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Background
Batch effects are the product of technical biases, such as variations in the experimental 
design or even atmospheric conditions [1, 2]. They particularly reveal themselves when 
merging different datasets, which have likely been built under different conditions. If not 
corrected, these batch effects may lead to incorrect biological insight, since the variabil-
ity can be wrongly interpreted as the product of a biological process.

Multiple methods exist that address this problem. They include approaches related 
to frequentist statistics, such as simple normalization [3, 4] or principal component 
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analysis [5]; and machine learning, such as support-vector machines [6]. One of their 
main flaws is, however, their incapacity to handle low sample sizes or more than two 
batches at the same time [7].

ComBat, originally implemented in the R library sva [8], is based on the mathematical 
framework defined in [9]. This tool leverages a parametric and non-parametric empiri-
cal Bayes approach for correcting the batch effect in microarray datasets that works for 
small sample sizes or in the presence of outliers. This approach is based on the fact that 
microarray expression data are generally distributed according to a log-normal distribu-
tion [10]. Note that the parametric method requires strong assumptions but is largely 
faster than the non-parametric approach.

ComBat-Seq, also implemented in the R library sva, is based on a similar mathematical 
framework, where normal distributions are replaced by negative binomial distributions, 
to better reflect the statistical behavior of RNA-Seq raw counts data [11].

We recall the details of the mathematical models of ComBat and ComBat-Seq in 
Table 1.

We introduce in this article pyComBat, a new Python tool implementing ComBat 
(function pycombat_norm) and ComBat-Seq (function pycombat_seq), following the 
same mathematical frameworks. Note that the term “pyComBat” implicitly refers to 
the function pycombat_norm (resp. pycombat_seq) when compared to ComBat (resp. 
ComBat-Seq). In comparison to both the R implementation and the existing Python 
implementation of ComBat in the single-cell analysis library Scanpy [12], we show that 
pyComBat yields similar results for adjusting for batch effects in microarray data, but 
is generally faster, in particular for the usually slow, but more loose, non-parametric 
method. Similarly, in comparison to the R implementation, we show that pyComBat 
yields identical results for adjusting for batch effects in RNA-Seq data, and is generally 
faster. To our knowledge, it is the sole Python implementation of ComBat-Seq.

Implementation of pyComBat
pyComBat is a Python 3 implementation of ComBat and ComBat-Seq. It mostly uses 
generic libraries like Pandas [13] or NumPy [14] to mimic ComBat and ComBat-Seq, fol-
lowing the exact same mathematical framework.

Two important features are not directly related to the performance of the software 
but are of utmost importance. First, pyComBat is available as an open-source software 
under a GPL-3.0 license, which means anyone can use, modify, distribute and share 
it. Opening pyComBat to the bioinformatics Python community is the best way for 
maintaining and improving it, while increasing its robustness. Second, the reliability 

Table 1 Details of the mathematical models of ComBat and ComBat‑Seq

ygij denotes the expression value for gene g in sample j  from batch i  , αg denotes a gene‑wise baseline expression level, Xj 
is a vector of covariates for sample j  , βg is the vector of corresponding regression coefficients for gene g , γgi is the additive 
(impacting the mean) batch effect and φgi is the multiplicative (impacting the variance) batch effect

ComBat model ComBat-Seq model

ygij ∼ Normal(µgi;φgi) ygij ∼ NegativeBinomial(µgij;φgi)

µgi = αg + Xjβg + γgi logµgij = αg + Xjβg + γgi

Var(ygij) = φgi Var(ygij) = µgij + φgiµ
2
gij
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of pyComBat has been thoroughly checked, using a bench of unit tests (code cover-
age measured at 88% with Python module “coverage”) serving both as functional tests 
(to ensure the proper functioning of each submodule) and as non-regression tests (to 
ease maintenance).

Results: comparing pyComBat with ComBat and ComBat‑Seq
Datasets used and preprocessing

For software validation, we created two microarray and two RNA-Seq meta-datasets 
from public data: one on Ovarian Cancer (6 microarray datasets), one on Multiple 
Myeloma (4 microarray datasets), one on Breast Cancer (originally used for the vali-
dation of ComBat-Seq [11], 2 RNA-Seq datasets) and one on Colon Cancer (2 RNA-
Seq datasets) All meta-datasets are described in more detail in Table 2.

Microarray data were normalized with the rma function from the affy R package 
(v.1.68.0) [15] which applies a log2 transformation and ensures the normal distribu-
tion of normalized data, while the raw counts were directly acquired for RNA-Seq 
data as suggested in the ComBat-seq documentation [11].

We then compared

• ComBat, Scanpy’s implementation of ComBat and pyComBat on the microarray 
datasets on one hand,

• ComBat-Seq and pyComBat on the RNA-Seq datasets.

for (i) efficacy for batch effect correction and (ii) computation time.

Table 2 Composition of each meta‑dataset used for benchmarking pyComBat, Scanpy’s 
implementation of ComBat, ComBat and ComBat‑Seq

Dataset Reference(s)

Ovarian Cancer (microarray)

GSE18520 [22]

GSE66957

GSE69428 [23]

GSE9891 [24]

GSE26712 [25, 26]

GSE38666 [27, 28]

Multiple Myeloma (microarray)

GSE5900 [29–31]

GSE66291 [32, 33]

GSE68891

GSE122231 [34, 35]

Breast cancer (RNA-Seq)

GSE83083 [36]

GSE59765 [37]

Colon cancer (RNA-Seq)

phs000892.v6.p1 [38]

phs000178.v11.p8 [39]
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Batch effect correction

As an implementation of the ComBat and ComBat-Seq algorithms, pyComBat is 
expected to have similar, if not identical, power in terms of batch effects correction. This 
is confirmed in Fig. 1A, which shows the distribution of relative differences between the 
outputs of ComBat and pyComBat, on the Ovarian Cancer dataset (mean = −  1.06 × 
 10–7, 95% CI = [− 1.28 ×  10–3, 1.32 ×  10–4]). As expected, the differences are distributed 
closely around zero with a relative squared error of 1.7 ×  10–7, suggesting that the vari-
ability relative to the use of ComBat or pyComBat is negligible compared to the intrinsic 
variability of the data.. The slight variability can be explained by the difference between 
optimization routines in R and Python (Numpy): while small differences in the fitted dis-
tribution parameters have little to no impact for the vast majority of data points, they 
may be amplified by data adjustment for data points located far away in the distribution 
tails.

Additionally, both ComBat-Seq and pyComBat produce the exact same output on the 
Breast Cancer and Colon Cancer datasets. Despite the aforementioned differences in 

Fig. 1 Performance of pyComBat vs. Combat vs. Scanpy’s implementation of ComBat. A Distribution of the 
relative differences between the expression matrices corrected for batch effects, respectively by ComBat and 
pyComBat (parametric version), on the Ovarian Cancer dataset. The vertical dotted line corresponds to zero. B 
Computation time in seconds for pyComBat, Scanpy and ComBat for the parametric method, on the Multiple 
Myeloma dataset. The y‑axis is in a log scale. C Computation time in seconds for pyComBat, Scanpy and 
ComBat for the parametric method, on the Ovarian Cancer dataset. The y‑axis is in a log scale. D Computation 
time in minutes for pyComBat (left) and ComBat (right) for the non‑parametric method, on the Ovarian 
Cancer dataset. The y‑axis is in a log scale
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optimization routines between R and Python, the slight variations in the fitted distribu-
tion parameters are leveled out by rounding to integers during data adjustment as both 
tools output adjusted integer counts. Given the long-tailed nature of the negative bino-
mial distribution, one would expect that even slight variations in parameter values can 
impact data points far in the distribution tail, a phenomenon completely absent in our 
experiments.

To sum up, it is highly unlikely to obtain such similar results unless pyComBat imple-
ments the same algorithms as ComBat and ComBat-Seq.

Computation time

Computation time is evaluated by running pyComBat (resp. Scanpy’s implementation 
of ComBat and ComBat itself ) respectively 100 times on both microarray datasets pre-
sented in Section “Results: comparing pyComBat with ComBat and ComBat-Seq”, with 
the parametric approach. As Scanpy doesn’t handle the non-parametric approach, only 
ComBat and pycombat_norm have been tested with it, on the Ovarian Cancer dataset. 
As for pycombat_seq and ComBat-Seq, they have been run respectively 50 times on the 
Breast Cancer dataset and 20 times on the Colon Cancer dataset. The reduced number 
of runs on RNA-Seq datasets is due to the longer, and less variable, computation times.

Owing to Python (Numpy) efficiency in handling matrix operations and matrix 
manipulations as well as thorough optimization of our code, pyComBat is as fast or even 
faster than ComBat. The parametric version of the pyComBat performs 4–5 times as fast 
as ComBat, and around 1.5 times as fast as the Scanpy implementation of ComBat, in 
terms of computation time (Fig. 1B, C), on both datasets.

Similar results are observed with the non-parametric version (Fig. 1D), which is inher-
ently more time consuming, but also less dependent on the distribution of the data. In 
this case, pyComBat is also approximately 4–5 times faster than ComBat, going from 
more than an hour to around 15 min.

Finally, pyComBat appears to be 4–5 times faster than ComBat-Seq on both RNA-Seq 
datasets (Fig. 2A, B).

Fig. 2 Performance of pyComBat vs. ComBat‑Seq. A Computation time in seconds for pyComBat and 
ComBat‑Seq, on the Colon Cancer dataset. B Computation time in seconds for pyComBat and ComBat‑Seq, 
on the Breast Cancer dataset
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Downstream analysis

The main goal of batch effect correction in transcriptomic is to produce unbiased and 
more powerful downstream analysis. We show here that the slight differences in cor-
rected gene expression between ComBat and pyComBat have little to no impact on the 
output of differential gene expression analysis. Such an analysis is not needed on our 
RNA-Seq datasets, as ComBat-Seq and pyComBat output the exact same adjusted count 
matrix.

We have applied differential gene expression analysis on the Ovarian Cancer dataset, 
to compare groups based on sample types: Primary tumors against Normal tissues. Both 
ComBat and pyComBat corrected data have been analyzed using the Limma R package 
(v3.56.2) [16], comparing 62 Normal tissue and 615 Primary tumor samples. As shown 
in Fig.  3, the differences in batch effects corrections have a small impact on the log-
FoldChange differences (mean = − 1.02·×  10–4, 95% CI = [− 1.15·×  10–3, 7.88·×·10–4]) 
between both differential analyses. Moreover, with usual thresholds found in the lit-
erature (i.e. logFoldChange > 1.5 and fdr < 0.05), the selected genes are the same, which 
suggests that ComBat and pyCombat can be used interchangeably before downstream 
analyses.

Discussion and conclusion
We present pyComBat, a new Python implementation of ComBat and ComBat-Seq, 
the most commonly used software for batch effects correction on high-throughput 
molecular data. Our implementation offers the same correcting power, with shorter 
computation time for the parametric method compared to other implementations, and 
significantly shorter time for the time-consuming non-parametric version compared to 
the original R implementations. This reduced computing time opens perspectives for a 
more generic use of the non-parametric approach to a larger range of datasets.

As ComBat and pyComBat (pycombat_norm) assume the normal distribution of the 
input data, data processing should comply with this assumption. Microarray raw data 

Fig. 3 Differences of logFoldChange between ComBat and pyComBat corrected data for the Ovarian 
microarray dataset, for a differential expression analysis between primary tumor and normal tissue samples 
using Limma
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generally follow a log-normal distribution, and R’s rma function applies a log-transfor-
mation after the normalization step, which ensures the normal distribution of the input 
data. However, other normalization tools, e.g. MAS5, do not log-transform the data. It is 
up to the user to check the distribution of their data and eventually apply a transforma-
tion accordingly. ComBat-seq and pyComBat (pycombat_seq) both work on data that 
follow a negative binomial distribution, which is the distribution of raw counts in RNA-
Seq data. No preprocessing of the raw counts is thus needed.

Despite the historical prevalence of R, Python is gaining momentum in the bioinfor-
matics landscape. Python is a general-purpose programming language, widely used in 
fields related to bioinformatics: data science, machine learning and AI, orchestration, 
visualization, etc. The versatility and wide adoption of Python eases interoperability of 
bioinformatics tools with tools from other domains of expertise. We believe that this 
interdisciplinary capabilities, along with its general-purpose abilities, gives Python a 
substantial edge over R, targeted at statistical applications, to grow as the language of 
choice for bioinformatic tools. By contributing to a single-language unified ecosystem, 
we hope to eliminate the need to interface several languages (typically R and Python), 
a common source of technical difficulties and of computational inefficiency. Workflow 
languages (such as Snakemake [17] or Nextflow [18]) and interoperability libraries (such 
as rpy2 [19]) still need to translate and copy data from one language to the other. This is 
a source of inefficiency and of limitations—depending on the supported data formats—
especially when the analysis goes back and forth between languages. We thus advocate 
the necessity to port reference tools from R to Python. Sign of this trend, state-of-the-art 
tools have been directly developed in Python (e.g. lifelines [20], a library dedicated to 
survival analysis, scanpy [12] (a library dedicated to the analysis of single-cell omic data) 
or quickly ported in Python from R (e.g. harmony [21], an R library for integrating single 
cell data, DESeq2, an R library for differential expression analysis).

Furthermore, porting a tool from one language to another provides an opportu-
nity window to improve both functionality and performance. For instance, pyComBat 
improves over ComBat-Seq by supporting reference batches.

The recent advent of large language models (LLMs) with coding capabilities, such as 
Starcoder, GPT4 or GitHub Copilot, represent a great opportunity to accelerate this 
porting process. Yet, human intervention remains necessary:

• to ensure the correctness of the ported code. Beyond hallucinations, LLMs remain 
statistic-based prediction models, and may thus introduce errors in the implementa-
tion, at the risk of changing the mathematical logic;

• to take full advantage of the performance and functionality improvement opportu-
nity window. For instance, ComBat-Seq code is a mix of R and C++, and porting it 
to Python required adapting the C++ code to interface with Python instead of R.

Note however that the work on pyComBat was undertaken before the wide diffusion 
of LLM-based coding tools.

We have attached importance to making the software open source, coupled with com-
prehensive documentation. We built a robust set of test cases, in an effort to encour-
age larger participation from the community. We believe that this will be benefiting the 
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Python bioinformatics community and opening the way towards the translation of other 
widely used software from R to Python.
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