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Abstract 

Protein ubiquitination is a critical post-translational modification (PTMs) involved 
in numerous cellular processes. Identifying ubiquitination sites (Ubi-sites) on proteins 
offers valuable insights into their function and regulatory mechanisms. Due to the cost- 
and time-consuming nature of traditional approaches for Ubi-site detection, there 
has been a growing interest in leveraging artificial intelligence for computer-aided Ubi-
site prediction. In this study, we collected experimentally verified Ubi-sites of human 
proteins from the dbPTM database, then conducted comprehensive state-of-the art 
computational methods along with standard evaluation metrics and a proper valida-
tion strategy for Ubi-site prediction. We presented the effectiveness of our framework 
by comparing ten machine learning (ML) based approaches in three different catego-
ries: feature-based conventional ML methods, end-to-end sequence-based deep learn-
ing (DL) techniques, and hybrid feature-based DL models. Our results revealed that DL 
approaches outperformed the classical ML methods, achieving a 0.902 F1-score, 0.8198 
accuracy, 0.8786 precision, and 0.9147 recall as the best performance for a DL model 
using both raw amino acid sequences and hand-crafted features. Interestingly, our 
experimental results disclosed that the performance of DL methods had a positive cor-
relation with the length of amino acid fragments, suggesting that utilizing the entire 
sequence can lead to more accurate predictions in future research endeavors. Addi-
tionally, we developed a meticulously curated benchmark for Ubi-site prediction 
in human proteins. This benchmark serves as a valuable resource for future studies, 
enabling fair and accurate comparisons between different methods. Overall, our 
work highlights the potential of ML, particularly DL techniques, in predicting Ubi-sites 
and furthering our knowledge of protein regulation through ubiquitination in cells.
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Introduction
In all eukaryotic cells, post-translational modification (PTM) of proteins takes place 
after the ribosome has translated the mRNA into the protein. PTM can change the 
structure, electrophilicity, and interactions between the proteins [1]. Often, PTMs on 
proteins are considered reversible or irreversible processes in cells. Nevertheless, revers-
ible PTMs play vital roles in extending the functional diversity of proteins and signif-
icantly affect the regulation of protein functions in eukaryotic organisms. PTMs have 
emerged as crucial molecular regulatory mechanisms that are utilized to regulate diverse 
cellular processes [2]. PTMs can alter the properties of a protein or lipoprotein by pro-
teolytic cleavages or by adding different functional groups to proteins during or after 
synthesis, such as phosphoryl, glycosyl, acetyl, and methyl groups to one or more amino 
acids in sequences [2]. The UniProt database currently lists over 600 known PTMs [3]. 
While PTM modifications have been identified in the past few decades, few have been 
fully characterized functionally [4]. PTMs can be found in various parts of the cell and 
participate in a wide range of biological processes, including DNA repair, gene expres-
sion, regulation and activation, cell cycle control, and signal transduction [2]. PTMs 
play significant roles in the structure and function of proteins and, as a result, regulate 
diverse molecular processes such as folding, localization, interactions, and degradation. 
[5]. Disorders in PTMs-dependent protein and lipoprotein regulation have been linked 
to the onset and progression of various diseases, including cancer, cardiovascular, renal, 
and neurodegenerative diseases [3, 6].

Ubiquitination was first reported by Gideon Goldstein as a polypeptide named ubiqui-
tous immunopoietic polypeptide (UBIP), which was isolated from bovine or human thy-
mus in 1975 [7]. Ubiquitination is a reversible PTM on proteins. Ubiquitin, a 76-amino 
acid protein, is covalently attached through an isopeptide bond between its C-terminal 
glycine and Nε lysine (K). This modification is highly conserved throughout eukaryotic 
organisms [8, 9]. Furthermore, ubiquitination of lysine in histone proteins can modify 
chromatin structure [10]. Previous studies have reported that ubiquitination modifica-
tion of H2A and H2B histone proteins plays a key role in regulating chromatin dynamics 
and gene transcription [9, 11]. This reversible reaction can affect protein concentration, 
folding, localization, and aggregation [12]. Ubiquitination can occur as monoubiquitin 
as well as polyubiquitin on lysine residues in the target protein, which can induce com-
plex topologies. However, monoubiquitination modifications occur more frequently and 
play important roles in various cellular processes [13]. Lysine-ubiquitinated proteins 
may be modified by ubiquitin-like molecules, such as the small ubiquitin-like modifier 
(SUMO) or neuronal precursor cell-expressed developmentally down-regulated protein 
8 (NEDD8). Furthermore, ubiquitinated proteins have been shown to be phosphorylated 
on serine, threonine, or tyrosine residues or acetylated on lysine residues, and each mod-
ification can significantly change the signaling pathway’s outcome [13]. Three enzymes, 
including an activating enzyme (E1), a conjugating enzyme (E2), and an ubiquitin ligase 
(E3), are involved in the ubiquitination process (Fig. 1). The ubiquitin can be separated 
from the protein through deubiquitinating enzymes (DUBs) [14]. Ubiquitination plays 
essential roles in nearly all aspects of eukaryotic biology and in many cellular processes 
such as proteasome and lysosome degradation, gene transcription, DNA repair and 
replication, intracellular trafficking, stress response, cell-cycle regulation, endocytosis 
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signaling, transcriptional regulation, virus budding, and subcellular localization [8, 9, 14, 
15]. The alteration of the ubiquitination system is closely related to cellular transforma-
tion, the immune response, and the inflammatory response. Therefore, the regulatory 
function of the ubiquitin–proteasome system plays a vital role in cellular homeostasis 
[15]. Disruption of this type of PTM can lead to cancer, autoimmunity, inflammatory 
disorders, diabetes, and neurodegenerative diseases [16, 17].

To identify ubiquitination and various kinds of PTM, three methods are used: mass 
spectrometry (MS), immunoprecipitation (IP), and proximity ligation assay (PLA) [18]. 
However, the MS method is considered a superior method for detecting, mapping, and 
quantifying ubiquitination in human proteins [3]. However, due to the costly and time-
consuming nature of these traditional approaches for detecting different types of PTMs 
and Ubi-sites [19], there has been a growing interest in leveraging artificial intelligence 
for computer-aided Ubi-site prediction.

Given the importance of the topic, it is surprising that  little research effort has been 
focused on Ubi-site prediction in human proteins with no agreement on their method-
ologies or evaluations, and therefore, there are no suitable tools for automating the pre-
diction process.

The main contribution of this article is to develop a benchmark for a fair comparison 
among different ML-based Ubi-site prediction models for researchers. Extensive experi-
ments were conducted to investigate the effects of both conventional machine learning 
(ML) and end-to-end deep learning (DL) models on Ubi-site prediction. Additionally, a 
hybrid approach was introduced that combines hand-crafted features with raw protein 
sequences as input for a deep neural network (DNN) architecture. To ease the predicted 
model comparison, we designed a benchmark with open-access datasets (collected 
from the dbPTM 2019 and dbPTM 2022 databases), standard evaluation metrics, and 
the proper validation strategy to avoid information leakage. The proposed benchmark 

Fig. 1  The cycle of reversible ubiquitination process
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is available on the GitHub repository (https://​github.​com/​mahdi​p72/​ubi) for other 
researchers to compare their work in a standard setting. We presented the effectiveness 
of our framework by comparing ten ML-based approaches in three different categories: 
feature-based conventional ML methods, end-to-end sequence-based DL methods, and 
hybrid feature-based DL methods. Overall, these contributions provide new insights 
into the use of ML approaches for predicting Ubi-sites and further advance our under-
standing of protein regulation through ubiquitination. The schematic flow of this work is 
presented in Fig. 2.

Related works

Several Ubi-sites have been identified through the advancement of the high-through-
put MS method. However, large-scale ubiquitination detection is costly, labor-intensive, 
and challenging. Therefore, a lot of attention has been paid to computational methods, 
such as traditional ML and DL, for predicting Ubi-sites in recent years. By analyzing 
existing experimental data via available PTM databases and identifying relevant fea-
tures, ML algorithms can significantly reduce costs and labor in detecting potential 
Ubi-sites in human proteins. Currently, there is no useful computational tool avail-
able to predict Ubi-sites for human data, despite the crucial need for a more cost- and 
time-effective alternative to experimental approaches. Nevertheless, for the prediction 
of ubi-sites in protein sequences across various species, ML approaches use different 
algorithms, such as random forest (RF) [20], extreme gradient boosting (XGB) [21], sup-
port vector machine (SVM) [22], K-nearest neighbor (KNN) [23], and others that we 
will briefly review. Tong and Ho [24] examined different features with various classifiers 
like SVM, Naïve Bayes, and KNN and concluded that the physicochemical properties 
(PCPs) with the SVM classifier obtained the best results. Radivojac et al. [25] developed 
the UbPred tool using a RF classifier to predict ubi-sites in Saccharomyces cerevisiae. 
In this study, for training the model, 157 Ub-sites were extracted from a database of 
ubiquitinated proteins via sequence and structural-based features. UbPred achieved the 
best results with an accuracy of 72%, and the area under the ROC curve at 80%. Cia 

Fig. 2  The flow diagram of this work

https://github.com/mahdip72/ubi
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et al. [26] employed multiple ML classifiers to identify ubi-sites based on the PCPs of 
amino acids in protein sequences. The models’ resilience and prediction accuracy were 
evaluated using fivefold cross-validation, and the results showed that EBMC, SVM, and 
LR algorithms have performed better than other methods [26] and EBMC has AUCs 
greater than or equal to 0.6. Another study [27] showed that the combination of amino 
acid composition (AAC) and the composition of k-spaced amino acid pairs (CKSAAP) 
features as input to the SVM classifier got 81.56% AUC in fivefold cross-validation and 
86% AUC via an independent test for Arabidopsis thaliana Ubi-sites. In recent years, 
DL algorithms, as more advanced techniques, have become increasingly popular for pre-
dicting Ubi-sites due to their success in handling large-scale data. For instance, DeepUni 
[14] proposed an algorithm based on a convolutional neural network (CNN) for pre-
dicting Ubi-sites using four different sequence-base features and PCPs and achieved 
a 0.99 AUC. Liu et  al. [28] developed a novel transfer DL method called DeepTL-Ubi 
for predicting Ubi-sites across multiple species. Their proposed model was trained and 
tested on data from several sources and demonstrated improved predictive performance 
for species with small sample sizes compared to other tools. Wang et al. [29] employed 
an improved word embedding scheme based on a transfer learning strategy, which was 
combined with a multilayer CNN to identify Ubi-sites in plant proteins. The proposed 
classifier achieved an AUC of 0.82, outperforming other ML-based methods. He et al. 
[30] utilized a multimodal deep architecture for identifying Ubi-sites based on three 
methods: raw protein sequence fragments, PCPs, and sequence profiles. Finally, the 
generative deep representations corresponding to these three modalities were merged 
to build the final model, which achieved a performance of 66.43% AUC. Using various 
sequence-base features, including binary encoding (BE), pseudo-amino acid composi-
tion (PseAAC), the composition of CKSAAP, and position-specific propensity matrices 
(PSPM), Cui et al. [31] developed an SVM-based algorithm on three datasets (Set1, Set2, 
and Set3). Next, LASSO was used to remove redundant feature information and select 
the optimal feature subset. The UbiSitePred [31] model demonstrated better predic-
tion performance compared to other evaluated methods through fivefold cross-valida-
tion. The model achieved AUC values of 0.9998, 0.8887, and 0.8481 and accuracy rates 
of 98.33%, 81.12%, and 76.90% for Set1, Set2, and Set3, respectively. In addition to the 
mentioned approaches, similar research has also employed DL techniques for protein 
classification. For instance, in reference [32], a deep RF algorithm was utilized to achieve 
96% accuracy in classifying golgi proteins. Moreover, in the paper [33], a classification 
model was developed to classify phage virion proteins. This model utilized the UniRep 
feature for protein sequence quantification and employed the LightGBM algorithm for 
evaluation.

Although  a few studies have been conducted on Ubi-site prediction in human pro-
teins [34, 35], there is no agreement on their methodologies or evaluations. Therefore, 
there are no suitable tools for automating the prediction Ubi-sites. In this study, a sig-
nificant amount of ubiquitination data was extracted from a publicly accessible database 
and processed to create a well-defined benchmark. These resources play a pivotal role in 
uncovering intricate patterns within the landscape of protein ubiquitination and lay the 
foundation for the development of innovative models aimed at predicting Ubi-sites. By 
employing advanced computational methods and algorithmic approaches, researchers 
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can delve into the complex interplay between ubiquitin molecules and their target pro-
teins. Understanding the importance of predicting Ubi-sites in the human species holds 
the potential to unravel key regulatory mechanisms that influence cellular processes 
ranging from protein turnover to signal transduction. The utilization of specific method-
ologies and algorithms in this context enables scientists to unravel the dynamic orches-
tration of PTMs, shedding light on how ubiquitination impacts health, disease, and the 
overall functioning of biological systems.

Methodology
Machine learning methods

ML is a rapidly growing field that has gained increasing attention from both academic 
and industrial research. Indeed, ML encompasses the employment of statistical tech-
niques and computational methodologies to autonomously discern patterns within 
data, subsequently refining a model or performance criterion through this acquired 
knowledge [36]. ML algorithms have been widely applied in various domains of biologi-
cal research, including the prediction of PTMs in proteins. The success of ML in these 
contexts is partly due to its ability to process large volumes of data and identify com-
plex patterns that may be difficult for humans to discern. In the past decade, the emer-
gence of DL has revolutionized whole fields related to artificial intelligence and led to 
the development of two main categories of ML techniques: conventional or classical 
approaches, which typically rely on handcrafted features and feature engineering, and 
end-to-end DNNs, which are capable of learning and extracting features from raw data 
(e.g., sequences of amino acids), eliminating the need for manual feature engineering. 
While both types of methods have their own strengths and limitations, the use of end-
to-end DNNs has become increasingly popular in recent years due to their ability to 
handle large and complex tasks and their ability to learn directly from the data.

Conventional methods

In our study, XGBoost [21], SVM [22, 37], KNN [38], RF [20], and ANN [39] have been 
utilized. In the following, a brief explanation of the main concept of each method has 
been provided.

XGBoost It is an ensemble learning algorithm based on gradient boosting and an opti-
mization model that combines a linear model with a boosting tree model. The algorithm 
learns a series of decision trees to classify the labeled training data. Each decision com-
prises a series of rules that semi-optimally split the training data. Successive trees that 
“correct” the errors in the initial tree are then learned to improve the classification of 
positive and negative training examples.

SVM It is a type of supervised ML algorithm that can be used for classification or 
regression tasks [40]. It works by finding the hyperplane in a high-dimensional space 
that maximally separates the different classes. The distance between the hyperplane and 
the nearest data points is known as the margin, and the goal of SVM is to maximize this 
margin. In the case of non-linearly separable data, SVMs can still be used by transform-
ing the data into a higher-dimensional space using a kernel function, which allows the 
data to be linearly separable in the higher-dimensional space. SVMs are particularly use-
ful for problems with high-dimensional data and can be effective in cases where there 
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are a limited number of training examples. They are also resistant to overfitting, mean-
ing that they generally perform well on unseen data. SVMs have been widely used in a 
variety of applications, including text classification, image classification, and bioinfor-
matics [37].

KNN This algorithm is a simple, non-parametric method used for classification and 
regression. It works by identifying the k number of training examples that are closest in 
distance to the new input point and assigning the label of the majority of those points 
to the new input. The distance can be calculated using any distance metric, such as the 
Euclidean or Manhattan distance. KNN is considered a lazy learning algorithm because 
it does not build a model but instead simply stores the training data and makes predic-
tions based on the similarity of the new input to the stored training examples. It is often 
used when the relationship between the features and the output is not well understood 
and can be effective for tasks such as image classification and text classification. How-
ever, KNN can be computationally expensive and may not scale well to large datasets 
[23, 38].

RF It is an ensemble learning method that combines the predictions of multiple deci-
sion trees to make a more accurate and stable prediction. It works by training a large 
number of decision trees on randomly selected subsets of the training data and using the 
average or majority vote of the individual trees to make a final prediction. Each tree in 
the forest is trained using a random subset of the features, which helps to reduce overfit-
ting and improve the generalizability of the model. RF is widely used for classification 
and regression tasks and is known for its good performance, robustness, and ability to 
handle large and complex datasets. It is also resistant to overfitting and can be used for 
feature selection, as the importance of each feature can be determined by how much it 
contributes to the decision made by the tree [20, 41].

ANN Inspired by the architecture and operation of the human brain, artificial neural 
networks (ANNs) are computer models made up of interconnected “neurons” that pro-
cess and transfer data. ANNs consist of multiple layers, with the input layer receiving 
the input data, the output layer producing the output, and one or more hidden layers in 
between. The weights of the connections between the neurons are adjusted during the 
training process, allowing the network to learn and adapt to new data. DNNs are able to 
learn and generalize patterns in data and are commonly used for tasks such as classifica-
tion, prediction, and clustering [39].

Deep learning methods

DL Based methods rely on raw data to process, meaning they extract features within 
their layers in an end-to-end fashion. In our study, we examine the effect of DNNs archi-
tectures on Ubi-site prediction. Two types of architecture were considered for sequence 
processing: recurrent neural networks (RNN) and transformers. Both of these architec-
ture types are widely recognized and have a proven track record of success in sequence 
processing tasks. For the first type, long short-term memory (LSTM) was used, and for 
the second one, a list of transformers, including the bidirectional encoder representation 
transformer (BERT), Nystromformer, and SqueezeBERT, was considered. The details of 
each architecture are described below:
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LSTM It is a type of RNN that is particularly effective at modeling long-term depend-
encies in sequential data. It accomplishes this by using “gates” in its hidden layer, which 
act as filters to selectively remember or forget certain information based on the input 
data and previous hidden state. The use of gates in LSTM allows the network to adap-
tively preserve or discard information as needed, effectively capturing dependencies 
that span many time steps. LSTM has been applied to a wide range of tasks, including 
language modeling, machine translation, speech recognition, stock price prediction, lan-
guage translation, and image caption generation. It is especially useful for tasks where 
the contextual information of preceding words or sounds plays a crucial role in accu-
rately predicting the subsequent ones [42, 43].

BERT It has created a major breakthrough in the field of natural language process-
ing (NLP) by achieving state-of-the-art results-related tasks such as question answering, 
text generation, sentence classification, etc. [44]. BERT relies on a transformer, which is 
an attention mechanism that learns contextual relationships between words in a text. 
A basic transformer consists of an encoder for reading the text input and a decoder for 
producing a prediction for the task at hand. Since BERT’s goal is to generate a language 
representation model, it only needs the encoder part. The input to the encoder for BERT 
is a sequence of tokens, which are first converted into vectors and then processed in the 
neural network.

Nystromformer It replaces the self-attention mechanism in BERT-small and BERT-
base using the proposed Nyström approximation [45]. This reduces the self-attention 
complexity to O (n)1 and allows the transformer to support longer sequences.

SqueezeBERT It is based on the procedures acquired from SqueezNAS, a neural archi-
tecture search (NAS) model [46]. The key difference between the BERT architecture and 
the SqueezeBERT architecture is that the latter uses grouped convolutions instead of 
fully connected layers, allowing SqueezeBERT to be 4.3× faster than BERT.

Features

In order to process protein sequences for later classification tasks, it is necessary to 
encode the input sequences and convert them into numerical feature vectors. Previ-
ous research has demonstrated the effectiveness of using multiple characteristics from 
various sources to provide supplementary information from the protein samples [47]. 
These sources may include information about the 20 amino acid residues present in the 
sequence. In our study, five different types of features were used to improve the accuracy 
of our prediction model. These features are briefly described below. It is worth noting 
that incorporating multiple characteristics from various sources can help capture addi-
tional context and nuance in the data, ultimately leading to more accurate prediction 
results.

Sequence-based features To use an end-to-end DL system to predict Ubi-sites, it 
is necessary to prepare a sequence of amino acids by performing two steps: sequence 
encoding and converting the encoded sequence to numerical vectors. There are two 
commonly used techniques for the latter step: one-hot encoding and word embedding 

1  O(n) describes an algorithm whose runtime grows linearly with the size of the input dataset, meaning that as the num-
ber of items in the input increases, the time it takes to complete the algorithm will also increase at a steady rate.
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[48, 49]. One-hot encoding is an approach for representing categorical inputs, such as 
amino acid codes, as numerical vectors. This method is frequently employed as a pre-
processing step to prepare data for feeding into DL models. However, in the context of 
Ubi-site prediction, word embedding is often preferred due to its effectiveness and the 
similarities between PTM prediction and NLP tasks [29].

Amino acid composition (AAC) AAC is one of the most important and widely used 
sequence-based features for classification problems. AAC encodes the frequency of each 
amino acid in a peptide sequence of a given length [47]. The AAC is calculated based on 
Eq. 1 where ci represents amino acid i in a peptide sequence.

Dipeptide composition (DPC) DPC is used to extract the attributes of amino acid 
compositions, like other composition algorithms [50]. The equation calculates the per-
centage of the double composition of each amino acid in the sequence, divided by the 
number of all possible dipeptides generated by 20 amino acids (20 * 20 = 400), which is 
represented as Eq. 2:

Physicochemical properties (PCP) In the early 1970s, Chou suggested PseAAC as a 
useful way to encode protein sequences. PseAAC [51] contains information about the 
sequence order and physiochemistry, incorporating different frequencies of the 20 types 
of amino acids. In past studies, the physicochemical and biological properties of amino 
acids were extracted from the amino acid index database (AAIndex) [52, 53] and used 
for predicting PTM sites. In this work, 16 different physicochemical and biochemical 
properties were analyzed to calculate the PseAAC. These properties were extracted from 
the AAIndex database by Xiang et al. [54].

Position-specific scoring matrices (PSSM) PSSM is an evolutionary-based feature that 
is highly informative and widely used for protein representation in computational biol-
ogy studies [55]. The PSSM matrix contains the probability scores of each amino acid 
incidence in a sequence at each position of the alignment with a set of homologous 
sequences. The dimension of the matrix is based on sequence length and is defined as 
L*20. Each row represents an amino acid in sequence, and the columns show 20 amino 
acids in a protein sequence [56].

Evaluation metrics

To assess the performance of the Ubi-site prediction models, the following metrics have 
been reported in this study [57]. It is noted that TP represents true positives (the num-
ber of Ubi-sites that have been experimentally validated and accurately predicted by 
the model), TN stands for true negatives (the number of non-Ubi-sites that have been 
accurately predicted by the model), FP means false positives (the non-Ubi-sites that 
have been inaccurately predicted as Ubi-sites), and FN represents false negatives (the 
experimentally validated Ubi-sites that have been inaccurately predicted as non-Ubi-
sites) in the following equations. Moreover, we have reported the Matthews correlation 

(1)AAC = Ci/length(seq) i = 1, . . . , 20

(2)DPC =
number of amino acid product occurrence in sequence

total dipeptide composition(400)
× 100.
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coefficient (MCC) as defined in Eq.  8, to provide a comprehensive assessment of our 
binary classification model’s performance.

Indeed, for imbalanced classification tasks like Ubi-site prediction, the accuracy rate 
is an inadequate and unfair metric, despite its popularity in the literature. The F1 score, 
as defined in Eq.  (7), provides a fair measure of the classifier’s performance. Though 
it is common to report the performance of models using precision, recall, and F1 as 
described by Eqs. (4) to (7), macro-averaged precision, recall, and F1 were computed 
to consider both categories equally. The macro-averaging method calculates precision, 
recall, and F1 for each class first and then averages these statistics for overall categories. 
This is particularly useful when working with imbalanced datasets, where some classes 
may be underrepresented. Macro-averaging allows us to see how well each class is being 
predicted separately rather than considering them as a whole. For example, in a binary 
classification problem with two classes, class A and class B, if the model has high preci-
sion for class A but low precision for class B, the overall precision of the model may be 
misleadingly high. In this case, calculating macro precision would give a more accurate 
representation of the model’s performance, as it would take into account the precision of 
both classes. In this work, our main evaluation metric to determine the best approach is 
the macro-F1 scores as represented by Eq. 9, where F10 and F11 are F1 scores for non-
Ubi-sites and Ubi-sites classes, respectively.

Human Ubi‑site benchmark
Prediction of Ubi-sites has been challenging due to the lack of well-defined benchmarks 
in the research community. While many ML methods have been proposed for this task, 
it has been difficult to fairly compare their performance due to the use of different test 
sets and evaluation strategies. This lack of a standardized benchmark makes it difficult 
to determine the most effective method for Ubi-site prediction and identify areas for 
improvement. To address this issue, we compiled a comprehensive dataset for human 
Ubi-site prediction that includes a diverse range of Ubi-sites and a standardized evalua-
tion strategy.

(3)Accuracy = (TP + TN )/(TP + FP + TN + FN )× 100

(4)Sensitivity(Recall) = TP/(TP + FN )

(5)Specificity = TN/(TN + FP)

(6)Precision = TP/(TP + FP)

(7)F1score = 2TP/(2TP + FP + FN )

(8)
MCC = (TP × TN − FP × FN )/

√

(TP + FP)(TP + FN )(TN + FP)(TN + FN )

(9)Macro− F1 = (F10 + F11)/2
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By using such a hold-out2 dataset as a benchmark, we aim to compare and improve 
the performance of ML approaches for Ubi-site prediction. By evaluating the perfor-
mance of these methods on this separate dataset, we can gain a better understanding of 
how well they generalize to new data and identify which method may be the most effec-
tive for this specific task. In this study, we created a pre-processed, comprehensive, and 
well-defined ubiquitination benchmark based on human proteins from the dbPTM data-
base [58]. The dbPTM database is the largest available database of experimental results 
for different types of protein PTMs, including Ubi-sites. In the following sections, we 
describe the suggested benchmark and explain how to use it in our analysis.

Data collection and pre‑processing

In order to prepare our benchmark, we considered human proteins from two versions 
of the dbPTM database that included Ubi-sites to create two sets. Initially, all proteins 
with a length of less than 100 amino acids were removed from the dataset. Since many 
sequences might be similar to each other and have a negative effect on the classifiers [2, 
50], a tool called CD-HIT was used to cluster all the sequences. By setting a threshold 
value, CD-HIT was used to merge sequence similarities in a large corpus of proteins. 
The procedure for creating two sets is as follows:

Set 1 All Ubi-sites in human proteins were gathered from the 2019 release of dbPTM. 
After performing CD-HIT at 40% on the total collected data (32,407 proteins), there 
were 5429 proteins remaining [59]. These remaining proteins were considered to be used 
to build the training and validation sets, which are described below.

Set 2 In the 2022 release of dbPTM, 7049 new proteins have been collected, and a CD-
HIT of 40% has been performed once again to ensure that there are no similar proteins 
in both protein sets. In the end, 2,348 proteins from the 2022 release were left to build 
the test set.

A systematic ML strategy for the evaluation of the proposed benchmark was adopted, 
which is similar to the independent-test approach. Considering the two sets described 
previously, the training, validation, and test sets were prepared as shown in Table  1. 
Additionally, a graphical representation delineating the distribution of protein lengths 
across the triad of sets is vividly portrayed in Fig. 3.

Training set 90 percent of the proteins are selected randomly from set 1 to create the 
training set.

Table 1  Distribution of positive and negative sites in training, validation, and test sets

Set # of proteins # of positive sites # of negative sites

Training 4886 15,181 180,393

Validation 543 1613 18,989

Test 2348 9713 82,554

2  A hold-out dataset is a subset of a larger dataset that is separated from the main dataset and used to evaluate the per-
formance of a machine learning model. The hold-out dataset is not used for training the model but is instead held aside 
and used to test the model’s ability to make predictions on new data. Using a hold-out dataset allows for a more accurate 
assessment of the model’s generalization performance, as it ensures that the model has not been overfitted to the train-
ing data.
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Validation set The remaining 10 percent of proteins in set 1 are used for the valida-
tion set. Test set All the proteins in set 2 are considered for the test set.

The development of accurate and reliable predictive models for Ubi- sites is of great 
importance in the field of bioinformatics. However, the high number of proteins in 
these datasets presents a challenge when evaluating model performance. Traditional 
methods such as k-fold cross-validation are not suitable in this case, as they require a 
relatively small number of samples to be effective.

An independent-test strategy was employed in this study to address this issue. 
This approach allows us to directly compare the performance of proteins from the 
2019 and 2022 releases of dbPTM, which is crucial for assessing the robustness of 
our models. By minimizing the difference in performance between these releases, we 
aimed to create predictive models that could generalize well to different protein sets.

Overall, the use of an independent-test strategy is essential for ensuring the reli-
ability and applicability of Ubi-site prediction models. By carefully evaluating their 
performance on a diverse set of proteins, we can be confident in the accuracy and 
usefulness of these models for a wide range of research applications.

In this strategy, in contrast to other methods, there were considered to be two 
unique sets of proteins being investigated. Therefore, the models have less tendency 
to overfit. Every model introduced in this paper is trained on the training set. Dur-
ing the training procedure, the best model is selected based on the highest macro-F1 
value with respect to the validation set. After completing the training and selecting 
the best model, it is evaluated on the test set, and the desired metrics are reported as 
the final result.

For a fair and precise comparison between Ubi-site prediction methods, we need 
uniform, comprehensive, unique, well-defined training, validation, and test sets. 
Therefore, in this study, by building these three sets, a benchmark named the human 
Ubi-sites benchmark (HUSB) was created to accomplish a crucial step for future 
research in this field.

Craft windows

Based on different biological features, the total positive or negative samples in each 
protein sequence were extracted and converted into numerical feature vectors for use 
in the final classifier. For this encoding, in this step, using a sliding window, all pro-
teins are partitioned into polypeptides with length W, in such a way that the target 

Fig. 3  Sequence length distribution: Left: training set. Center: validation set. Right: test set
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residue (lysine (K)) is placed at the center of the polypeptides with a fixed-size win-
dow (Fig.  4). If the middle amino acid is a Ubi-site, it will be considered a positive 
label (1); otherwise, it will be negative (0).

During the segmentation of the sequences, at the tail of proteins, the left or right side 
of some Ubi-sites may be shorter than the fixed window size. To address this, we add 
padding (unique characters) to the ends of shorter sequences to create windows of fixed 
length. After creating segmented windows, it was detected that there were two types of 
duplications present in them. The first type occurs when samples (i.e., both windows and 
their labels) are the same. In this situation, we kept one sample and removed the rest. 
The second type occurs when two samples have identical windows but different labels. 
We removed samples that have negative labels in this situation, as the number of posi-
tive sites is generally lower compared to negative sites. This indicates the importance 
of having a sufficient number of positive labels for effective training. Moreover, positive 
labels are more reliable because they are based on experimental measurements. In other 
words, by comparing the 2019 and 2022 versions of dbPTM, we observed that some neg-
ative sites have changed to positive sites. It means that since positive sites were found 
empirically, we can be more confident about their labels.

To remove duplicate samples, we applied the first and second procedures to both 
training and validation samples. The specific details of these procedures are outlined 
in Tables  2 and 3 (Steps 1 and 2). Additionally, figure S1 in the Additional file  1 dis-
plays the graph depicting the relationship between the number of samples and window 

Fig. 4  Building fixed-size windows from a protein sequence

Table 2  Details of crafting different window sizes on the training set

Two types of duplication appeared in the data: Type1: identical sequences and labels; Type 2: identical sequences but 
different labels

Window 
size

Samples with duplicate 
sequences and labels (Type 1)

Samples with duplicate 
sequences (Type 2)

Samples after removing types 
1 and 2

All Positive 
samples

Negative 
samples

All Positive 
samples

Negative 
samples

All Positive 
samples

Negative 
samples

5 143,420 3728 139,692 154,835 12,125 142,710 84,861 13,122 71,739

7 6556 213 6343 7150 517 6633 191,493 15,066 176,427

9 2619 134 2485 2728 191 2537 193,891 15,106 178,785

15 1582 87 1495 1623 109 1514 194,544 15,133 179,411

21 1336 72 1264 1361 85 1276 194,699 15,141 179,558

27 1212 60 1152 1233 71 1162 194,776 15,147 179,629

33 1152 54 1098 1136 59 1077 194,829 15,151 179,678

45 1025 48 977 1034 53 981 194,888 15,153 179,735

55 969 44 925 978 49 929 194,920 15,155 179,765

77 854 37 817 863 42 821 194,992 15,159 179,833

99 771 34 737 776 39 737 195,047 15,161 179,886
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sizes. After creating windows from the test set of proteins, we did not remove duplicate 
samples. This is because the proteins in the test set are intended to represent real-world 
applications. In fact, the presence of duplicate fixed-sized samples is a limitation of ML 
or pre-processing methods and not a characteristic of the actual data, e.g., raw protein 
sequences. Another important reason to consider is the need for a fair and accurate 
comparison between various window sizes and methods. Since window sizes directly 
impact the number of duplicated samples, comparing methods with dissimilar sample 
numbers would not yield the correct results.

PTMs can occur at specific sites within the 3D structure of a protein, and therefore, 
the structural context of a site can be informative for predicting its likelihood of being 
modified [60–62]. Given recent breakthroughs in predicting functional and structural 
protein properties using raw protein sequences [63–65], we can infer that predicting 
Ubi-sites by shortening the number of amino acids in the windows could result in a 
lower amount of implicit structural features that ML methods could obtain during train-
ing, compared to longer window sizes. By decreasing the length of window sizes, it can 
be argued that the upper threshold for achieving the best performance would poten-
tially decrease due to the limitation of information in fixed-size window samples. We 
can argue that by decreasing the length of window sizes, the upper threshold for reach-
ing the best performance would potentially decrease as a consequence of limiting the 
information in fixed-size window samples.

Prepare features

The preparation of features for ML models requires individual handling of each feature, 
which is described in the following.

PSSM To ensure a consistent sample size, padding characters are transformed into 
zero vectors at the end of each window in the PSSM feature. It is crucial to note that 

Table 3  Details of crafting different window sizes on the validation set. Two types of duplication 
appeared in the data: Type1: identical sequences and labels; Type 2: identical sequences but 
different labels

Window size Samples with duplicate 
sequences and labels 
(Type 1)

Samples with duplicate 
sequences (Type 2)

Samples after removing type 
1 and 2

All Positive 
samples

Negative 
samples

All Positive 
samples

Negative 
samples

All Positive 
samples

Negative 
samples

5 4861 47 4814 5492 398 5094 17,547 1589 15,958

7 172 6 166 180 10 170 20,506 1610 18,896

9 97 0 97 99 1 98 20,548 1613 18,935

15 57 0 57 59 1 58 20,571 1613 18,958

21 46 0 46 48 1 47 20,578 1613 18,965

27 42 0 42 44 1 43 20,580 1613 18,967

33 32 0 32 34 1 33 20,585 1613 18,972

45 20 0 20 20 0 20 20,592 1613 18,979

55 12 0 12 12 0 12 20,596 1613 18,983

77 8 0 8 8 0 8 20,598 1613 18,985

99 2 0 2 2 0 2 20,601 1613 18,988
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in preparing this feature for ML models, all 20 features for each amino acid are taken 
into account, resulting in the transformation of each amino acid into a 20-dimensional 
vector.

PCP This feature involves the conversion of each amino acid in fixed-sized windows 
into a fixed-sized vector with a size of 16. To ensure a fixed sample size, padding charac-
ters are transformed into zero vectors.

DPC It involves the conversion of each fixed-sized window into a fixed-sized vector 
with 400 values (20 × 20). Padding characters are not needed for this feature.

AAC​ It involves the conversion of each fixed-sized window, ranging from 5 to 99, into 
a fixed-sized vector with 20 values. Padding characters are not needed for this feature.

Experiments
In this section, we conducted extensive experiments to predict Ubi-sites. The results are 
divided into three parts based on the types of features and classification models:

Feature-based conventional ML methods Only features were used as input to predict 
Ubi-sites in this section. Conventional ML methods were used for this purpose.

End-to-end sequence-based DL methods Only sequences of amino acids were used as 
input in this section. DNN architectures were used for this purpose.

Hybrid feature-based DL methods Both engineered and sequence-based features were 
concatenated together as inputs in this section. Similar to the sequence-based type, only 
DNN architectures were used for this purpose.

It is notable that the baseline result in terms of macro-F1 score is 0.305 if we have a 
random classifier.

Feature‑based conventional ML methods

All the experiments in this section were conducted using the Scikit-learn [66] frame-
work in Python. It should be noted that all methods were run five times with different 
random seeds to ensure the robustness of the results.

In this section, we used PSSM, AAC, DPC, and PCP features to predict Ubi-sites using 
XGBoost, SVM, KNN, and RF methods. All engineered features were reshaped into vec-
tors and fed into the models. To train a model with the best hyperparameters, we used a 
grid search for kernel, gamma, and C in SVM. In the end, the kernel was RBF, C was in 
the range of 0.1–100 (with 0.1, 0.5, 1, 10, 100 values), and the gamma range was 0.0001–1 
(0.0001, 0.001, 0.01, 0.1). In addition, we used DNN with 3 layers of 128, 64, and 2 nodes 
that were connected to a softmax layer. For training, we used a learning rate of 0.001 
with cosine learning rate decay, weight decay of 1.2e−6, grad clip 5, and 80 epochs.

For KNN, we used neighbors in the range of 3 to 9, while the RF model was trained 
with max depth values in the range of 6 to 12. To find the best parameters, we used a 
greedy search algorithm. All results based on the macro-F1 score are shown in Table 4. 
The result of the best-performing model for each feature appears in bold. The evaluation 
of different ML approaches was conducted for window sizes of 9, 15, and 21. The KNN 
model achieved superior results when the AAC feature was utilized at a window size of 9 
(0.507). The best F1-score for the XGboost was obtained for the PSSM feature at a win-
dow size of 15 (0.468); the RF classifier attained the best result when applied to the AAC 
feature at a window size of 21 (0.459); and the SVM method aligned more effectively 
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with the DPC feature at a window size of 15 (0.508). Lastly, the DNN method exhibited 
better performance when combined with the physicochemical feature at a window size 
21 (0.537). Overall, DNN is the best model in terms of macro-F1 score. The detailed 
results for each feature with all tested window sizes are presented in the Additional file 1: 
Tables S1–S4. Additionally, the AAC feature had the lowest accuracy when used with 
DNN. Furthermore, it is discernible that, predominantly, a window size encompassing 
21 amino acids mostly tends to attain its peak in relation to the macro F1-score metric.

End‑to‑end sequence‑based DL methods

In this section, we used two Nvidia RTX 2070 GPUs to train the models. All the experi-
ments were conducted in Python using the PyTorch [67] framework. We used the Ada-
Belief [68] optimizer in conjunction with the mixed precision [69] technique to train 
models. It is worth noting that we trained all architectures five times, each with different 
random seeds.

Below are the details of each architecture used in the following experiments.
LSTM We used two layers of bidirectional LSTM [43] with 32 units for each layer. 

Moreover, using the embedding layer, strings of amino acids were converted to a learn-
able feature with a size of 256. We also constructed a larger bidirectional LSTM model 
with two layers and 128 units to assess the impact of increased parameters.

BERT-small We used the exact architecture reported in the paper [44], except we built 
the architecture using 8 BERT-base-uncased blocks. Furthermore, the model (embed-
ding) size was 768.

BERT-tiny We changed the architecture of the BERT-base reported in the paper by 
defining 8 BERT-base-uncased blocks, 8 attention heads, and 768 and 320 as the dimen-
sions of the feed-forward layer and model (embedding) size, respectively.

Nystromformer We used the exact architecture reported in the paper, except we built 
the architecture using six Nystromformer blocks. Furthermore, the model (embedding) 
size was 768.

Table 4  Comparison of feature-based results based on the macro-F1 score on various window sizes. 
For each classification model, the best results are tabulated in bold

Window size Feature Method

KNN XGBoost RF SVM DNN

9 PSSM 0.441 0.451 0.439 0.450 0.520

AAC​ 0.507 0.437 0.435 0.416 0.489

DPC 0.491 0.435 0.435 0.506 0.518

Physicochemical 0.422 0.460 0.429 0.46 0.516

15 PSSM 0.454 0.468 0.440 0.441 0.526

AAC​ 0.446 0.462 0.452 0.435 0.503

DPC 0.458 0.462 0.452 0.508 0.523

Physicochemical 0.423 0.466 0.430 0.467 0.533

21 PSSM 0.440 0.452 0.440 0.419 0.523

AAC​ 0.447 0.450 0.459 0.441 0.500

DPC 0.438 0.457 0.450 0.488 0.523

Physicochemical 0.425 0.462 0.431 0.445 0.537
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SqueezeBERT We used the exact architecture reported in the paper, which includes 
12 transformer blocks. In this architecture, the model (embedding) size was 768.

The details of hyperparameters for each architecture are listed in Table 5.
Since we were working with an imbalanced dataset, we adopted two strategies to 

address this challenge. Firstly, we implemented a weighted loss function, which 
assigned greater weight to positive labels. In the second approach, we selected all pos-
itive samples and randomly chose a subset of negative samples based on the number 
of positive samples and their locations within the sequences. Specifically, we selected 
all negative samples that were at least 50 amino acids away from positive sites. By uti-
lizing these strategies, we effectively mitigated the issue of imbalanced labels in our 
analysis.

In this section, we used only the sequences of amino acids as input for our models. To 
accomplish this, we employed the word2vec technique [70] to convert the amino acid 
characters into learnable embedding vectors.

The results of different architectures on various window sizes, based on the weighted 
loss function approach to address imbalanced data, are presented in Fig. 5 and Table 6. 
The difference between BERT-small and BERT-tiny was negligible. SqueezeBERT per-
formed the worst among all the models. Interestingly, despite having fewer parameters, 
the LSTM model showed the best performance on larger window sizes. The detailed 
results of different architectures on various window sizes in terms of macro precision, 
recall, and accuracy are given in the Additional file 1: Tables S5–S7.

We also observed that macro-F1 values were higher for the validation set compared to 
the test set, highlighting the importance of having an independent test set, like the one 
we provided, to assess the generalization performance of the models.

Table 5  Training hyperparameters for both end-to-end and hybrid methods

Architecture LSTM BERT-small BERT-tiny Nystromformer SqueezeBERT

Learning rate 8e−04 8e−05 8e−05 5e−05 1e−04

Warmup steps 1000 1000 600 1000 1000

Scheduler Cosine Cosine Cosine Cosine Cosine

Decouple weight decay False True True True True

Weight decay 1.2e−06 1e−03 1e−04 1e−02 1e−02

Batch size 512 512 512 512 512

Gradient clip 5 2 5 2 2

Label smoothing 0.0 0.2 0.0 0.1 0.1

Mixed precision True True True True True

Fig. 5  Sequence-based methods using a weighted loss strategy. A linear scale. B log scale
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Based on our preliminary experimental results, it was observed that the first strategy 
handling imbalanced data (weighted loss) performed slightly better in terms of the aver-
age macro-F1 metric across all window sizes. The sample results of the second approach 
(balanced sample strategy) for the BERT-small model are presented in Table 7.

Our results demonstrate that DL methods outperformed classical ML methods in 
terms of accuracy and F1-score. The best macro-F1 score of 0.574 was achieved using 
LSTM with a window size of 77, as shown in bold in Table 6.

Hybrid feature‑based DL methods

In this section, we concatenated both the features and embedding of amino acid 
sequences and fed them to the neural networks. We employed the weighted-loss strategy 
for this section.

Table 6  Sequence-based results based on the macro-F1 score on the test set using a weighted loss 
strategy. The bold values show the best results

Window size LSTM BERT-small BERT-tiny Nystromformer SqueezeBERT

5 0.532 ± 0.003 0.543 ± 0.013 0.541 ± 0.001 0.543 ± 0.001 0.545 ± 0.001

7 0.526 ± 0.002 0.524 ± 0.005 0.529 ± 0.002 0.527 ± 0.001 0.519 ± 0.007

9 0.53 ± 0.001 0.536 ± 0.001 0.534 ± 0.001 0.536 ± 0.003 0.533 ± 0.002

15 0.545 ± 0.001 0.55 ± 0.001 0.548 ± 0.002 0.549 ± 0.001 0.549 ± 0.002

21 0.555 ± 0.003 0.558 ± 0.002 0.555 ± 0.002 0.556 ± 0.003 0.556 ± 0.003

27 0.563 ± 0.003 0.562 ± 0.002 0.562 ± 0.003 0.56 ± 0.002 0.561 ± 0.002

33 0.563 ± 0.004 0.566 ± 0.004 0.564 ± 0.002 0.566 ± 0.003 0.563 ± 0.002

45 0.571 ± 0.002 0.566 ± 0.003 0.568 ± 0.002 0.563 ± 0.006 0.566 ± 0.001

55 0.572 ± 0.003 0.569 ± 0.005 0.57 ± 0.003 0.573 ± 0.005 0.565 ± 0.002

77 0.574 ± 0.004 0.572 ± 0.003 0.571 ± 0.003 0.567 ± 0.01 0.569 ± 0.004

99 0.573 ± 0.002 0.57 ± 0.004 0.596 ± 0.004 0.571 ± 0.007 0.57 ± 0.001

Avg (5–99) 0.555 ± 0.009 0.556 ± 0.017 0.558 ± 0.008 0.556 ± 0.015 0.554 ± 0.01

Avg (7–99) 0.557 ± 0.008 0.557 ± 0.011 0.56 ± 0.008 0.557 ± 0.015 0.555 ± 0.01

Table 7  Sequence-based results based on the macro-F1 score on the test set using the balanced 
sample strategy. The bold values show the best results

Window size BERT-small

5 0.548 ± 0.009

7 0.523 ± 0.01

9 0.533 ± 0.001

15 0.541 ± 0.0

21 0.552 ± 0.002

27 0.565 ± 0.002

33 0.571 ± 0.003

45 0.570 ± 0.006

55 0.571 ± 0.002
77 0.571 ± 0.004

99 0.569 ± 0.005

Avg (5–99) 0.555 ± 0.005

Avg (7–99) 0.556 ± 0.006
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As in Sect.  "End-to-end sequence-based DL methods", the LSTM architecture dem-
onstrated superior performance with regard to sequences; consequently, we used only 
the LSTM model for training purposes to facilitate a more straightforward comparison 
in terms of computational cost. An additional advantage of using LSTM is that there are 
fewer parameters, which makes it much more efficient in terms of computational cost.

To create hybrid features, we combined the PSSM and PCP features with the output 
of the embedding layer, taking into account the number of amino acids. To incor-
porate the AAC and DPC features, we replicated the fixed features in proportion to 
the number of amino acids within the specified window size. We then merged these 
replicated features with the output of the embedding layer in a similar manner to the 
PSSM and PCP features.

The results in terms of the macro-F1 score are placed in Table  8 and plotted in 
Fig. 6. The detailed results in terms of macro precision, recall, and accuracy are shown 
in the Additional file 1: Tables S8–S10, while the best results achieved in terms of all 
introduced evaluation metrics are summarized in Table 9. Furthermore, the results of 
the larger LSTM model are placed in the Additional file 1: Figure S2.

Based on the results presented in Table 9, incorporating a combination of raw amino 
acid sequences and handcrafted features generally resulted in a slight improvement 

Table 8  Hybrid results for the LSTM model based on the macro-F1 score on the test set. The bold 
values show the best results

Window size Seq Seq + PSSM Seq + AAC​ Seq + DPC Seq + PCP Seq + All

5 0.530 ± 0.003 0.518 ± 0.003 0.490 ± 0.001 0.502 ± 0.001 0.499 ± 0.019 0.522 ± 0.002

7 0.520 ± 0.002 0.528 ± 0.004 0.519 ± 0.002 0.523 ± 0.001 0.518 ± 0.01 0.525 ± 0.002

9 0.530 ± 0.001 0.534 ± 0.002 0.529 ± 0.001 0.528 ± 0.002 0.527 ± 0.006 0.531 ± 0.001

15 0.545 ± 0 0.55 ± 0.005 0.543 ± 0.002 0.539 ± 0.002 0.544 ± 0.006 0.543 ± 0.003

21 0.555 ± 0.003 0.559 ± 0.003 0.553 ± 0.002 0.542 ± 0.001 0.554 ± 0.003 0.549 ± 0.005

27 0.563 ± 0.003 0.568 ± 0.001 0.559 ± 0.002 0.551 ± 0.002 0.562 ± 0.002 0.558 ± 0.007

33 0.563 ± 0.004 0.571 ± 0.002 0.562 ± 0.002 0.557 ± 0.001 0.569 ± 0.004 0.561 ± 0.006

45 0.570 ± 0.002 0.576 ± 0.007 0.566 ± 0.002 0.562 ± 0.002 0.570 ± 0.003 0.566 ± 0.003

55 0.572 ± 0.003 0.572 ± 0.006 0.569 ± 0.002 0.565 ± 0.004 0.573 ± 0.003 0.566 ± 0.002

77 0.574 ± 0.004 0.576 ± 0.004 0.572 ± 0.003 0.567 ± 0.004 0.572 ± 0.003 0.569 ± 0.003

99 0.573 ± 0.002 0.576 ± 0.002 0.571 ± 0.002 0.569 ± 0.003 0.574 ± 0.002 0.566 ± 0.002

Avg (5–99) 0.554 ± 0.009 0.557 ± 0.013 0.548 ± 0.006 0.546 ± 0.008 0.551 ± 0.025 0.551 ± 0.013

Avg (7–99) 0.557 ± 0.008 0.561 ± 0.013 0.554 ± 0.006 0.550 ± 0.008 0.556 ± 0.016 0.553 ± 0.013

Fig. 6  Hybrid feature-based methods. A linear scale. B log scale
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in LSTM model performance. The highest macro-F1 score of 0.576 was achieved 
with a window size of 45 and utilizing PSSM as the feature in combination with raw 
sequences. The F1 score, precision, and recall values of the positive class for a window 
size of 45 were 0.902, 0.8786, and 0.9147, respectively. Furthermore, as expected, the 
window size 45 exhibits the best MCC value of 0.402.

Discussion
Ubiquitination is a critical PTMs that regulates many important cellular processes in 
humans. Taking into consideration the significance of the topic, there arises a fundamen-
tal requirement for cost- and time-effective alternatives to traditional Ubi-site detection. 
Presently, no practical computational tool is available to accurately predict Ubi-sites in 
human data. In this work, we conducted extensive experiments to evaluate the perfor-
mance of both classical ML techniques and end-to-end DL methods for predicting Ubi-
sites in human proteins. To facilitate fair comparisons between the predicted models, we 
designed a benchmark with open-access datasets (collected from the dbPTM 2019 and 
dbPTM 2022 databases), standard evaluation metrics, and the proper validation strategy 
to avoid any potential information leakage.

We conducted a rigorous empirical comparison of ten different approaches across 
three paradigms: feature-based conventional ML approaches, end-to-end sequence-
based DL models, and hybrid feature-based DL methods. The primary aim was to estab-
lish robust baselines that can guide future model development and facilitate meaningful 
comparisons.

Our results demonstrated that DL approaches outperformed traditional ML tech-
niques across various evaluation metrics, specifically achieving a macro-F1 score of 
0.574 compared to 0.537. Specifically, in contrast to many customized-designed DL 
network architectures [71], we found that the LSTM architecture achieved the highest 
macro-F1 score using only raw amino acid sequences as input. This finding is consist-
ent with previous research [14, 28] and shows the capability of DNN architectures to 
automatically learn meaningful features from protein sequences for ubiquitination site 
prediction.

Furthermore, incorporating hand-crafted features along with raw sequences typically 
led to a marginal enhancement compared to using raw sequences alone. Specifically, 
there was a slight increase in the macro-F1 score, with values of 0.576 and 0.574, respec-
tively. This suggests that hand-crafted features may provide useful biological insights 
that complement the representations learned by deep networks. Similar to a Ubi-site 
study [30], we also observed that longer window sizes led to better performance, likely 
due to the additional context they provide about the local protein environment. Over-
all, our findings highlight the potential of DL techniques for ubi-site prediction and the 
importance of both input features and window size in model design.

Conclusion
This work demonstrates the capability of ML techniques, particularly DL approaches, 
in accurately predicting Ubi-sites in human proteins. Through extensive experiments, 
we observed that end-to-end DNNs outperformed conventional ML methods across 
various evaluation metrics. Notably, LSTM architectures achieved the best results 
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when utilizing raw amino acid sequences, highlighting their ability to automatically 
extract meaningful features. The success of LSTM architectures in such bioinfor-
matics classification problems can be attributed to their ability to capture long-term 
dependencies in sequential data, their robustness to noisy data, and their capacity for 
representation learning. Additionally, incorporating engineered features like PPSM 
in combination with the raw sequences resulted in a slight improvement in model 
performance.

Our analysis further revealed that larger window sizes contain more contextual 
information that facilitates better prediction. Overall, these findings showcase the 
tremendous potential of ML methods for unraveling the mechanisms of post-transla-
tional protein regulation through ubiquitination.

The creation of a standardized human ubiquitination benchmark dataset is a sig-
nificant contribution to this work. By splitting proteins from two releases of dbPTM 
into training, validation, and independent test sets, we enabled direct comparison 
between old and new data. Importantly, our study contributes to enhancing repro-
ducibility and enabling fair comparisons among various proposals for the Ubi-site 
prediction task. To ensure transparency and reproducibility, we shared the datasets 
and code used in our study, allowing other researchers to replicate and build upon 
our findings. The availability of these resources promotes a standardized evaluation 
framework for various Ubi-site estimation approaches. In summary, by harnessing 
advanced ML algorithms and benchmark datasets, we can gain a deeper understand-
ing of ubiquitination patterns and their influence on cellular processes. The method-
ologies developed here will assist in elucidating the intricacies of protein regulation 
and hold promising implications for biomedical applications.
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