
pyComBat, a Python tool for batch effects
correction in high‑throughput molecular data
using empirical Bayes methods
Abdelkader Behdenna1*†, Maximilien Colange1†, Julien Haziza1, Aryo Gema1,5, Guillaume Appé1,
Chloé‑Agathe Azencott2,3,4 and Akpéli Nordor1*

Background
Batch effects are the product of technical biases, such as variations in the experimental
design or even atmospheric conditions [1, 2]. They particularly reveal themselves when
merging different datasets, which have likely been built under different conditions. If not
corrected, these batch effects may lead to incorrect biological insight, since the variabil-
ity can be wrongly interpreted as the product of a biological process.

Multiple methods exist that address this problem. They include approaches related
to frequentist statistics, such as simple normalization [3, 4] or principal component

Abstract

Background: Variability in datasets is not only the product of biological pro‑
cesses: they are also the product of technical biases. ComBat and ComBat‑Seq are
among the most widely used tools for correcting those technical biases, called batch
effects, in, respectively, microarray and RNA‑Seq expression data.

Results: In this technical note, we present a new Python implementation of ComBat
and ComBat‑Seq. While the mathematical framework is strictly the same, we show
here that our implementations: (i) have similar results in terms of batch effects correc‑
tion; (ii) are as fast or faster than the original implementations in R and; (iii) offer new
tools for the bioinformatics community to participate in its development. pyComBat
is implemented in the Python language and is distributed under GPL‑3.0 (https:// www.
gnu. org/ licen ses/ gpl‑3. 0. en. html) license as a module of the inmoose package. Source
code is available at https:// github. com/ epige nelabs/ inmoo se and Python package
at https:// pypi. org/ proje ct/ inmoo se.

Conclusions: We present a new Python implementation of state‑of‑the‑art tools
ComBat and ComBat‑Seq for the correction of batch effects in microarray and RNA‑
Seq data. This new implementation, based on the same mathematical frameworks
as ComBat and ComBat‑Seq, offers similar power for batch effect correction, at reduced
computational cost.

Keywords: Batch effects, Transcriptomics, Bayesian statistics, Open source

Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo‑
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Behdenna et al. BMC Bioinformatics (2023) 24:459
https://doi.org/10.1186/s12859‑023‑05578‑5

BMC Bioinformatics

†Abdelkader Behdenna and
Maximilien Colange have
contributed equally to this work.

*Correspondence:
abdelkader@epigenelabs.com;
akpeli@epigenelabs.com

1 Epigene Labs, Paris, France
2 MINES ParisTech, CBIO‑Centre
for Computational Biology, PSL
Research University, 75006 Paris,
France
3 Institut Curie, PSL Research
University, 75005 Paris, France
4 INSERM, U900, 75005 Paris,
France
5 University of Edinburgh,
Edinburgh, UK

https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://github.com/epigenelabs/inmoose
https://pypi.org/project/inmoose
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05578-5&domain=pdf

Page 2 of 9Behdenna et al. BMC Bioinformatics (2023) 24:459

analysis [5]; and machine learning, such as support-vector machines [6]. One of their
main flaws is, however, their incapacity to handle low sample sizes or more than two
batches at the same time [7].

ComBat, originally implemented in the R library sva [8], is based on the mathematical
framework defined in [9]. This tool leverages a parametric and non-parametric empiri-
cal Bayes approach for correcting the batch effect in microarray datasets that works for
small sample sizes or in the presence of outliers. This approach is based on the fact that
microarray expression data are generally distributed according to a log-normal distribu-
tion [10]. Note that the parametric method requires strong assumptions but is largely
faster than the non-parametric approach.

ComBat-Seq, also implemented in the R library sva, is based on a similar mathematical
framework, where normal distributions are replaced by negative binomial distributions,
to better reflect the statistical behavior of RNA-Seq raw counts data [11].

We recall the details of the mathematical models of ComBat and ComBat-Seq in
Table 1.

We introduce in this article pyComBat, a new Python tool implementing ComBat
(function pycombat_norm) and ComBat-Seq (function pycombat_seq), following the
same mathematical frameworks. Note that the term “pyComBat” implicitly refers to
the function pycombat_norm (resp. pycombat_seq) when compared to ComBat (resp.
ComBat-Seq). In comparison to both the R implementation and the existing Python
implementation of ComBat in the single-cell analysis library Scanpy [12], we show that
pyComBat yields similar results for adjusting for batch effects in microarray data, but
is generally faster, in particular for the usually slow, but more loose, non-parametric
method. Similarly, in comparison to the R implementation, we show that pyComBat
yields identical results for adjusting for batch effects in RNA-Seq data, and is generally
faster. To our knowledge, it is the sole Python implementation of ComBat-Seq.

Implementation of pyComBat
pyComBat is a Python 3 implementation of ComBat and ComBat-Seq. It mostly uses
generic libraries like Pandas [13] or NumPy [14] to mimic ComBat and ComBat-Seq, fol-
lowing the exact same mathematical framework.

Two important features are not directly related to the performance of the software
but are of utmost importance. First, pyComBat is available as an open-source software
under a GPL-3.0 license, which means anyone can use, modify, distribute and share
it. Opening pyComBat to the bioinformatics Python community is the best way for
maintaining and improving it, while increasing its robustness. Second, the reliability

Table 1 Details of the mathematical models of ComBat and ComBat‑Seq

ygij denotes the expression value for gene g in sample j from batch i , αg denotes a gene‑wise baseline expression level, Xj
is a vector of covariates for sample j , βg is the vector of corresponding regression coefficients for gene g , γgi is the additive
(impacting the mean) batch effect and φgi is the multiplicative (impacting the variance) batch effect

ComBat model ComBat-Seq model

ygij ∼ Normal(µgi;φgi) ygij ∼ NegativeBinomial(µgij;φgi)

µgi = αg + Xjβg + γgi logµgij = αg + Xjβg + γgi

Var(ygij) = φgi Var(ygij) = µgij + φgiµ
2
gij

Page 3 of 9Behdenna et al. BMC Bioinformatics (2023) 24:459

of pyComBat has been thoroughly checked, using a bench of unit tests (code cover-
age measured at 88% with Python module “coverage”) serving both as functional tests
(to ensure the proper functioning of each submodule) and as non-regression tests (to
ease maintenance).

Results: comparing pyComBat with ComBat and ComBat‑Seq
Datasets used and preprocessing

For software validation, we created two microarray and two RNA-Seq meta-datasets
from public data: one on Ovarian Cancer (6 microarray datasets), one on Multiple
Myeloma (4 microarray datasets), one on Breast Cancer (originally used for the vali-
dation of ComBat-Seq [11], 2 RNA-Seq datasets) and one on Colon Cancer (2 RNA-
Seq datasets) All meta-datasets are described in more detail in Table 2.

Microarray data were normalized with the rma function from the affy R package
(v.1.68.0) [15] which applies a log2 transformation and ensures the normal distribu-
tion of normalized data, while the raw counts were directly acquired for RNA-Seq
data as suggested in the ComBat-seq documentation [11].

We then compared

• ComBat, Scanpy’s implementation of ComBat and pyComBat on the microarray
datasets on one hand,

• ComBat-Seq and pyComBat on the RNA-Seq datasets.

for (i) efficacy for batch effect correction and (ii) computation time.

Table 2 Composition of each meta‑dataset used for benchmarking pyComBat, Scanpy’s
implementation of ComBat, ComBat and ComBat‑Seq

Dataset Reference(s)

Ovarian Cancer (microarray)

GSE18520 [22]

GSE66957

GSE69428 [23]

GSE9891 [24]

GSE26712 [25, 26]

GSE38666 [27, 28]

Multiple Myeloma (microarray)

GSE5900 [29–31]

GSE66291 [32, 33]

GSE68891

GSE122231 [34, 35]

Breast cancer (RNA-Seq)

GSE83083 [36]

GSE59765 [37]

Colon cancer (RNA-Seq)

phs000892.v6.p1 [38]

phs000178.v11.p8 [39]

Page 4 of 9Behdenna et al. BMC Bioinformatics (2023) 24:459

Batch effect correction

As an implementation of the ComBat and ComBat-Seq algorithms, pyComBat is
expected to have similar, if not identical, power in terms of batch effects correction. This
is confirmed in Fig. 1A, which shows the distribution of relative differences between the
outputs of ComBat and pyComBat, on the Ovarian Cancer dataset (mean = − 1.06 ×
 10–7, 95% CI = [− 1.28 × 10–3, 1.32 × 10–4]). As expected, the differences are distributed
closely around zero with a relative squared error of 1.7 × 10–7, suggesting that the vari-
ability relative to the use of ComBat or pyComBat is negligible compared to the intrinsic
variability of the data.. The slight variability can be explained by the difference between
optimization routines in R and Python (Numpy): while small differences in the fitted dis-
tribution parameters have little to no impact for the vast majority of data points, they
may be amplified by data adjustment for data points located far away in the distribution
tails.

Additionally, both ComBat-Seq and pyComBat produce the exact same output on the
Breast Cancer and Colon Cancer datasets. Despite the aforementioned differences in

Fig. 1 Performance of pyComBat vs. Combat vs. Scanpy’s implementation of ComBat. A Distribution of the
relative differences between the expression matrices corrected for batch effects, respectively by ComBat and
pyComBat (parametric version), on the Ovarian Cancer dataset. The vertical dotted line corresponds to zero. B
Computation time in seconds for pyComBat, Scanpy and ComBat for the parametric method, on the Multiple
Myeloma dataset. The y‑axis is in a log scale. C Computation time in seconds for pyComBat, Scanpy and
ComBat for the parametric method, on the Ovarian Cancer dataset. The y‑axis is in a log scale. D Computation
time in minutes for pyComBat (left) and ComBat (right) for the non‑parametric method, on the Ovarian
Cancer dataset. The y‑axis is in a log scale

Page 5 of 9Behdenna et al. BMC Bioinformatics (2023) 24:459

optimization routines between R and Python, the slight variations in the fitted distribu-
tion parameters are leveled out by rounding to integers during data adjustment as both
tools output adjusted integer counts. Given the long-tailed nature of the negative bino-
mial distribution, one would expect that even slight variations in parameter values can
impact data points far in the distribution tail, a phenomenon completely absent in our
experiments.

To sum up, it is highly unlikely to obtain such similar results unless pyComBat imple-
ments the same algorithms as ComBat and ComBat-Seq.

Computation time

Computation time is evaluated by running pyComBat (resp. Scanpy’s implementation
of ComBat and ComBat itself) respectively 100 times on both microarray datasets pre-
sented in Section “Results: comparing pyComBat with ComBat and ComBat-Seq”, with
the parametric approach. As Scanpy doesn’t handle the non-parametric approach, only
ComBat and pycombat_norm have been tested with it, on the Ovarian Cancer dataset.
As for pycombat_seq and ComBat-Seq, they have been run respectively 50 times on the
Breast Cancer dataset and 20 times on the Colon Cancer dataset. The reduced number
of runs on RNA-Seq datasets is due to the longer, and less variable, computation times.

Owing to Python (Numpy) efficiency in handling matrix operations and matrix
manipulations as well as thorough optimization of our code, pyComBat is as fast or even
faster than ComBat. The parametric version of the pyComBat performs 4–5 times as fast
as ComBat, and around 1.5 times as fast as the Scanpy implementation of ComBat, in
terms of computation time (Fig. 1B, C), on both datasets.

Similar results are observed with the non-parametric version (Fig. 1D), which is inher-
ently more time consuming, but also less dependent on the distribution of the data. In
this case, pyComBat is also approximately 4–5 times faster than ComBat, going from
more than an hour to around 15 min.

Finally, pyComBat appears to be 4–5 times faster than ComBat-Seq on both RNA-Seq
datasets (Fig. 2A, B).

Fig. 2 Performance of pyComBat vs. ComBat‑Seq. A Computation time in seconds for pyComBat and
ComBat‑Seq, on the Colon Cancer dataset. B Computation time in seconds for pyComBat and ComBat‑Seq,
on the Breast Cancer dataset

Page 6 of 9Behdenna et al. BMC Bioinformatics (2023) 24:459

Downstream analysis

The main goal of batch effect correction in transcriptomic is to produce unbiased and
more powerful downstream analysis. We show here that the slight differences in cor-
rected gene expression between ComBat and pyComBat have little to no impact on the
output of differential gene expression analysis. Such an analysis is not needed on our
RNA-Seq datasets, as ComBat-Seq and pyComBat output the exact same adjusted count
matrix.

We have applied differential gene expression analysis on the Ovarian Cancer dataset,
to compare groups based on sample types: Primary tumors against Normal tissues. Both
ComBat and pyComBat corrected data have been analyzed using the Limma R package
(v3.56.2) [16], comparing 62 Normal tissue and 615 Primary tumor samples. As shown
in Fig. 3, the differences in batch effects corrections have a small impact on the log-
FoldChange differences (mean = − 1.02·× 10–4, 95% CI = [− 1.15·× 10–3, 7.88·×·10–4])
between both differential analyses. Moreover, with usual thresholds found in the lit-
erature (i.e. logFoldChange > 1.5 and fdr < 0.05), the selected genes are the same, which
suggests that ComBat and pyCombat can be used interchangeably before downstream
analyses.

Discussion and conclusion
We present pyComBat, a new Python implementation of ComBat and ComBat-Seq,
the most commonly used software for batch effects correction on high-throughput
molecular data. Our implementation offers the same correcting power, with shorter
computation time for the parametric method compared to other implementations, and
significantly shorter time for the time-consuming non-parametric version compared to
the original R implementations. This reduced computing time opens perspectives for a
more generic use of the non-parametric approach to a larger range of datasets.

As ComBat and pyComBat (pycombat_norm) assume the normal distribution of the
input data, data processing should comply with this assumption. Microarray raw data

Fig. 3 Differences of logFoldChange between ComBat and pyComBat corrected data for the Ovarian
microarray dataset, for a differential expression analysis between primary tumor and normal tissue samples
using Limma

Page 7 of 9Behdenna et al. BMC Bioinformatics (2023) 24:459

generally follow a log-normal distribution, and R’s rma function applies a log-transfor-
mation after the normalization step, which ensures the normal distribution of the input
data. However, other normalization tools, e.g. MAS5, do not log-transform the data. It is
up to the user to check the distribution of their data and eventually apply a transforma-
tion accordingly. ComBat-seq and pyComBat (pycombat_seq) both work on data that
follow a negative binomial distribution, which is the distribution of raw counts in RNA-
Seq data. No preprocessing of the raw counts is thus needed.

Despite the historical prevalence of R, Python is gaining momentum in the bioinfor-
matics landscape. Python is a general-purpose programming language, widely used in
fields related to bioinformatics: data science, machine learning and AI, orchestration,
visualization, etc. The versatility and wide adoption of Python eases interoperability of
bioinformatics tools with tools from other domains of expertise. We believe that this
interdisciplinary capabilities, along with its general-purpose abilities, gives Python a
substantial edge over R, targeted at statistical applications, to grow as the language of
choice for bioinformatic tools. By contributing to a single-language unified ecosystem,
we hope to eliminate the need to interface several languages (typically R and Python),
a common source of technical difficulties and of computational inefficiency. Workflow
languages (such as Snakemake [17] or Nextflow [18]) and interoperability libraries (such
as rpy2 [19]) still need to translate and copy data from one language to the other. This is
a source of inefficiency and of limitations—depending on the supported data formats—
especially when the analysis goes back and forth between languages. We thus advocate
the necessity to port reference tools from R to Python. Sign of this trend, state-of-the-art
tools have been directly developed in Python (e.g. lifelines [20], a library dedicated to
survival analysis, scanpy [12] (a library dedicated to the analysis of single-cell omic data)
or quickly ported in Python from R (e.g. harmony [21], an R library for integrating single
cell data, DESeq2, an R library for differential expression analysis).

Furthermore, porting a tool from one language to another provides an opportu-
nity window to improve both functionality and performance. For instance, pyComBat
improves over ComBat-Seq by supporting reference batches.

The recent advent of large language models (LLMs) with coding capabilities, such as
Starcoder, GPT4 or GitHub Copilot, represent a great opportunity to accelerate this
porting process. Yet, human intervention remains necessary:

• to ensure the correctness of the ported code. Beyond hallucinations, LLMs remain
statistic-based prediction models, and may thus introduce errors in the implementa-
tion, at the risk of changing the mathematical logic;

• to take full advantage of the performance and functionality improvement opportu-
nity window. For instance, ComBat-Seq code is a mix of R and C++, and porting it
to Python required adapting the C++ code to interface with Python instead of R.

Note however that the work on pyComBat was undertaken before the wide diffusion
of LLM-based coding tools.

We have attached importance to making the software open source, coupled with com-
prehensive documentation. We built a robust set of test cases, in an effort to encour-
age larger participation from the community. We believe that this will be benefiting the

Page 8 of 9Behdenna et al. BMC Bioinformatics (2023) 24:459

Python bioinformatics community and opening the way towards the translation of other
widely used software from R to Python.
Acknowledgements
The authors thank Phuong Pham for his advice about the estimation of the efficiency of the adjustments. The authors
also thank all the external contributors on the GitHub repository, for their feedback on the code for pyComBat.

Author contributions
AB implemented pycombat_norm and compared it with ComBat and Scanpy’s implementation of ComBat. MC imple‑
mented pycombat_seq and compared it with ComBat‑Seq. AB and MC wrote this manuscript. JH, AG, GA, CAA and AN
reviewed code and provided scientific guidance. All authors read and approved the final manuscript.

Funding
This work was supported by the European Union’s Horizon 2020 research and innovation program under Grant Agree‑
ment No. 190185351.

Availability of data and materials
The datasets analyzed during the current study are available in the GEO and dbGAP repositories:—https:// www. ncbi.
nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE18 520—https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE66
957—https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE69 428—https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc.
cgi? acc= GSE98 91—https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE26 712—https:// www. ncbi. nlm. nih. gov/
geo/ query/ acc. cgi? acc= GSE38 666—https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE59 00—https:// www.
ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE66 291—https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE68
891—https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE12 2231—https:// www. ncbi. nlm. nih. gov/ geo/ query/
acc. cgi? acc= GSE83 083—https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE59 765—https:// www. ncbi. nlm. nih.
gov/ proje cts/ gap/ cgi‑ bin/ study. cgi? study_ id= phs00 0892. v6. p1—https:// www. ncbi. nlm. nih. gov/ proje cts/ gap/ cgi‑ bin/
study. cgi? study_ id= phs00 0178. v11. p8.

Availability and requirements
Project name: InMoose. Project home page: https:// github. com/ epige nelabs/ inmoo se. Operating system: Platform
independent. Programming language: Python. Other requirements: Numpy, ScipyLicense: GNU GPL3. Any restrictions to
use by non‑academics: None.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 30 August 2023 Accepted: 23 November 2023

References
 1. Fare TL, Coffey EM, Dai H, He YD, Kessler DA, Kilian KA, et al. Effects of atmospheric ozone on microarray data quality.

Anal Chem. 2003;75(17):4672–5.
 2. Lander ES. Array of hope. Nat Genet. 1999;21(1 Suppl):3–4.
 3. Tai YC, Speed TP. A multivariate empirical Bayes statistic for replicated microarray time course data. Ann Stat.

2006;34(5):2387–412.
 4. Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, et al. Normalization for cDNA microarray data: a robust composite

method addressing single and multiple slide systematic variation. Nucleic Acids Res. 2002;30(4): e15.
 5. Nielsen TO, West RB, Linn SC, Alter O, Knowling MA, O’Connell JX, et al. Molecular characterisation of soft tissue

tumours: a gene expression study. Lancet Lond Engl. 2002;359(9314):1301–7.
 6. Benito M, Parker J, Du Q, Wu J, Xiang D, Perou CM, et al. Adjustment of systematic microarray data biases. Bioinfor‑

matics. 2004;20(1):105–14.
 7. Chen C, Grennan K, Badner J, Zhang D, Gershon E, Jin L, et al. Removing batch effects in analysis of expression

microarray data: an evaluation of six batch adjustment methods. PLoS ONE. 2011;6(2):e17238.
 8. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted

variation in high‑throughput experiments. Bioinform Oxf Engl. 2012;28(6):882–3.
 9. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods.

Biostatistics. 2007;8(1):118–27.
 10. Hoyle DC, Rattray M, Jupp R, Brass A. Making sense of microarray data distributions. Bioinformatics.

2002;18(4):576–84.
 11. Zhang Y, Parmigiani G, Johnson WE. ComBat‑seq: batch effect adjustment for RNA‑seq count data. NAR Genomics

Bioinform. 2020;2(3):lqaa078.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18520
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18520
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE66957
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE66957
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE69428
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9891
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9891
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26712
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE38666
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE38666
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE5900
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE66291
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE66291
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE68891
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE68891
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE122231
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE83083
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE83083
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE59765
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000892.v6.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000892.v6.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000178.v11.p8
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000178.v11.p8
https://github.com/epigenelabs/inmoose

Page 9 of 9Behdenna et al. BMC Bioinformatics (2023) 24:459

 12. Wolf FA, Angerer P, Theis FJ. SCANPY: large‑scale single‑cell gene expression data analysis. Genome Biol.
2018;19(1):15

 13. McKinney W. Data structures for statistical computing in Python. In: Proceedings of 9th Python Sci Conf. 2010;56–61
 14. van der Walt S, Colbert SC, Varoquaux G. The NumPy array: a structure for efficient numerical computation. Comput

Sci Eng. 2011;13(2):22–30.
 15. Irizarry RA. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biosta‑

tistics. 2003;4(2):249–64.
 16. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers differential expression analyses for RNA‑

sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47–e47.
 17. Mölder F, Jablonski KP, Letcher B, Hall MB, Tomkins‑Tinch CH, Sochat V, et al. Sustainable data analysis with Snake‑

make. F1000Research. 2021;10:33.
 18. Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables reproducible computa‑

tional workflows. Nat Biotechnol. 2017;35(4):316–9.
 19. rpy2: Python‑R bridge [Internet]. [cited 2023 Nov 14]. https:// rpy2. github. io/
 20. Davidson‑Pilon C. lifelines, survival analysis in Python [Internet]. Zenodo; 2023 [cited 2023 Nov 14]. https:// zenodo.

org/ record/ 83416 06
 21. Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. Fast, sensitive and accurate integration of single‑

cell data with Harmony. Nat Methods. 2019;16(12):1289–96.
 22. Mok SC, Bonome T, Vathipadiekal V, Bell A, Johnson ME, Wong K, Kwok, et al. A gene signature predictive for

outcome in advanced ovarian cancer identifies a survival factor: microfibril‑associated glycoprotein 2. Cancer Cell.
2009;16(6):521–32.

 23. Yamamoto Y, Ning G, Howitt BE, Mehra K, Wu L, Wang X, et al. In vitro and in vivo correlates of physiological and
neoplastic human Fallopian tube stem cells. J Pathol. 2016;238(4):519–30.

 24. Tothill RW, Tinker AV, George J, Brown R, Fox SB, Lade S, et al. Novel molecular subtypes of serous and endometrioid
ovarian cancer linked to clinical outcome. Clin Cancer Res Off J Am Assoc Cancer Res. 2008;14(16):5198–208.

 25. Bonome T, Levine DA, Shih J, Randonovich M, Pise‑Masison CA, Bogomolniy F, et al. A gene signature predicting for
survival in suboptimally debulked patients with ovarian cancer. Cancer Res. 2008;68(13):5478–86.

 26. Vathipadiekal V, Wang V, Wei W, Waldron L, Drapkin R, Gillette M, et al. Creation of a human secretome: a novel
composite library of human secreted proteins: validation using ovarian cancer gene expression data and a virtual
secretome array. Clin Cancer Res Off J Am Assoc Cancer Res. 2015;21(21):4960–9.

 27. Huang C, Clayton EA, Matyunina LV, McDonald LD, Benigno BB, Vannberg F, et al. Machine learning predicts indi‑
vidual cancer patient responses to therapeutic drugs with high accuracy. Sci Rep. 2018;8(1):16444.

 28. Lili LN, Matyunina LV, Walker LD, Benigno BB, McDonald JF. Molecular profiling predicts the existence of two func‑
tionally distinct classes of ovarian cancer stroma. BioMed Res Int. 2013;2013:846387.

 29. Driscoll JJ, Pelluru D, Lefkimmiatis K, Fulciniti M, Prabhala RH, Greipp PR, et al. The sumoylation pathway is dysregu‑
lated in multiple myeloma and is associated with adverse patient outcome. Blood. 2010;115(14):2827–34.

 30. Li C, Wendlandt EB, Darbro B, Xu H, Thomas GS, Tricot G, et al. Genetic analysis of multiple myeloma identifies
cytogenetic alterations implicated in disease complexity and progression. Cancers. 2021;13(3):517.

 31. Zhan F, Barlogie B, Arzoumanian V, Huang Y, Williams DR, Hollmig K, et al. Gene‑expression signature of benign
monoclonal gammopathy evident in multiple myeloma is linked to good prognosis. Blood. 2007;109(4):1692–700.

 32. Lionetti M, Barbieri M, Todoerti K, Agnelli L, Fabris S, Tonon G, et al. A compendium of DIS3 mutations and associated
transcriptional signatures in plasma cell dyscrasias. Oncotarget. 2015;6(28):26129–41.

 33. Lionetti M, Barbieri M, Todoerti K, Agnelli L, Marzorati S, Fabris S, et al. Molecular spectrum of BRAF, NRAS and
KRAS gene mutations in plasma cell dyscrasias: implication for MEK‑ERK pathway activation. Oncotarget.
2015;6(27):24205–17.

 34. Khan R, Dhodapkar M, Rosenthal A, Heuck C, Papanikolaou X, Qu P, et al. Four genes predict high risk of progression
from smoldering to symptomatic multiple myeloma (SWOG S0120). Haematologica. 2015;100(9):1214–21.

 35. Dhodapkar MV, Sexton R, Waheed S, Usmani S, Papanikolaou X, Nair B, et al. Clinical, genomic, and imaging
predictors of myeloma progression from asymptomatic monoclonal gammopathies (SWOG S0120). Blood.
2014;123(1):78–85.

 36. Rahman M, MacNeil SM, Jenkins DF, Shrestha G, Wyatt SR, McQuerry JA, et al. Activity of distinct growth factor
receptor network components in breast tumors uncovers two biologically relevant subtypes. Genome Med.
2017;9(1):40.

 37. McQuerry JA, Jenkins DF, Yost SE, Zhang Y, Schmolze D, Johnson WE, et al. Pathway activity profiling of growth fac‑
tor receptor network and stemness pathways differentiates metaplastic breast cancer histological subtypes. BMC
Cancer. 2019;19(1):881.

 38. Vasaikar S, Huang C, Wang X, Petyuk VA, Savage SR, Wen B, et al. Proteogenomic analysis of human colon cancer
reveals new therapeutic opportunities. Cell. 2019;177(4):1035‑1049.e19.

 39. Muzny DM, Bainbridge MN, Chang K, Dinh HH, Drummond JA, Fowler G, et al. Comprehensive molecular characteri‑
zation of human colon and rectal cancer. Nature. 2012;487(7407):330–7.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://rpy2.github.io/
https://zenodo.org/record/8341606
https://zenodo.org/record/8341606

	pyComBat, a Python tool for batch effects correction in high-throughput molecular data using empirical Bayes methods
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Implementation of pyComBat
	Results: comparing pyComBat with ComBat and ComBat-Seq
	Datasets used and preprocessing
	Batch effect correction
	Computation time
	Downstream analysis

	Discussion and conclusion
	Acknowledgements
	References

