complex conjugate function. ifft(·) denotes 
the two-dimensional fast Fourier inverse transform abs(·) denotes the absolute value 
function, and all three functions can be represented in MATLAB. The values in the 
reciprocal matrix P need to be cyclically shifted by m/4 positions to exchange the hori-
zontally centered maximum value, and the function for shifting the values in the matrix 
can be implemented using the ′cirshit ′ function in MATLAB.

A two-dimensional interpolation occurs near the maximum value of the cross-corre-
lation matrix. the angle of rotation of the image Nj relative to the Ni that can be deter-
mined based on the position of the maximum value in the cross-correlation matrix P on 
the x-axis. The ω value calculated here is an integer. First, first find the maximum value 
of the cross-correlation matrix P, interpolate based on the nearest neighbor of the maxi-
mum value, that is, extract the maximum value from the matrix of the central matrix 
̂P , as shown in the red line in Fig. 9, two-dimensional interpolation in the ̂P matrix, the 
specific function can refer to the ′interp2′ function in MATLABL.

The final is to calculate the rotation angle, according to the position of the maximum 
value in the matrix P after x-axis interpolation, the rotation angle ω can be directly cal-
culated, where ω ∈ [−π ,π ] . For a better representation of the angle of rotation, adjust it 
to a positive integer as specifically shown in Eq. 2.

Class averaging

In order to further improve the SNR of cryo-EM single-particle images, the results of 
each class are averaged after classification, and the class average plot is obtained. To 
improve the result of the class average, we discarded the traditional direct averaging 
method and chose the weighted average, which is based on the probability vector of the 

(2)ω =
{

ω, if 0 ≤ ω ≤ π

ω − 2π , if π < ω < 2π

Fig. 3 Schematic diagram of rotational alignment and translation method for maximum near-neighbor 
interpolation in frequency domain space. a Image rotation alignment. b Image translational alignment
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softmax output in Fig. 8b, [p1, p2, ...pi] determines the outcome of each class, and saves 
the probability values of the corresponding category, normalizes all the probability val-
ues of the final category to obtain the corresponding weight w, multiplies each image in 
Ij the same category by the weight w,among 0 ≤ ω < 1 . And then adds up to obtain the 
final class average result. The final result is shown in Fig. 6b.

Results
Construct simulation dataset

Since the original cryo-EM single-particle images without label data cannot be labeled 
by experts, this poses a huge challenge to the evaluation of 2D classification results in 
3D reconstruction. Aiming at the above problems, We constructed a simulated cryo-EM 
dataset by using Scipion to perform 2D projection of particles and adding real noise to 
the resulting images. [21]. When obtaining the projection map, we first selected three 
protein macromolecules with PDB structures from the electron microscopy database 
(EMDB) [22], corresponding to IDs of 3j7a, 5u6o and 5irx, and their specific parameters 
are shown in Table 1. Then, Use the XMIPP [23] software processing package to simulate 
the effects of a real microscope. The projection is mainly based on the rotation angle 
(rot) and tilt angle transformation, the step size of both is set to 5 ◦ when the data is con-
structed, and the rotation angle is projected in Eq. 3 when rotating, and the change in 
the tilt angle is the same as above.

where rot0 represents the minimum, maximum rotF and step value rotStep of the rotation 
angle, the rotation angle range is from 0 ◦ to 360◦ in degrees, tilt is also in degrees, the 
range is 0 ◦ to 180◦ , when tilt = 0 represents the top view, tilt = 90 represents the side 
view. We generated 1100 projected images for each protein, covering 11 different hori-
zontal rotation angles (grouped within 5 ◦ ), i.e. 100 projected images per rotation angle.

Fusion analog noise

In previous methods of constructing simulation datasets, researchers typically used 
Gaussian white noise to simulate cryo-EM noise. However, real cryo-EM data noise 

(3)θ =
rotF − rot0

rotStep

Table 1 Sample dataset detailed parameters

Criteria 80S ribosome TRPV1 complex with DkTx 
and RTX

HCN1

Data ID EMPIAR-10028 EMPIAR-10059 EMPIAR-10081

PDB ID 3j7a 5irx 5u6o

Image size 181×181 104×104 104×104

Voltage (KV) 300 300 300

Average electron dose 20 41 1.26

Nominal CS (mm) 2.0 2.0 –

Defocus ( µm) 0.8∼3.8 0.7∼2.2 1.5∼3.3

Pixel size (Å) 1.34 1.22 1.30

Particle size (pix) 360 192 256
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is difficult to obtain in reality or the noise distribution is difficult to derive. In gen-
eral, we cannot obtain cryo-EM images with known noise distribution. In real life, 
the noise of these unknown noise images is very complex and the distribution is 
unknown, so using existing models trained on a particular noise does not yield good 
results [24]. In this paper, the U-Net network is used to split the noise block and the 
pixel block, and the extracted noise block is superimposed with the projection map, 
and the simulated noise single particle image corresponding to the clean particle is 
constructed, which can be used for subsequent network model training [21]. The vis-
ual comparison of the dataset construction is shown in Fig. 4.

Performance evaluation metrics

To better evaluate the results of this method on the simulated dataset, we used accu-
racy (ACC) to evaluate the results of the feature extraction phase and Fowlkes-Mal-
lows index (FMI) to evaluate clustering performance [25],such as Eq. 4.

where ω represents the set of results after the k-nearest neighbor classification is cal-
culated by feature extraction, ω =

{

I1, I2, . . . , Ij
}

 , A collection of real label datasets 
C = {c1, c2, . . . , ck} . The results of the classification after the completion of feature 
extraction may not match the original label data at the time of verification, which will 
lead to lower ACC results,such as Eq. 5. When validating the results, this paper uses the 
Kuhn-Munkres algorithm to calculate the maximum match.

where TP is the number of particles correctly classified in the total image of a single par-
ticle, FP is the number of particles that are misclassified, and FN is the number of par-
ticles that are incorrectly predicted as incorrect. By simulating the dataset, the real live 
labels can be effectively recorded according to the images of different projection angles.

(4)ACC(ω,C) =
1

N

∑

k

max
j

∣

∣Ik ∩ cj
∣

∣

(5)FMI =
TP√

(TP + FP)(TP + FN )

Fig. 4 Building a visual comparison of the simulated dataset. a Realistic projection image. b Visualize the 
results after noise reinforcement by Gaussian white. c Visualization of the result by overlaying the extracted 
noise blocks by a projection plot. d Realistic label-free particle cryo-EM images
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Data pre‑processing

Step 1: Voxel image conversion

The acquired raw cryo-EM images are stored in Mixed Raster Content (MRC) for-
mat, which defines a three-dimensional grid (array) of voxels, each with a value corre-
sponding to the electron density or potential. In order to facilitate preprocessing and 
improve the SNR, we converted the cryo-EM single particle image mrc format to the 
commonly used 16-bit PNG format. We preprocess the simulated dataset and the real 
dataset separately. In order to facilitate the processing of real datasets, we name all files 
in ascending order during format conversion, so that the results after classification can 
be output according to the file name index. Our goal is to extract the feature informa-
tion of the single particle image through the contrastive learning network, compare the 
features with similarity, and obtain the clustering results. Therefore, in order to make the 
network model learn better, we choose the denoising method based on the generative 
adversarial network (GAN)to improve the quality of cryo-EM single particle images. In 
addition, we perform contrast adjustment on the transformed image.

Step 2: Contrast adjustment

Since the low-dose optical imaging module during cryo-EM imaging is on the defocused 
particle region, the obtained single-particle image has a low-contrast property that is dif-
ficult to identify. Histogram equalization based on uniform distribution can be used to 
increase the intensity value of image pixels [26]. It increases and improves global image 
contrast by mapping the original image histogram to a unified histogram. Therefore, in 
order for subsequent network models to learn better, we perform contrast adjustments 
on the images.

Step 3: Single‑particle images denoising

Due to cryo-EM imaging, electron beam electron doses are small, and the contrast 
between proteins and solvents is low and noisy. Image recovery techniques are com-
monly used for cryo-EM single-particle image denoising. Based on prior knowledge of 
the noise reduction process, image recovery recovers and improves image quality by 
identifying the type of noise and then eliminating it. Therefore, we chose Tang et al [21], 
the proposed improved denoising algorithm for generating adversarial networks (GANs) 
[27], In the architecture of the GAN network, the generator network adopts a symmetric 
structure that consists of three blocks: the convolution block, the residual block, and the 
sub-pixel convolution block. The discriminator employs a convolution network with five 
layers, including batch normalization layers and LRelu layers. The training dataset for 
this network uses a simulated dataset constructed with various particle images, and the 
network is tested with the EMD-0406 dataset and EMD-23579 dataset, each with added 
noise blocks of varying levels. which preserves as much protein internal conformational 
information as possible while reducing noise,,We use relion to particles picking from 
Plasmodium falciparum 80 S ribosome and EMD-3347, and conduct denoising experi-
ments on the particle picking results. which improves the quality of cryo-EM single-par-
ticle images as shown in Fig. 5.
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Construct network training and test

In order to evaluate the effect of the network model used in this paper in the process of 
feature extraction and clustering, we construct a simulation dataset to verify the pro-
posed method. We assume that the particles in all single-grain images in the simulation 
dataset are active particles, select 11 directions with different projection angles, divide 
all particles into 11 classes, and randomly rotate each class to obtain a 2900 single-grain 
image dataset. We split all single-particle datasets into training sets and validation sets, 
of which about 70% were used for training sets (2900 particle images, 1800 for train-
ing and 200 for validation) and about 30% testing (900 particle images). In addition,in 
order to avoid overfitting, the input image was horizontally flipped, randomly cropped, 
rotated, filled, etc. to expand the data set. The batch size was set to 128, the number 
of iterations was set to 500, and the model optimizer used SGD(Stochastic Gradient 
Descent), the learning rate adopts a dynamic adjustment strategy, and the initial learn-
ing rate is 0.4, We added different levels of noise to the training set and validation set, 
and the images with different signal-to-noise ratios of SNR=0.1 and SNR=0.6 are con-
structed as new data sets.

Experiments on testing contrast learning classification models

Step 1: Experiments on feature extraction

In the first stage, we will build the labeled training set and the validation set into a 
binary file, store the training set randomly in 5 train− batch , and store the test set in 

Fig. 5 Modified Generative Adversarial Network (GAN). a Original cryo-EM single-particle simulation image 
from the T20s proteasome. b A true noise-free image with a central section of the EMD-3347 PDB structure 
can be used as a label sample for denoising image a. c The result of label noise reduction by means of an 
improved GNA method. d Original cryo-EM single-particle image from the Plasmodium falciparum 80 S 
ribosome (EMPIAR-10028). e Represents the result of denoising the Original cryo-EM single-particle image 
using a GAN. f It shows the denoising results using the improved GAN method of Tang et al. [21]
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the test − batch . Labels are ignored during training based on contrast learning networks, 
and feedback training is performed on the network using augmented data from each 
data. Images of any size input can be converted to 128 × 128, which can be applied to 
network extraction features. Among them, Resnet-18 [28] is used as a backbone, and 
after network training, each image is converted into a 512-dimensional feature vector, 
and then the output 512-dim feature vector is fed into a multilayer perceptron (MLP) 
[29] and output as a normalized 128-dimensional feature vector. In order to verify the 
effectiveness of network feature extraction, the K near neighbor (KNN) method is intro-
duced to calculate the neighbors of the normalized eigenvectors, and the corresponding 
labels are found according to the index, which can effectively calculate the verification 
accuracy after KNN classification, and store the K neighbors of each eigenvector in a 
temporary library, which can be used for the input of the second stage. In addition, the 
change of loss curve during training with the KNN verification accuracy curve can be 
seen in Fig. 6a, b. From the display of Fig. 6a, it can be seen that when the SNR is rela-
tively high, the loss function as a whole is in a state of decline, and the characteristic 
information can be effectively learned. When SNR = 0.1, network training converges 
slowly, and after the first 200 epochs learn slowly, after 200 epochs, the Loss function 
begins to converge gradually until it is near 500 epochs, and the curve tends to flatten. 
From Fig. 6b, it can be seen that the accuracy of the final verification will be different 
under different SNR. In this process, with the network training, the learning and char-
acterization ability of the network can be effectively improved, and the effective fea-
ture information can be obtained, so as to achieve better verification accuracy. When 
SNR=0.6, its top-5 accuracy tends to be about 93.1% for noise-free particle images. 
When SNR=0.1, its top-5 accuracy is up to 87.92% . In this process, we have also gone 
through several experiments on the choice of K value, and it is found that the verifica-
tion accuracy can reach the highest when K=5, as shown in Fig.  7. According to this 
validation accuracy, on the one hand, the validity of the first stage in feature extraction 
can be effectively proved. On the other hand, the meaningful nearest neighbors in the 
first stage can be integrated into the second stage of the learnable clustering method as a 
priori knowledge.

Step 2: Experiments on contrastive clustering

Through the first stage of training weights as the a priori input of the second stage, and 
then the network is retrained to obtain the feature input comparison loss function, the 
network model is continuously optimized, and a learnable clustering network is formed 
to complete the clustering task. BackBone uses the standard ResNet-18 [28]. For each 
sample, 10 nearest neighbors were identified by the instance discrimination task based 
on noise contrast estimation (NCE), and the clustering performance of the network 
could be effectively improved by fusing the near neighbor features in the first stage. In 
this paper, the EMPIAR-10028 dataset is experimentally verified under different SNR, 
and the clustering results are shown in Table 2.

We compare our method with CL2D [32] and EMAN2 [33] on the simulation data 
of SNR = 0.1 and SNR = 0.6. In addition to these traditional methods, we also com-
pared them with the classic convolutional autoencoder (CAE) and the improved itera-
tive encoding method (IterVM), and the results are shown in Table 3.
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Experiments on alignment and class averaging

The result of the classification can be calculated by the pixel mean, and a high-preci-
sion class-average image can be obtained, which is also one of the methods to improve 
the SNR of the image. However, the image needs to be aligned before the average pixel 
is calculated, and this paper proposes to use a fast frequency domain space-based 
maximum near-neighbor interpolation method that can estimate the rotation angle 
and translation alignment parameters in the x-axis and y-axis directions. The specific 

Fig. 6 Loss function curves and KNN verification accuracy curves under different SNR conditions. a Loss 
function curves in the EMPIAR-10028 dataset under different SNR conditions. b KNN verification accuracy 
curves in the EMPIAR-10028 dataset under different SNR conditions
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method implementation steps are in Alignment Based on Frequency Domain Space of 
the Methods. We randomly selected a class of results from the results after clustering 
EMPIAR-10028, randomly selected a particle from the class as a reference for reference 
alignment, and then manually adjusted to remove the wrong particles according to the 
index value, the process introduced manual intervention, which can effectively improve 
the calculation result of the class average. We used the traditional cryo-EM single par-
ticle reconstruction software (Relion) to conduct experiments because Relion has the 
characteristics of simple operation, clear process, and high reconstruction accuracy. Fig-
ure 8a–d is our class average result using relion, it show the results of the rotation and 

Fig. 7 Influence of the used number of neighbors K

Table 2 Validation set results for 11 classes at SNR = 0.6 in EMPIAR-10028

The results with K‑means were obtained using the pretext features from Simclr [30]. We provide the results obtained by our 
baseline(SCAN) [31],and the results we have improved on the model

Metric Top‑1 Top‑5 NMI

Pretext+K-means 0.57 – 0.63

SCAN 0.56 0.86 0.61

SimCryoCluster (Ours) 0.76 0.93 0.67

Table 3 This article compares the 2D classification results with other methods on FMI scores with 
different SNR

Methods SNR = 0.1 SNR = 0.6

CL2D 0.53 0.61

EMAN2 0.49 0.58

CAE 0.58 0.72

IterVM 0.65 0.82

SimCryoCluster (Ours) 0.71 0.85
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translation alignment visualization. The simulation experiments for both alignment and 
class averaging in this subsection were run on a six-core system with 24 GB RAM in a 
Windows 10 environment, on MATLAB R2019b.

Performance comparison

Our SimCryoCluster classification model is compared to two mainstream 2D classifica-
tion software (EMAN2 [33] and Relion3 [34]). Since multiple signal sources in the cryo-
EM imaging process will make the cryo-EM image contain noise, and the SNR of the 
single-grain image obtained is low, the performance comparison is carried out in the 
case of SNR=0.1 and SNR=0.6, respectively, and the 80 s ribosome is selected as the data 
set, and the comparison results are shown in Table 4. Measuring the data running time 
and accuracy for different SNRs, SimCryoCluster achieved better classification results 
in the experiment, taking the least time to classify single particle projection images and 
achieving an accuracy of up to 94.20, indicating the effectiveness of our method.

Experiments on real datasets

In order to further verify the effectiveness of the deep clustering method proposed in 
this paper on the cryo-EM single-particle image, we selected 5000 single-particle images 
automatically selected from the original cryo-EM image, and entered the network for 
clustering and alignment after noise reduction. We use cl2d of Scipion software to com-
pare with the relion classification experiment that incorporates our denoising results. 
We divide it into 20 classes, weight the average of the single-particle images in each class 
according to SNR, sort the class average results, and select the visualization results of the 
first five valid classes as shown in Fig. 9b. where Fig. 9a is a visualization of class averag-
ing using CL2D. From the visualization results, it can be seen that the results of the class 

Fig. 8 In-class rotation and translation alignment visualization results. a A single grain image is randomly 
selected from a certain category as a referenced original image. b Rotate only single-particle test images. c 
Shift single-particle test image. d Aligned single-particle image

Table 4 Performance test results of the simulated dataset on different classification methods

Relion EMAN2 SimCryoCluster

SNR = 0.6 0.83 0.78 0.94

SNR = 0.1 0.62 0.38 0.74

Times (h) 10 6 4.5
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averaging after noise reduction can effectively retain important particle information, and 
the noise is significantly lower than that of CL2D clustering.

Reconstruct the experiment

In order to further verify the effectiveness of the proposed method in this paper, the 
class average is generated by using the classification method and alignment algorithm 
in this paper, and then the class average is used for initial three-dimensional reconstruc-
tion. The experiment used EMD5785 simulated cryo-single-particle cryo-EM images 
and real cryo-EM projection images in EMPIAR-10028. This experiment uses the 
ASPIAR software package (http:// spr. math. princ eton. edu/). The resulting class average 
is initially reconstructed into a three-dimensional structure using a covalent line recon-
struction method based on the covalent line [35], which is implemented in the ASPIRE 
software package with the function ′′cryo− estimate −mean′′ . The projection matching 
algorithm is used to estimate the projection direction of the cryo-EM image, and the 
public line between the various types is estimated using the weighted voting algorithm 
we propose. All cryo-EM 3D structures are visualized by UCSF Chimera software. The 
results of each visualization are shown in Fig. 10 below. It can be seen from the com-
parison figure that the method proposed in this paper has effective reconstitution of 70 s 
ribosomes.

Discussion
Our method tackles significant challenges that other 2D classification approaches have 
faced such as the difficulty of processing low SNR micrographs, the effectiveness of clas-
sification results to be improved, and the difficulty of calculating projection orienta-
tion information. In view of the problem of low SNR of micrographs, We incorporate 
noise reduction before clustering, and set a mask, which can effectively reduce the loss 
of delocalization information around particles, and retain more feature information 
while improving the SNR as much as possible. Aiming at the problem of low accuracy 
of classification results, we propose to use a deep clustering network based on contrast 
learning, which is mainly divided into two stages, the first stage is characterized learning 
through the comparative learning network, and the second stage integrates the charac-
teristic information and weights of the first stage for clustering, and it is proved through 

Fig. 9 The final class average visualization result graph. a Visualize class averaging results by CL2D. b The 
average result of the visualization class after noise reduction by the method in this paper

http://spr.math.princeton.edu/
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experiments that the methods superior to the current deep learning can be obtained on 
both the simulated data set and the real data set. Aiming at the problem that projection 
orientation information is difficult to calculate, we propose to use a fast nearest neigh-
bor interpolation method based on the maximum value of the frequency domain space, 
which can effectively estimate the rotation angle and translation alignment parameters 
in the x-axis and y-axis directions, which has an important role in evaluating the same 
type of data. However, the proposed method in this paper performs poorly on the classi-
fication of highly symmetrical structures, and it is difficult to estimate the rotation angle 
and orientation information.

Conclusions
Our method performs best on ribosomes, which are easy to search for Fourier spa-
tial angles due to the lack of high symmetry in the ribosome structure and the small 
molecular weight. Aiming at the problem that the training dataset cannot be labeled, the 

Fig. 10 Comparison diagram of the 3D reconstructed model. a Reconstruct the initial structure result graph 
(8.75 angstrom) by Relion. b The initial model structure is restored by this method (7.46 angstrom). c The first 
round of 3D Refine effects (4.87 angstrom) is not preprocessed by the method of this paper. d The results of 
the first round of 3D Refine iterations (4.25 angstrom) of the method of this paper
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unlabeled cryo-EM single particles are classified by using the improved contrast learn-
ing clustering method, and pseudo-label data can be obtained for self-supervised train-
ing according to the probability vector of the second stage, which can be unaffected by 
molecular symmetry and obtain better classification results. Aiming at the problem that 
the projection direction of single particles of biological macromolecules is difficult to 
estimate, a fast maximum neighbor interpolation method based on frequency domain 
space is calculated by using the sample data in the class, which can effectively estimate 
the rotation angle and translation parameters. Finally, the aligned single-grain image is 
weighted to average according to SNR, thereby improving the result of class averaging. 
The above method can also be applied to real data sets, and experimental results show 
that SimCryoCluster performs as well as the most advanced method of single-particle 
2D classification.

Abbreviations
Cryo-EM  Cryo-electron microscopy
Micrograph  Digital image taken through a microscope
MRC  Medical Research Council
PNG  Portable network graphic
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