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Abstract 

Background: Aptamers, which are biomaterials comprised of single‑stranded DNA/
RNA that form tertiary structures, have significant potential as next‑generation materi‑
als, particularly for drug discovery. The systematic evolution of ligands by exponential 
enrichment (SELEX) method is a critical in vitro technique employed to identify aptam‑
ers that bind specifically to target proteins. While advanced SELEX‑based methods such 
as Cell‑ and HT‑SELEX are available, they often encounter issues such as extended time 
consumption and suboptimal accuracy. Several In silico aptamer discovery methods 
have been proposed to address these challenges. These methods are specifically 
designed to predict aptamer‑protein interaction (API) using benchmark datasets. 
However, these methods often fail to consider the physicochemical interactions 
between aptamers and proteins within tertiary structures.

Results: In this study, we propose AptaTrans, a pipeline for predicting API using deep 
learning techniques. AptaTrans uses transformer‑based encoders to handle aptamer 
and protein sequences at the monomer level. Furthermore, pretrained encoders are 
utilized for the structural representation. After validation with a benchmark dataset, 
AptaTrans has been integrated into a comprehensive toolset. This pipeline synergisti‑
cally combines with Apta‑MCTS, a generative algorithm for recommending aptamer 
candidates.

Conclusion: The results show that AptaTrans outperforms existing models for predict‑
ing API, and the efficacy of the AptaTrans pipeline has been confirmed through vari‑
ous experimental tools. We expect AptaTrans will enhance the cost‑effectiveness 
and efficiency of SELEX in drug discovery. The source code and benchmark dataset 
for AptaTrans are available at https:// github. com/ pnumlb/ AptaT rans.
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Background
The scientific community focuses aptamers, which are biomaterials composed of 
chemically synthesized single-stranded DNA/RNA, because of their unique properties. 
Aptamers have emerged as frontrunners in the race to develop “next-generation bioma-
terials” owing to their high specificity and affinity for a wide range of target molecules, 
including viruses and proteins [1, 2]. Aptamers have a wide range of potential applica-
tions, particularly in diagnostics and therapeutics [3, 4].

One unique advantage of aptamers over other drugs such as antibodies is their distinc-
tive qualities. Aptamers can identify and bind to molecular targets while larger drugs, 
such as antibodies, struggle with interacting effectively because they form smaller ter-
tiary structures [1]. Additionally, aptamers demonstrate high stability under diverse con-
ditions, resulting in a longer lifespan than many other drugs [5]. Furthermore, the low 
immunogenicity and toxicity profiles [6] of aptamers make them a viable choice for long-
term therapeutic applications. Another important aptamer advantage is their easy pro-
duction from a manufacturing perspective. The polymerase chain reaction can be used 
to manufacture large volumes of aptamers of excellent purity. In addition, the chemical 
synthesis of aptamers offers cost and time benefits compared with biological production 
methods [7]. Various factors contribute to the growing belief that aptamers can surpass 
antibodies in diagnostic and therapeutic applications [8].

The conventional technique for discovering aptamers, called the systematic evolution 
of ligands by exponential enrichment (SELEX), effectively isolates potential aptamers 
[9]. The SELEX technique consists of five primary stages: library generation, binding, 
separation, amplification, and replication. An extensive library of random sequences, 
typically comprised of DNA or RNA molecules, is created to act as a pool of potential 
aptamer candidates. From this library, random aptamer candidates are selected based 
on their capacity to bind to the target protein. The chosen aptamer candidates are then 
amplified and replicated using PCR or reverse transcription methods. In SELEX, each 
iteration of the selection and separation process, coupled with amplification and rep-
lication, is commonly termed a ’round.’ Researchers typically conduct multiple rounds 
of SELEX, typically ranging from 5 to 20 rounds. However, it is important to note that 
each round of experimentation is time-consuming, often spanning several weeks to a 
few months. Additionally, SELEX success rates can be modest, leading to the synthesis 
of only a limited number of candidate aptamers for subsequent affinity characterization 
[10, 11].

Recent advancements in machine learning techniques have introduced new avenues 
for aptamer selection. Computational methods, specifically in silico approaches, have 
been developed to enhance the aptamer selection process [12]. Furthermore, deep learn-
ing models have demonstrated remarkable performance even in scenarios where limited 
data are available for protein binding prediction. For instance, in iHBP-DeepSSM [13], 
only 2460 data points were used to train a deep neural network (DNN) model for hor-
mone-protein binding prediction. Similarly, Deep-AntiFP [14] and cACP-DeepGRAM 
[15] employed datasets of 2336 and 4475 data points, respectively, to predict antifun-
gal and anticancer peptides using DNN models. These computational methods utilize 
data generated by SELEX and demonstrate potential in reducing both the time and costs 
associated with discovering aptamers. RaptRanker [16] is also a method that uses local 
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sequence motifs and structural information for selects candidate aptamer sequences 
based on sequence frequencies. Additionally, other studies have aimed to predict API 
using specific aptamer and protein sequences. For example, Li et al. [17] devised a model 
using pseudo-amino acid composition to predict API. Various machine learning-based 
prediction models [18–20], employing techniques such as k-nearest neighbor, support 
vector machine, and ensemble methods, in addition to deep learning approaches [21, 
22], have demonstrated high quality in predicting API. Despite these improvements, 
most current machine learning approaches often overlook that interactions between 
aptamers and proteins occur at the residue-structure level. These methods rely on deriv-
ing molecular characteristics from sequences, resulting in models that predict APIs 
based only on correlations in sequence configurations.

To address this issue, we propose AptaTrans, a deep learning framework for calcu-
lating the interaction matrix between aptamers and proteins at the monomer level. A 
transformer-based encoder is employed for sequence embedding and API prediction. 
To ensure optimal sequence embeddings, we pretrain the encoder using self-supervised 
learning strategies that utilize the predictions of masked tokens and the secondary struc-
tures of the molecules [23, 24]. We evaluated the effectiveness of the AptaTrans model 
using standard benchmark datasets commonly used for API prediction. The model 
exhibited a superior performance compared with existing data mining and machine 
learning methods. Additionally, we develop the AptaTrans pipeline, an integrated frame-
work that combines the predictive abilities of AptaTrans with Apta-MCTS [25] to gener-
ate the candidate aptamer sequences. We validated our pipeline’s impact by using tools 
such as the ZDOCK Server [26] for scoring interaction. This study provides insights and 
tools for the discovery and development of aptamers, thereby facilitating their broader 
applications in diagnostics and therapeutics.

Methods
Data preparation

We collected a dataset widely used for API prediction [27, 28]. The dataset was obtained 
from the experimental results of aptamer-protein complex data, including both DNA 
and RNA aptamer-protein complexes [29]. We constructed the RNA benchmark data-
sets as conducted in Li et al. [17] to evaluate the performance in the same environment. 
Based on studies about the conversion of DNA and RNA [30, 31], for DNA aptamer-
protein complexes, DNA sequences were converted into RNA sequences by substituting 
thymine (T) with uracil (U). The dataset was partitioned into a training set comprising 
580 positive RNA aptamer-protein and 1,740 negative pairs, and a test set with 145 posi-
tives and 435 negatives for the training and evaluation of the API prediction model, as 
shown in Table 1.

Table 1 Benchmark dataset used for training and evaluating API prediction models

Number of positive pairs Number of negative pairs Description

580 1740 Train dataset

145 435 Test dataset
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For pretraining our model, we used 166,136 protein sequences from the Protein Data 
Bank (PDB) [32]. We also collected 79,890 RNA sequences in the ’bpRNA-1  m’ RNA 
dataset from bpRNA [33]. The ’bpRNA-1 m’ dataset comprises over one million RNA 
sequences sourced from seven different platforms, including the PDB and Aptamer Base 
[29]. Accurate identification of a protein’s secondary structure can serve as the basis for 
predicting many of the essential structural features required for 3D structure prediction. 
These secondary structures provide valuable insights into the functionality of the pro-
tein with other biomolecules. To generate protein secondary structure data that mirrors 
RNA secondary structures, we obtained protein data based on their tertiary structural 
information in the mmCIF/PDBx format from the PDB [34, 35]. A comprehensive distri-
bution of both protein and RNA secondary structures is presented in Table 2.

Sequence tokenization using the k‑mer and frequent consecutive subsequence (fcs) 

mining algorithms

We tokenized RNA and protein sequences to enable the exchange of information 
between tokens. Based on studies about the conversion of DNA and RNA [34, 35], for 
DNA aptamer-protein complexes, DNA sequences were converted into RNA sequences 
by substituting thymine (T) with uracil (U) per the RNA. The RNA sequences were 
tokenized using the k-mer algorithm, and the protein sequences were tokenized using 
the Frequent Consecutive Subsequence (FCS) mining algorithm [36, 37].

The k-mer algorithm divides a nucleotide or amino acid sequence into subsequences 
of length k, called words. For example, if k is three, as shown in Fig. 1A, sequence GGC 
GGA GAA…AAC CGU C is divided into these substrings: GGC, GCG, CGG, GGA, …, 
CCG, CGU, and GUC.

The FCS mining algorithm is a type of WordPiece algorithm [38]. The algorithm can 
detect frequent consecutive substrings and generate a vocabulary that can be used for 

Table 2 Distribution of protein and RNA secondary structures for pretraining

Types PDB [32] Types bpRNA [33]

α‑helix 32.74% Stem 48.50%

β‑sheet 21.11% Hairpin loop 22.51%

Turn 11.06% Multi‑loop 4.86%

β‑bridge 1.22% Internal loop 7.51%

310 helix 3.63% Bulge 1.95%

Bend 9.15% External loop 11.34%

Coil 20.45% Pseudoknot 3.33%

π‑helix 0.64%

Fig. 1 Sequence tokenization using two algorithms. (A) k‑mer algorithm for aptamer sequences. (B) FCS 
mining algorithm for protein sequences
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tokenization purposes. To detect these frequent consecutive substrings in the protein 
sequences, an initial vocabulary was constructed by including all possible substrings up to 
a length of three. We calculated the frequency of the most common sub-sequences for each 
protein sequence dataset. We excluded subsequence words with frequencies below the 
average from the initial vocabulary, retaining only the frequent subsequence words. In this 
study, we calculated the subsequent frequencies using the PDB datasets and generated a 
vocabulary through FCS mining. Sequences were hierarchically tokenized using this vocab-
ulary. For example, if the vocabulary does not contain the MVS sequence and contains 
only MV and S tokens, the sequence is tokenized as {MV, S}. If the vocabulary includes all 
three tokens MV, S, and MVS, we represent sequence MVS as a single token referred to 
as {MVS}. For example, consider sequence MSRLDKSKVI…TALLQIV, which is shown in 
Fig. 1B. The filtered vocabulary represents this sequence as a set of tokens, including {MSR, 
LDK, SK, VI, …, TA, LL, QIV}.

Building an API prediction model using transformer‑based encoders

After tokenizing the RNA and protein sequences, we built AptaTrans, a model that lever-
ages transformer encoders to predict API at the monomer level [39, 40]. The conceptualiza-
tion of AptaTrans was influenced by the Interactive Inference Network (IIN), a specialized 
neural network used to extract semantic features from the interaction domain to effec-
tively interpret paired sentences [41]. MolTrans demonstrates the IIN’s utility [37], which is 
employed to predict drug-target interactions. The AptaTrans model employs the architec-
ture shown in Fig. 2A. AptaTrans utilizes tokenization algorithms, two encoders to repre-
sent the aptamer and protein sequences, convolution layers to extract information from the 
feature map (interaction map), and a fully connected layer to predict binding scores.

The model uses two primary inputs: an aptamer sequence ( xapta ) and protein sequence 
( xprot ). Tokenization algorithms are applied to these sequences, followed by mining for 
3-mers and frequent contiguous substrings (FCS) to obtain x′apta and x′prot , respectively.

(1)x′apta = 3 - mer(xapta),x
′

prot = FCS(xprot)

Fig. 2 Architecture overview of the proposed model, AptaTrans. A The AptaTrans architecture consists of 
four parts: tokenization, transformer‑based encoders, convolution blocks, and a fully connected layer. In (A), 
an interaction matrix is generated by computing the dot products of the pairs between the RNA and amino 
acid token embedding vectors from the encoders. B Shows a transformer‑based encoder that includes an 
embedding layer, a positional encoder, a vanilla transformer encoder, C convolution layers, and D a single 
convolution layer that includes batch normalization and an activation function
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AptaTrans, uses a transformer encoder architecture, which is known for its abil-
ity to transform sequences into contextual vectors [39]. AptaTrans includes two dis-
tinct encoders: Encoderprot(·) for protein sequence x′prot and Encoderapta(·) for aptamer 
sequence x′apta . As shown in Fig. 2B, each encoder consists of four major components: 
an embedding layer, positional encoding, a multi-head attention layer, and a feedfor-
ward layer. The embedding layer converts categorical word values into numerical vector 
representations, known as embedding vectors. Positional encoding was implemented to 
incorporate the positional relationships between words in the embedding vectors. The 
transformer architecture comprises numerous self-attention layers in parallel, and the 
multi-head attention layer [39] is a crucial component. Using this structure, encoders 
can capture a broad spectrum of contextual relationships among the token-embedding 
vectors. The multi-head attention layer is a valuable tool in molecular biology for cap-
turing the interactions between monomers that define molecular structures. With these 
integrated components, our encoders adeptly process tokens x′prot and x′apta , trans-
forming them into enriched contextual representations denoted as Ẽprot and Ẽapta . This 
operation translates sequences into an embedded space, thereby producing contextually 
aware representations. The encoder process can be described as follows:

AptaTrans creates an interaction matrix ( IM ) using contextualized embedding vec-
tors: Ẽprot and Ẽapta . The interaction value for each nucleotide-amino acid token pair 
is obtained using the dot product of the embedded token pairs as the aggregation func-
tion. This matrix contains interaction values representing the interactions between the 
nucleotide 3-mer tokens of the aptamer and amino acid sub-tokens of the protein. Each 
interaction value represents the strength of the corresponding interaction. The interac-
tion matrix containing these interaction values is considered a feature map in the down-
stream layers.

AptaTrans employs specialized convolutional blocks to extract detailed informa-
tion from the IM . The convolution blocks in AptaTrans capture both local and hier-
archical features from the feature map. The sizes of these blocks were defined in three 
dimensions. Each dimension has five sublayers. The model includes two downsizing 
layers because it changes between these dimensions. The architecture consists of a set 
of blocks containing 17 layers. Each convolution block comprises a convolution layer, 
batch normalization, and an activation function, as shown in Fig.  2D. Our model uti-
lizes a Gaussian Error Linear Unit (GELU) as an activation function [42]. The standard 
Gaussian cumulative distribution function multiplies the function’s input. Because of 
its nonlinearity, this activation function provides advantages for backpropagation and 
is smoother than the commonly used rectified linear unit activation function. Figure 2C 
shows that AptaTrans comprises convolution blocks of three different sizes: 64, 128, and 
256. Two residual connections are used for each size. Furthermore, a downsizing convo-
lution layer is utilized during the transition between sizes. The single convolution blocks 
and convolution blocks utilized in AptaTrans are as follows:

(2)Ẽapta = Encoderapta(x
′

apta),Ẽprot = Encoderprot(x
′

prot)

(3)IM = Ẽapta · Ẽprot
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The outputO , from the convolution blocks is flattened and passed as input to the 
fully connected layer to obtain a prediction score that indicates whether binding has 
occurred. The final fully connected layer is defined as:

Pretraining encoders with self‑supervised learning using masked tokens and secondary 

structures of molecules

To enhance the encoders in AptaTrans, we pretrained two encoders, Encoderapta(·) and 
Encoderprot(·) before training the API prediction model. Pretraining is a technique in 
which a model is trained on a large, general-purpose dataset before being finetuned for 
a primary, specific task. This approach enables the model to learn general features and 
patterns from the data. Self-supervised learning is a training technique in which a model 
learns from a dataset without explicit labels, and is trained to predict a correlated output 
using only the input data. This study utilized self-supervised learning with two pretrain-
ing tasks in AptaTrans: masked token prediction (MTP) and secondary structure predic-
tion (SSP) [23, 24].

The first task, masked token prediction (MTP), is similar to masked language mod-
eling, which is a self-supervised learning technique commonly used in natural language 
processing for predicting masked or missing tokens in input text [24]. This technique 
aims to estimate the original masked tokens by considering the contextual informa-
tion provided by the surrounding tokens. Consequently, the model learns to under-
stand the relationships and context between the tokens in the input data. For example, 
in a protein sequence such as {MSR, LDK, SK, …, LL, QIV} that requires masking, the 
respective positions are replaced with {MSR, [mask], SK, …, LL, [mask]}, as illustrated 
in Fig.  3 (top). Nonetheless, unlike protein sequences, aptamer sequences are masked 
differently. The k-mer algorithm was used to divide aptamer sequences into nucleotide 
tokens using sliding windows. After tokenization, the tokens have dependencies for 

(4)ConvBlock(·) = GELU(BatchNorm(Conv2d( · )))

(5)O = ConvBlocks(IM)

(6)Scorebind = FullyConnected(Flatten(O))

Fig. 3 Example of pretraining techniques with two encoders. One is for the masked tokens prediction (top) 
and another for the secondary structure prediction (bottom)
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neighboring tokens. To eliminate these dependencies, we mask both the surrounding 
and individual tokens. For instance, if the tokenized sequence ACC, CCG, CGT, GTA, 
and TAC requires the third token to be masked, it would be replaced with [mask], creat-
ing the masked sequence ACC, [mask], [mask], [mask], and TAC. The pretraining mod-
ule utilizes encoder representations to predict the original sequence from the masked 
sequence.

The second task, secondary structure prediction (SSP), was implemented in a manner 
similar to the first task. When the set of monomers or their order in a molecule changes, 
the structure of the molecule also changes because of the interactions between the 
monomers [43, 44]. As the binding sites of the molecules are determined by the mono-
mers representing the sequences with the patterns of interactions between the mono-
mers is crucial in identifying the structure of the molecules [45]. Because the SSP task 
is related to interactions between monomers, we pretrained our encoders for the SSP 
task to capture the patterns of these interactions. For this pretraining, we used protein 
sequences from the PDB and their secondary structures obtained by DSSP, as well as the 
’bpRNA-1  m’ RNA dataset with its secondary structures. The secondary structures of 
the molecules were tokenized according to token size of their sequences. For example, 
if a tokenized amino acid sequence reads as MSR, LDK, SK, …, LL, and QIV, and its 
associated secondary structure is SSSSHHHHH-…-TTSSS, then the secondary structure 
would be tokenized as SSS, SHHH, HH, …, TT, and SSS, as shown in Fig. 3 (bottom).

Training AptaTrans using data augmentation techniques

While training the AptaTrans model, we employed several data augmentation tech-
niques to alleviate any overfitting resulting from inadequate API data. One method 
involves expanding the training dataset by generating symmetrical aptamer molecules. 
Oligonucleotide aptamers have neither a distinct head nor tail, indicating that the sym-
metrical sequence of an aptamer can be considered the same molecule. For example, 
if an aptamer sequence is ACGAC and binds to the protein SVFSERT, its symmetrical 
sequence CAGCA is likely to bind to the same protein. Using this data augmentation 
approach, the size of the training dataset was effectively doubled.

Experimental settings

AptaTrans was developed using PyTorch [46] and hyperparameters were determined 
through empirical results and consideration of available computing resources, as 
shown in Table 3. The model uses six-layer transformer encoders for protein and RNA 
sequences. These encoders utilize an input embedding size of 128 and integrate eight 
attention heads in their multi-head self-attention mechanism. The feed-forward layer of 
the encoders is designed to use a dropout rate of 0.1 and hidden dimension size of 512. 
During the training, we utilized the AdamW optimizer [47] with a learning rate of 1e-5.

Table 3 Optimal hyperparameters used for training the model

Input 
dimension

Number of 
heads

Dropout rate Hidden 
dimension

Number of 
Layers

Optimizer Learning rate

128 8 0.1 512 6 AdamW 1e‑5
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Experiments and performance metrics

Our model was evaluated experimentally for two fundamental tasks: predicting API, 
which is a classification problem, and recommending candidate aptamer sequences, 
which is a generative simulation problem. For the binary classification task, we used six 
commonly used performance metrics: These performance metrics include the ROC-
AUC, accuracy (ACC), Matthews correlation coefficient (MCC), sensitivity (Sn), speci-
ficity (Sp), and F1-score (F1), which are defined as follows:

where TP, TN, FP, and FN denote the true positives, true negatives, false positives, and 
false negatives, respectively. The ROC curve illustrates how the binary classification per-
formance varies according to its discrimination threshold. ROC(x) represents the true 
positive rate, also known as the sensitivity, plotted against the false positive rate (1-spec-
ificity), for a given threshold x . The ROC-AUC is a crucial metric, particularly for the 
prediction of aptamer-protein Interaction. Predicting the interaction results in a binary 
outcome. Hence, the effectiveness of the model depends on its ability to accurately dif-
ferentiate between binding and non-binding states. The ROC-AUC value measures the 
competence of the model in differentiating between these states across all potential 
thresholds. Accurately predicting the occurrence of binding (sensitivity) and when it 
does not occur (specificity) is crucial. False positives and negatives can lead to inefficient 
resource allocation in future research, such as in drug developments. An ideal model 
should have a high Sn and Sp, resulting in a high ROC-AUC value.

In the second task, which involves the generation and simulation, the results were 
obtained using the ZDOCK score acquired from the web-based ZDOCK Server. The 
ZDOCK Server is a web-based platform that offers access to the widely used bioin-
formatics tool ZDOCK for predicting protein–protein interactions and modeling 
protein complex structures. For the docking calculations, we submitted our protein 
and aptamer sequences to the ZDOCK Server. Following the docking simulation, 
the ZDOCK Server returned a score that estimated the binding affinity between the 

(7)ROC - AUC =
1

0
ROC(x)dx

(8)ACC =
TP + TN

TP + TN + FP + FN

(9)MCC =
TP× TN - FP× FN

(TP + FP)(FP + FN)(TN + FP)(TN + FN)

(10)Sn =
TP

TP + FN

(11)Sp =
TN

TN + FP

(12)F1 = 2×
TP

TP + FP + FN
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protein and aptamer. A higher ZDOCK score indicates a potentially strong interac-
tion, further verifying the efficiency of the proposed aptamer sequences generated by 
Apta-MCTS using our AptaTrans model.

Results and discussion
Overview of the AptaTrans pipeline

We designed the AptaTrans pipeline and evaluated the process of generating and eval-
uating candidate aptamer sequences, as shown in Fig.  4. The AptaTrans pipeline con-
sists of two main components: AptaTrans API prediction model and Apta-MCTS [25]. 
The AptaTrans API prediction model functions as an API classifier within Apta-MCTS, 
contributing to the generation of high-quality aptamer sequences in the pipeline. Apta-
MCTS subsequently generates potential aptamer sequences that exhibit a high bind-
ing affinity for a target protein sequence, expressed as a series of amino acids. These 
potential aptamer sequences are returned in their nucleotide format. These sequences 
were evaluated using our evaluation process. The RNA Composer can convert RNA 
sequences, including aptamers, into PDB format files [48]. The PDB files were then sub-
mitted to the ZDOCK Server. On the ZDOCK Server, an interaction simulation occurs 
between the PDB files of the aptamer and protein sequences, resulting in a ZDOCK 
score. The score represents the predicted binding affinity. Thus, the calculated score 
indicates the predicted binding affinity between the protein and aptamer.

API prediction performance

We compared the performance of AptaTrans in predicting the binding of aptamer 
sequences and target proteins using two well-established API classifiers: PPAI [49] 
and Li et al.’s model [17]. The predictive models were evaluated using six aforemen-
tioned performance metrics. As shown in Fig. 5, AptaTrans outperformed the other 
models across all six metrics. The ROC-AUC score of our API prediction model was 
approximately 4.2% and 15.4% higher than those of PPAI and Li et al.’s model, respec-
tively. AptaTrans achieved a better F1 than the other two methods, outperforming 
them by 6.9% and 22.7%, respectively. AptaTrans accurately identified true positives 
and negatives, as indicated by its high sensitivity (Sn) and specificity (Sp). In addition, 
it significantly outperformed the other models in terms of the MCC, with improve-
ments of 9.8% and 28.1%, respectively. Overall, this performance comparison shows 
that AptaTrans predicts aptamer-protein interactions more accurately than other 
existing in silico methods.

Fig. 4 Candidate aptamer generation process and its analysis using the AptaTrnas pipeline (including 
Apta‑MCTS), RNA Composer, and ZDOCK Server
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Ablation study for AptaTrans

We conducted two ablation studies to evaluate the effects of the importance of pre-
training and effects of model architecture components. Initially, we set up three dif-
ferent pretraining setups: one using a pretrained encoder for proteins, another using 
a pretrained encoder for aptamers, and the third integrating pretrained encoders for 
both. To assess the tangible benefits of pretraining, these setups were compared to the 
performance of the baseline, which is AptaTrans without any pretraining. The results 
are summarized in Table 4, showing that the baseline yielded an ROC-AUC of 0.899, 
an ACC of 0.857, an MCC of 0.639, and an F1 of 0.733. Notably, all pretraining set-
ups outperformed this baseline. The most significant improvement was observed with 
the use of pretrained encoders for both proteins and aptamers: AptaTrans achieved 
an ROC-AUC of 0.921, an ACC of 0.876, an MCC of 0.679, and an F1 of 0.761. Our 
analysis, summarized in Table 4 and illustrated in Fig. 6, emphasizes the importance 
of pretraining in our model. Even configurations where only one encoder was pre-
trained showed improved metrics in all areas. This iterative improvement confirms 
the crucial role of pretraining in enhancing the precision of the AptaTrans API pre-
diction model, highlighting the value of this approach.

Fig. 5 Performance comparison for API prediction in terms of six metrics: the ROC‑AUC, accuracy (ACC), 
Matthews correlation coefficient (MCC), sensitivity (Sn), specificity (Sp), and F1‑score. Our AptaTrans model 
was compared with PPAI [50] and Li et al.’s model [17]

Table 4 Results of the pretraining ablation study

Bold indicates the highest scores

Model Setup ROC‑AUC ACC MCC F1

AptaTrans 0.899 0.857 0.639 0.733

w/ pretrained encoder for protein 0.905 0.874 0.671 0.756

w/ pretrained encoder for aptamer 0.909 0.860 0.650 0.741

w/ pretrained encoders for all 0.921 0.876 0.679 0.761
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In our secondary analysis, as described in Table 5, we evaluated the impact of differ-
ent architectural components within the AptaTrans model. We conducted a comparative 
study without employing pre-trained encoders. Using the full proposed architecture in 
its original form, AptaTrans produced ROC-AUC metrics of 0.893, ACC of 0.857, MCC 
of 0.630, and F1 of 0.715. Removing the FCS mining component, which is crucial for 
tokenizing protein sequences, led to observable declines in accuracy, Matthews corre-
lation coefficient, and F1 score. However, the ROC-AUC remained largely unchanged. 
This alteration negatively affected both precision and recall metrics. Performance 
declined for all metrics when a less complex encoder structure with only three layers and 
four heads of multi-head self-attention was chosen. The decrease in model performance 
highlights the effectiveness of our proposed multi-layer encoders in the efficient encap-
sulation of sequence contexts. Additionally, reducing the convolutional neural network 
(CNN) framework from a dense 17-block structure to a trimmed seven-block struc-
ture resulted in a significant decrease in model performance, underscoring the critical 

Fig. 6 ROC curves comparing AptaTrans performance of baseline and pretraining setups

Table 5 Results of the ablation study for model architecture w/o pretraining

Bold indicates the highest scores

Model setup ROC‑AUC ACC MCC F1

AptaTrans 0.899 0.857 0.639 0.733
w/o FCS mining 0.893 0.851 0.627 0.708

w/ simple Encoders 0.879 0.850 0.583 0.677

w/ shallow CNN 0.832 0.819 0.537 0.658
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nature of careful feature extraction from interaction maps. Overall, our analyses clearly 
confirm the crucial contributions of selected model components to the effectiveness of 
AptaTrans, in particular FCS mining, sophisticated encoders, and complex CNN blocks.

Candidate aptamer sequence recommendation

We have developed the AptaTrans pipeline, which combines AptaTrans with Apta-
MCTS [25]. This pipeline is designed to generate candidate aptamer sequences for a tar-
get protein. Apta-MCTS has two phases: searching for potential aptamers with a high 
binding affinity propensity, based on Monte Carlo tree search (MCTS)-based sampling, 
and predicting the binding scores of the candidate aptamers for the given target protein 
using the API prediction model. In order to improve the accuracy, we replaced the origi-
nal Apta-MCTS API prediction model with the AptaTrans API prediction model.

We assessed the binding positions and ZDOCK scores of the candidate aptamers gen-
erated by our AptaTrans pipeline for six proteins: 6GOF, 5UMO, 2RH1, 3SN6_4, 3V79, 
and 5VOE_HL. These six proteins have already been investigated using well-known 
aptamers. We compared the ZDOCK scores of these candidate aptamers with known 
and other candidate aptamers generated by the original Apta-MCTS, which was already 
superior to the known aptamers. Figure  7 shows the ZDOCK scores of the candidate 
aptamer sequences for the six target proteins obtained using the ZDOCK docking 
server. According to the ZDOCK scores, the AptaTrans pipeline demonstrated higher 
scores than previous results for Apta-MCTS and the known aptamers as illustrated in 
Fig. 7.

Analysis with known aptamer and candidate aptamers

We performed a comparative analysis of a known aptamer and AptaTrans found candi-
date aptamers generated using the AptaTrans pipeline in the aspect of quantity and qual-
ity. In quantity aspect, we compare ZDOCK score between the protein interaction of the 
known aptamer and top ranked AptaTrans candidate aptamers. In Fig. @10 we compare 

Fig. 7 Performance comparison for aptamer sequence recommendation
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the ZDOCK score of the known aptamer for 6GOF and 3SN6_4 between top 2 aptamers 
which found by AptaTrans pipeline. Results shows that the ZDOCK score of the known 
aptamer for 6GOF is 1016.107 whereas top ranked AptaTrans candidate aptamers score 
are 1249.581 and 1387.074 respectively, which 370.967 points higher than the known 
aptamer. For the ZDOCK score of 3SN6_4, the known aptamer scores 2053.519 while 
top ranked AptaTrans candidate aptamers score are 2139.379 and 2271.218 respectively, 
which also increased the points by 217.699.

For quality analysis, we used PyMOL [50] to visualize the aptamer-protein com-
plexes formed. Figure 8A shows the complexes formed by the known aptamers and the 
candidate aptamers upon binding to the 6GOF protein. In contrast, Fig. 8B illustrates 
known and candidate aptamers upon binding to the 3SN6_4 protein. The upper figures 
in Fig. 8 show the binding configuration with the position of the protein (in green) and 
the aptamer (in red). Conversely, the lower figures highlight the crucial primary binding 
sites necessary for protein and aptamer interaction. Interestingly, both the known and 
our candidate aptamers show affinity for similar binding sites on the 3SN6_4 and 6GOF 
proteins, as shown in Fig. 8.

Furthermore, we conducted additional analysis about the relationship between 
aptamer and protein sequences. For this analysis, we obtained the interaction maps of 
aptamer and protein sequences using AtpaTrans for predicting API. Fig. @10 shows the 
interaction maps of the known aptamer and the two candidate aptamers with 6GOF and 
3SN6_4 proteins. As shown in Fig. 2A, the interaction maps are calculated through dot 
product with contextualized embeddings of both aptamer and protein sequences using 
transformer encoders. These embeddings represent the sequence-related knowledge. 
For clarity of visualization, we set the threshold values and mark sequence tokens that 
show higher values than the selected threshold. As shown in Fig. 10, the interaction map 
illustrates that both known and candidate aptamer sequences exhibit high values in sim-
ilar regions of the protein sequence, similar to what is shown in Fig. 9. We identified that 
the interaction maps reveal notable interaction points between the aptamer and target 
protein [37] (Fig. 10).

Motif analysis of aptamer sequences

We visualized and analyzed the motifs of the candidate aptamer sequences generated 
by our AptaTrans pipeline and known aptamers. Motifs between candidate and known 

Fig. 8 ZDOCK score comparisons between known aptamers and candidate aptamers for proteins 6GOF and 
3NS6
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aptamers were identified using MEME [51]. Figure 11A shows the MEME motif results 
between the known aptamer (V1) and top-two candidate aptamers for protein 6GOF, 
and Fig. 11B shows those for protein 3SN6_4. Although the motif locations differ, some 
major motifs are present in both the known aptamers and top-two candidate aptam-
ers in both proteins. This suggests that the binding sites are similar between the known 
aptamers and our candidate aptamers. This indicated that the candidate aptamers gener-
ated by AptaTrans are highly likely to bind to the target proteins.

Comparison of aptamers from SELEX and AptaTrans

We conducted an experiment to compare DNA aptamer PS202 aptamer from SELEX 
with aptamers generated using the proposed AptaTrans pipeline. The PS202 aptamer 
was derived from SELEX experiments targeting the protein glutamate carboxypeptidase 
II (GCPII), also known as the prostate-specific membrane antigen [52]. From the pool of 
candidate sequences produced by AptaTrans, we selected two aptamers based on their 
superior ZDOCK scores for the GCPII protein.

First, we assessed the effectiveness of the PS202 aptamer using enzyme-linked immu-
nosorbent assay (ELISA). This well-established method is commonly used to meas-
ure proteins, antibodies, antigens, and other biomolecules [53]. Since our aptamer 

Fig. 9 Visualization of protein complex with known aptamers and top two candidate aptamers generated by 
AptaTrans pipeline for proteins 6GOF and 3SN6_4

Fig. 10 Visualization of AptaTrans interaction maps for aptamer sequences and target proteins. X‑axis and 
y‑axis indicate protein and aptamer sequence tokens respectively. The tokens that show higher values than 
a selected threshold value in the interaction map are marked in bright color. This illustrates that that both 
known and candidate aptamer sequences exhibit high values in similar regions of the protein sequence
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candidates generated by AptaTrans are RNA aptamers, we converted the PS202 aptamer 
to its corresponding RNA sequence in Fig.  12. Figure  12A still shows a significant 
improvement in the binding affinity of the PS202 aptamer to its target protein with an 
increase in the aptamer concentration. This observation highlights the superior per-
formance of the PS202 aptamer compared with that of the negative control. Next, we 
conducted ZDOCK docking simulations to obtain the ZDOCK scores of the negative 
control, PS202, and the candidate aptamers. The resulting data, as shown in Fig.  12B, 
indicate that although the PS202 aptamer in RNA sequence had the highest ZDOCK 
score, the scores of the top two candidate aptamers were considerably close. This shows 
that the RNA aptamer candidate sequences generated by AptaTrans can be utilized in 
the development of DNA or modified DNA aptamers. These findings emphasize the 
potential of the AptaTrans pipeline in reducing the time and financial costs typically 
associated with SELEX experiments.

Next, we conducted a thorough motif analysis of the aptamer sequences obtained from 
the AptaTrans pipeline in comparison with PS202. The MEME motif analysis compared 

Fig. 11 Motif analysis between known aptamer and candidate aptamers for two proteins, A 6GOF and B 
3NS6

Fig. 12 ELISA and ZDOCK simulation results for protein ‘glutamate carboxypeptidase2.’
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PS202 with the two most prominent candidate aptamers targeting the GCPII protein, 
as shown in Fig. 13. Similar to the discoveries in Fig. 11, it is important to note that sig-
nificant motifs persistently appeared in both PS202 and the top two candidate aptamers 
across the proteins under consideration, despite differences in motif spatial location.

Conclusion
Identifying aptamer sequences that effectively bind to target proteins is critical in both 
biological research and drug discovery. In this paper, we introduce the AptaTrans pipe-
line, an integration of a deep learning framework designed to predict aptamer-target 
protein interaction and Apta-MCTS, which generates candidate aptamers. The model for 
predicting the API, named AptaTrans, leverages the relationship between the aptamer 
and the subsequences of the protein to predict the API. In particular, this model employs 
pretrained encoders that utilize advanced techniques to predict masked tokens and sec-
ondary structures. Our results demonstrate the impressive performance of AptaTrans 
and highlight the benefits of pre-training in enhancing the model’s ability to understand 
sequences. Further validation of the aptamers generated by the AptaTrans pipeline was 
conducted using RNA Composer and the ZDOCK server. Notably, the aptamers gen-
erated by our pipeline outperformed both their Apta-MCTS counterparts and known 
aptamers when evaluated by ZDOCK. These results suggest that the AptaTrans pipe-
line is superior to existing methods in terms of its superior performance capabilities. In 
addition, we evaluated the quality of our aptamers using binding position visualization 
with PyMOL and motif analysis with MEME. Both binding positions and motifs of our 
aptamer sequences showed significant similarities to known aptamers. When compared 
to known aptamers identified through SELEX experiments, our candidate aptamers 
show superior quality, with ZDOCK scores that are comparable to or higher than those 
of existing aptamers. Although our pipeline searches for candidate aptamers by consid-
ering both sequence and secondary structure information, it still has some limitations. 
One significant drawback involves the inability to confirm the affinity of AptaTrans-gen-
erated candidates through biological experiments. While we also obtained satisfactory 
results by conducting experiments assuming the same environmental factors, external 
environmental factors such as temperature, acidity (pH) and ionic strength could affect 
the binding. We expect that considering these additional factors could lead to improve 
our aptamer generation pipeline. As part of our future work and validation process, we 
aim to extend our API prediction model of which the scores can be utilized to quantify 
the binding affinity if the concentration of the aptamer-protein complex can be meas-
ured using binding assays. Our pipeline could be also validated for its potential use in 

Fig. 13 Motif analysis between the PS202 aptamer and two candidate aptamers for the GCPII proteins
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comprehending the specificity of aptamer-protein interactions through fluorescence-
based assays or mass spectrometry. In addition, the tertiary structure prediction of pro-
teins performed by AlphaFold could lead to the precise prediction of aptamer-protein 
interactions. AptaTrans has shown outstanding performance on our benchmark RNA 
aptamer-protein dataset. These achievements may open the door to establishing unique 
and novel interactions between aptamers and specific targets. We believe that our 
AptaTrans pipeline (in silico) not only reduce the time and cost required by the SELEX 
(in vitro) method, but also provide valuable biological insights to researchers in the 
aptamer field and lead to significant progress in drug discovery research.
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