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Abstract 

Background: The rapid emergence of single‑cell RNA‑seq (scRNA‑seq) data pre‑
sents remarkable opportunities for broad investigations through integration analyses. 
However, most integration models are black boxes that lack interpretability or are hard 
to train.

Results: To address the above issues, we propose scInterpreter, a deep learning‑based 
interpretable model. scInterpreter substantially outperforms other state‑of‑the‑art 
(SOTA) models in multiple benchmark datasets. In addition, scInterpreter is extensible 
and can integrate and annotate atlas scRNA‑seq data. We evaluated the robustness 
of scInterpreter in a variety of situations. Through comparison experiments, we found 
that with a knowledge prior, the training process can be significantly accelerated. 
Finally, we conducted interpretability analysis for each dimension (pathway) of cell 
representation in the embedding space.

Conclusions: The results showed that the cell representations obtained by scInter‑
preter are full of biological significance. Through weight sorting, we found several new 
genes related to pathways in PBMC dataset. In general, scInterpreter is an effective 
and interpretable integration tool. It is expected that scInterpreter will bring great 
convenience to the study of single‑cell transcriptomics.
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Introduction
Single-cell RNA sequencing (scRNA-seq) is a technique that can quantitatively measure 
cell expression at single-cell resolution [1]. Advances in single-cell sequencing technol-
ogy have greatly accelerated the identification of new cell types, the inference of gene 
regulatory networks, and the understanding of cell differentiation processes [2]. Single-
cell sequencing has also been extensively studied in areas such as development biology 
[3], nervous system [4], immune system [5], and cancer therapy [6]. The efforts of single-
cell Cell Atlas have resulted in massive datasets containing tens of thousands of cells, 
with the goal of mapping a comprehensive landscape of biological development [7] and 
aging [8]. Through initiatives such as the Human Cell Atlas [9], the Macaque Cell Atlas 
[10], the Mouse Cell Atlas [11], and the Fly Cell Atlas [12], global efforts to conduct in-
depth analysis of different datasets generated by different species have greatly deepened 
and broadened our understanding of the activities of cell life across various species [13].

In recent years, with the rapid commercialization of single-cell technology, a large 
amount of scRNA-seq data has been available in public databases [14–16]. Integrating 
private and public data into cohort studies is a growing trend [17]. However, this process 
inevitably encounters batch effects, which are technical noise that can mask biological 
information. Effectively integrating public data from different technologies or platforms 
is a challenge [18]. Researchers are now able to analyze increasingly diverse and complex 
samples. The comprehensive analysis of these datasets from different tissues, develop-
ment phases, platforms, across species provides an unprecedented opportunity to build 
a comprehensive landmark of cellular behavior. Three of the most fundamental ques-
tions in biology are how individual cells differentiate to form tissues, how tissues coor-
dinate with each other, and which gene regulatory mechanisms support these processes. 
Single-cell sequencing technology has opened up a new way to solve the above problems. 
However, translating observational studies into causal mechanism models brings new 
challenges and requires an organic combination of theoretical, experimental and com-
putational frameworks [19]. Therefore, an integration method that can efficiently and 
accurately coordinate rich data sources is critical to accelerating life science research.

We want to highlight that the rapid accumulation of single-cell datasets presents sev-
eral major challenges to the integration task. Firstly, batch effects can seriously obfuscate 
biological information. Therefore, effective integration tools are needed to remove plat-
form technology factors without over-correction and to preserve rare cell populations. 
Second, as the sample size of each dataset grows dramatically, resulting in datasets con-
taining tens of thousands of cells, the integration method needs to be scalable. Third, 
different sequencing platforms have unique biases, and it is a challenge to effectively 
integrate the scRNA-seq data of multi-technology platforms with complex noise in real 
environments. Fourth, deep learning models are often considered black boxes and need 
to be trusted. Interpretable models can greatly alleviate this problem.

A growing number of computational tools have been proposed for integration tasks. 
Mutual nearest neighbor (MNN) is a batch correction method that identifies the mutual 
nearest neighbors between cells in different batches and uses them to adjust the expres-
sion values of cells in each batch [20]. MNN is an effective tool for removing techni-
cal factors in various scenarios. However, due to the need to compute highly variable 
or entire genome features, MNN cannot be applied to a large number of single-cell 
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integration tasks. BBKNN  is a graph-based data integration algorithm that performs 
batch correction at the neighborhood graph inference step. It is designed to align multi-
ple types of single-cell datasets generated by multiple technologies with high efficiency 
and accuracy [21]. BBKNN is a method that uses features after linear dimensionality 
reduction, which alleviates the problem that MNN cannot handle large amounts of data. 
Harmony is an algorithm that projects single cells into a shared embedding space, where 
cells are grouped by cell type rather than by dataset-specific conditions. It corrects for 
batch effects and preserves dataset-specific populations [22]. Harmony is a sensitive 
approach to correct data across multiple platforms. However, in some cases, it can lead 
to over-integration. Scanorama is an algorithm that identifies and merges the shared cell 
types among all pairs of datasets and accurately integrates heterogeneous collections of 
scRNA-seq data. It is sensitive to subtle temporal changes within the same cell lineage, 
successfully integrating functionally similar cells across time series data [23]. Scano-
rama is a tool that runs on multiple cores to speed up its computation. However, it still 
requires a lot of memory and time to process large amounts of large cell data. Addition-
ally, it can not interpret the meaning of each dimension in the embedded space.

To address these above challenges simultaneously, we proposed scInterpreter to 
align multiple types of single-cell datasets generated by multiple technologies with 
high efficiency and accuracy. Firstly, scInterpreter is a deep learning-based model that 
can process large amounts of data through mini-batch strategy. Secondly, the embed-
ding dimension is set to the number of pathways and constrain the decoder weights by 
prior knowledge, which allows for the estimation and explanation of cell function based 
on the amount of expression in each dimension. The performance of scInterpreter has 
been demonstrated in multi-technology and other real scenarios through a wide range 
of experiments. Compared to other state-of-the-art methods, scInterpreter achieves bet-
ter biological variation preservation performance during the integration process while 
enabling the integration and annotation of atlas-level cells. We show that scInterpreter 
is broadly applicable to integrating datasets across different samples, platforms, and cell 
types. scInterpreter is a robust and efficient integration of samples from many different 
platforms under the interference of multiple perceived noise. For interpretability, each 
dimension of the cell can represent a pathway, and through different embedding expres-
sions, the relationship between gene-pathway-phenotype can be established to provide 
guidance for novel biological discovery.

Results
Model overview

Different studies that measure single cell expression have a specific batch effect, which 
can obscure meaningful biological information. To address this problem, we propose 
scinterpreter, an interpretable deep learning model that can learn the unified representa-
tion of cells in the embedding space (Fig. 1a). scInterpreter is a VAE-based generation 
model that consists of an Encoder and a decoder. The encoder is designed to remove the 
batch effects, and the generator simulates this process. We design a constraint for the 
weight of the decoder so that it is similar to that of the pathway-gene adjacent matrix 
in the knowledge database. Specifically, we treat the L1 or L2 norm distance of prior 
knowledge and decoder parameters as a loss function Lk in the training process and 
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optimize it (see Methods). After training, samples (cells) from the original domain can 
be transformed into a unified space to form a complete dataset for downstream analysis. 
For more details, please refer to Methods.

Quantitative benchmarking between scInterpreter and SOTA methods

To comprehensively evaluate scInterpreter and other SOTA methods, we applied a wide 
range of evaluation metrics across multiple tissues of the mouse scRNA-seq atlas [24]. 
Specifically, BBKNN [21], Harmony [22] and Scanorama [23] were selected as the base-
line methods. ARI, NMI, ASW, IsoF1 and Silhouette are adopted as the evaluation met-
rics. Tissues of Heart, Kidney, Liver, Lung, Marrow, Spleen and Trachea which generated 

Fig. 1 a model overview. b results of scInterpreter, BBKNN, Harmony, Scanorama in multiple tissues of the 
mouse atlas
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by two kinds of technology including FACS [25] and Drop-seq [26, 27] are selected as 
the benchmark datasets.

From the results, we can find that scInterpreter achieved competitive performance 
compared with baselines in almost each tissue (Fig. 1b, Additional file 1: Figs. S1, S2). 
All methods can remove technology effects and integrate scRNA-seq data in most cases. 
scInterpreter has the ability to preserve the rare cell population. Specifically, in the heart 
dataset (Additional file 1: Fig. S3a), all methods cluster Cardiac muscle cell, endothelial 
cell, fibroblast, leukocyte, endocardial cell, and myofibroblast cell into isolated groups, 
but cannot find myofibroblast cell. In kidney dataset (Additional file 1: Fig. S3b), scInter-
preter and Scanorama can separate almost all types of cells, especially they can identify 
endothelial cell and mesangial cell but the other two methods failed. In Spleen dataset 
(Additional file 1: Fig. S4a), the clusters generated by scInterpreter are tighten but the 
clusters generated from other 3 methods are confused together. In the Trachea data-
set (Additional file 1: Fig. S4b), scInterpreter successfully aggregates epithelial cells into 
a single group, while other methods disperse epithelial cells into multiple clusters. The 
above results show that scInterpreter can not only effectively integrate scRNA-seq data 
from different sequencing technologies, but also can retain unique cell types in each 
batch.

scInterpreter can accurately integrate and annotate whole‑organism cell atlases

We designed a more challenging task where we combined all the tissues as a mouse 
scRNA-seq atlas. These data were generated by FACS and Drop-seq techniques. There is 
not only a technical confusion between the two batches, but also differences in cell types 
(Fig. 2c). Before integration, there was a strong batch effect between multiple datasets 
(Additional file 1: Fig. S5a), scInterpreter successfully removed the batch effect (Fig. 2a, 
Additional file 1: Fig. S5a), and integrated cells from the same type into the same clus-
ters. T cells and B cells, common immune cells and peripheral blood cells, have been 
detected in many tissues. scInterpreter reasonably integrates T cells and B cells from 
multiple tissues together. In addition, T cell-associated subpopulations were also clus-
tered together (Fig. 2b).

Based on the embedding generated by scInterpreter, we trained a KNN classifier to 
predict the cell types of Drop-seq and FACS as query by taking FACS and Drop-seq 
as reference, respectively. The confusion matrix of the prediction results was shown in 
(Fig. 2d). From the accurate cell annotation results, we can deduce that the cell repre-
sentation generated by scInterpreter is reasonable. These results prove that scInterpreter 
is a extensible tool that can process atlas-level data, which greatly expands the scope of 
application of scInterpreter.

scInterpreter can robustly integrate multi‑tech scRNA‑seq data

To further evaluate the performance of scInterpreter on multi-batch datasets, we 
selected a pancreas scRNA-seq dataset generated by six kinds of techniques as the 
benchmark [28–32]. Before integration, strong technical noise confused the biologi-
cal information, and it was difficult to cluster different types of cells. After scInter-
preter integration, different types of cells are clearly separated (Fig. 3a, Additional file 1: 
Fig. S6a).
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To further evaluate the robustness of scInterpreter, we performed comparison experi-
ments on the original data by sampling counts, sampling cells, and sampling cell types, 
respectively. Specifically, for sampling counts, 50% of the counts in the cell expres-
sion matrix were randomly lost. Such noise is fatal for single-cell sequencing because 
the expression of potential marker genes may be lost. Thus it is difficult to distinguish 

Fig. 2 a we visualized the integration results from scInterpreter of mouse altas with UMAP. Cells are colored 
by the Tissues (the first column) and cell type (the second column). b UMAP embeddings of the scInterpreter 
results on T cell and B cell. c cell number statistics of mouse atlas. d confusion matrix of KNN classifier on 
scInterpretercell embedding
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different types of cells. Under such conditions, scInterpreter can still clearly characterize 
different types of cells. BBKNN, Harmony and Scanorama confuse the cells of the endo-
crine glands (Alpha, Beta, Gamma, Delta) (Additional file 1: Fig. S6b). For sampling cells, 
50% of the cells were randomly lost. Deep learning-based methods often require a huge 
amount of data to train a model to achieve excellent performance. This situation will 
greatly impact the performance of deep learning-based methods. But results show that 
scInterpreter is still easy to converge (Additional file 1: Fig. S7a). Finally, we sampled cell 
types. We discarded ductal, acinar, alpha, beta, delta and gamma from Celseq, Celseq2, 
inDrop, Smarter, Smartseq2 and Fluidigmc1 respectively. From this scenario, we evalu-
ated the robustness of the model (Additional file 1: Fig. S7b).

The prior knowledge accelerates the training of the scInterpreter

The prior knowledge (pathway-gene adjacency matrix) is obtained from previous 
wet experiments. Each pathway is connected to several associated genes, and these 

Fig. 3 a we visualized the integration results from scInterpreter on the human pancreas datasets with UMAP. 
Cells are colored by the batch (the first row) and cell type (the second row). b we visualized the integration 
results from scInterpreter on the human pancreas datasets with UMAP. The results of with wiki (the first row) 
and without any knowledge database (the second row)
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connected genes contribute to the functional expression of the pathway (Fig.  1a). We 
assume that the weight of the neural network obtained through training is similar to the 
pathway-gene adjacency matrix to a certain extent. Then we can infer that the training 
process can be accelerated through the constraints of the prior knowledge. Based on this 
assumption, we carried out experiments on the pancreas dataset to determine whether 
to add the prior knowledge constraint or not. The results showed that after adding the 
prior knowledge, the model converged after only one epoch, and cell types were reason-
ably separated after four epochs. Without the prior knowledge constraint, the training 
process of the model became stable after 16 epochs (Fig. 3b). We can observe that the 
L1/L2 loss calculation added negligible time consumption. Additionally, we recorded the 

Fig. 4 a we visualized the results from raw data and scInterpreter on PBMC dataset with UMAP. Cells are 
colored by the batch (the first row) and cell type (the second row). b plots of cells in 2 dimension of Immune 
and Cell differentiation‑related pathway. c we visualized the integration results from scInterpreter. Cells are 
colored by cell type. Left is based on Immune pathway and right is based on Cell differentiation pathway. d 
UMAP plots of Immune pathway expression in cells. e. Dot plot of Immune pathway expression in different 
cell types
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time of baseline methods, including BBKNN, Harmony, and Scanorama (Table S1). We 
can see that BBKNN achieved the best performance in speed comparison. However, it 
cannot mix Alpha and Beta cells well (Additional file 1: Fig. S6a). Besides, Harmony and 
Scanorama achieved competitive performance, even though they took a long time.

The cell embedding of the scInterpreter is full of interpretability

Each dimension of the cell embedding generated in bottle neck of scInterpreter repre-
sents a pathway. Through it, we can understand the phenotype and function of a cell. We 
performed analysis On PBMC data. There exist strong batch effects between Ctrl and 
Stim data before integration. After integration by using the wiki knowledge database, 
scInterpreter successfully eliminated the technical noise (Fig. 4a).

We found that immune-related pathways could clearly distinguish different cell types, 
even if only two dimensions were selected. For example, the cell type can be spited into 
3 groups by using 2 pathways of INFILTRATION and RESPONSE_TO_SARSCOV2 in 
immune-related pathways. But when cells were represented by differentiation-related 
pathways, all cells were confused (Fig.  4b). Then we select and concatenate all 12 
immune-related pathways in bottle neck layer as the cell representation, each cell type 
can be clearly grouped and displayed in the UMAP. But when we used the same method 
to represent cells through the cell differentiation-related pathways, B cells, B activated 
cells, and pDC are all confused in the T-cell-associated community (Fig. 4c). This may be 
because cytokine stimulation is strongly associated with immune-related pathways.

In addition, we found that different pathways are expressed differently in different cell 
types, and these pathways can also easily distinguish cell types (Fig.  4d, e, Additional 
file 1: Fig. S8a). For example, pathway SARS_CORONAVIRUS includes many IFN family 
genes, which are obviously associated with DC cells.

Moreover, the weight of the decoder between pathway and genes reflects the contribu-
tion of genes to modules to a certain extent. We saved the highest weights and the high-
est absolute weights of pathway CONTROL_OF_IMMUNE and analyzed them one by 
one. We found that almost all of them were immune-related [33] but not in the immune 
pathway dataset of the wiki database (Table S2, Table S3). This result implies that scIn-
terpreter can not only use prior knowledge to accelerate training but also learn knowl-
edge that does not exist in the prior database.

The pathway-gene matrix can be used as a mask in the decoder and it can also be used 
in the both encoder and decoder. We tested these strategies individually to get the opti-
mal solution. From the results, it can be seen that the method that passes the l2 con-
straint in the decoding part is the best (Additional file 1: Figures S9a, S9b).

Discussion
With the rapid development of single-cell sequencing technology, a large amount of 
single-cell data has been accumulated. It is a challenge to efficient integrate these data. 
Besides, how to take full use of the prior knowledge into the model to accelerate the 
training process and interpret the results is urgent.

Here we propose scInterpreter, a generative deep learning model that combines prior 
knowledge to integrate large amounts of scRNA-seq data. First, we compared scInter-
preter with the state-of-the-art (SOTA) model both quantitatively (broad evaluation 
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metrics) and qualitatively (UMAP plots) in multiple tissues of mice. scInterpreter 
achieved competitive performance compared with baseline methods. Secondly, we car-
ried out atlas-level integration. ScInterpreter reasonably integrated mouse single-cell 
transcriptome maps and accurately annotated cell types. Then, to evaluate the perfor-
mance of scInterpreter in multiple batches and under multiple conditions, we applied 
scInterpreter on pancreas data which composed of six techniques and various sampling 
manners. We found that the prior knowledge greatly accelerates the training speed and 
shortens the training time. Finally, we evaluated the interpretability of scInterpreter. 
scInterpreter is indeed able to obtain highly interpretable cell embedding and weight 
matrices. In summary, we believe that scInterpreter is a powerful computational tool for 
integrating scRNA-seq data.

However, there are still some drawbacks that need to be addressed. Firstly, selecting 
a suitable database for the tissue or organ under study is an important challenge. Sec-
ondly, the pathway-gene relationship in the knowledge base is often incomplete or faulty, 
and we need to find a more general way to incorporate prior knowledge into neural net-
works. The mask method makes us fully believe in the knowledge database, and the con-
straint of L norm makes the weight of the pathway-gene relationships all 1. Finally, we 
need to carefully analyze the results of predictions that conflict with prior knowledge.

Methods
scInterpreter model

The architecture of scInterpreter can be seen in Fig. 1a which consists of an Encoder E 
and a Decoder D . The aim of E is to encode sample x from different batches into embed-
ding space in a non-linear way, and the aim of D is to reconstruct x from the embedding 
representation from bottle neck layer.

The aim of scInterpreter is to maximize the log-likelihood of the observed single-cell 
data (x)

LELBO(x) can be further decomposed into two terms:

The purpose of the first item is to minimize the distance between the output of 
decoder x′ and the input x . The second term is the regularization term. The purpose 
of it is to minimizes the Kullback-Leibeler divergence between posterior distribution 
N µ, σ 2  and prior distribution N (0, 1) of latent representations z.

In order to make the parameters of the decoder sparse and similar to the pathway-
gene bipartite adjacency graph in the knowledge database, we apply the L1/L2 norm reg-
ularization to constraint the decoder:

logp(x) = log

∫

z
p(x, z)dz ≥ Eq(z|x)

[
log

p(x, z)

q(z|x)

]
= LELBO(x)

LELBO(x) = Eq(z|x)[logp(x|z)]− DKL(q(z|x)||p(z))

Lk1 = �wD ∗ Â�1

Lk2 = �wD ∗ Â�2
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where wD represents the weights of the decoder, Â represents pathway-gene adjacency 
matrix, * represents the Hadamard product. When training the model, we use the Â as 
prior information to constrain wD . We assume that Â includes most of the potential rela-
tionships between pathways and genes. Given this assumption, we construct a regulari-
zation term Lk1 or Lk2 to penalize wD.

Baseline methods

Harmony: Harmony is an algorithm that projects single cells into a shared embedding 
space, where cells are grouped by cell type rather than by dataset-specific conditions. It 
corrects for batch effects and preserves dataset-specific populations.

Harmony (0.0.9) is applied in current research.
BBKNN: BBKNN is a graph-based data integration algorithm that performs batch cor-

rection at the neighborhood graph inference step. It is designed to align multiple types 
of single-cell datasets generated by multiple technologies with high efficiency and accu-
racy. BBKNN (1.5.1) is applied in current research.

Scanorama: Scanorama is an algorithm that identifies and merges the shared cell 
types among all pairs of datasets and accurately integrates heterogeneous collections 
of scRNA-seq data. It is sensitive to subtle temporal changes within the same cell line-
age, successfully integrating functionally similar cells across time series data. Scanorama 
(1.7.3) is applied in current research.

Integration metrics

We use a wide range of metrics including ARI, NMI, ASW, IsoF1 and Silhouette to eval-
uate scInterpreter and other baseline models.

ARI (Adjusted Rand Index):
ARI measures similarity by calculating the distribution of logarithmic points in the 

results of two clusters. The value range of ARI is [-1, 1], and the closer the value is to 1, 
the more similar the two clustering results are. Rand Index could be defined as follows:

where C represents the true label and K  represents the cluster label. Define a as the 
number of instance pairs that are divided into the same class in C and the same cluster 
in K  . Define b as the number of instance pairs that are divided into different classes in C 
and into different clusters in K .

where E(RI) represents Expectation of RI.
NMI (Normalized Mutual Information):
NMI measures similarity by calculating mutual information of two cluster results and 

performing normalization. The value range of NMI is [0, 1], and the closer the value is to 
1, the more similar the two clustering results are.

RI =
a+ b(
n
2

)

ARI =
RI − E(RI)

max(RI)− E(RI)
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where P and T  are categorical distributions for the predicted and real clustering, I is the 
mutual entropy, and H is the Shannon entropy.

ASW (Average Silhouette Width):
ASW evaluates respect to cell type labels, where a higher score means that cells are 

closer to cells of the same cell type. As ASW lies between − 1 and 1, we rescaled the 
score by cell type.

IsoF1 (isolated label F1)

Isolated label F1 is developed to measure the ability of integration methods to preserve 
dataset-specific cell types. Isolated label F1 ranges between 0 and 1, where 1 shows that 
all cells of dataset-specific cell types are captured in separate clusters.

Silhouette

The Silhouette score is a metric used to evaluate the effect of clustering. It combines two 
factors, the degree of cohesion and the degree of separation, and can be used to evaluate 
the influence of different algorithms on the clustering results on the basis of the same 
original data. The value range of Silhouette score is [-1, 1].

where a represents the average intra-cluster distance and b represents the average 
nearest-cluster.
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