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Abstract 

Background:  The identification of essential proteins is of great significance in biology 
and pathology. However, protein–protein interaction (PPI) data obtained through high-
throughput technology include a high number of false positives. To overcome this 
limitation, numerous computational algorithms based on biological characteristics 
and topological features have been proposed to identify essential proteins.

Results:  In this paper, we propose a novel method named SESN for identifying 
essential proteins. It is a seed expansion method based on PPI sub-networks and mul-
tiple biological characteristics. Firstly, SESN utilizes gene expression data to construct 
PPI sub-networks. Secondly, seed expansion is performed simultaneously in each 
sub-network, and the expansion process is based on the topological features of pre-
dicted essential proteins. Thirdly, the error correction mechanism is based on multiple 
biological characteristics and the entire PPI network. Finally, SESN analyzes the impact 
of each biological characteristic, including protein complex, gene expression data, GO 
annotations, and subcellular localization, and adopts the biological data with the best 
experimental results. The output of SESN is a set of predicted essential proteins.

Conclusions:  The analysis of each component of SESN indicates the effective-
ness of all components. We conduct comparison experiments using three datasets 
from two species, and the experimental results demonstrate that SESN achieves supe-
rior performance compared to other methods.
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Background
Essential proteins are crucial and indispensable for cellular activities [1]. The identifica-
tion of essential proteins promotes an understanding of the minimal requirements for 
cell survival and reproduction. The study of essential proteins is beneficial for discover-
ing pathogenic genes and generating novel approaches for disease treatment. [2, 3]. The 
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identification of essential proteins plays a crucial role in advancing research and devel-
opment in the fields of biology and pathology.

Experimental methods for identifying essential proteins include the following forms: 
single gene knockouts [4], gene knockdown [5], and RNA interference [6]. Although 
these methods have high accuracy, the experiment is expensive, time-consuming, inef-
ficient, and there are still species limitations. With the rapid development of bioinfor-
matics, a large amount of PPI data is measured through high-throughput technology. 
This provides conditions for research at the PPI network level. Research based on PPI 
networks has become a focal point in the field of bioinformatics [7]. However, PPI data 
obtained through high-throughput technology include a high rate of false positives [8, 
9]. To overcome the impact of this rate, researchers have attempted various methods to 
construct weighted PPI networks to remove false positive interactions. These network-
based methods have been proved to be effective in the identification of essential proteins 
[10].

Some researchers concentrate on the identification of essential proteins based on the 
topology of the PPI network. Topology-based methods can generally be divided into 
three categories: local topology-based, global topology-based and multi-topology-based. 
Local topology-based methods assess a protein’s essentiality through its local neigh-
borhood, such as Degree Centrality (DC) [11], Eigenvector Centrality (EC) [12], Local 
Average Connectivity (LAC) [13], and Neighborhood Centrality (NC) [14]. Global topol-
ogy-based methods, including Betweenness Centrality (BC) [15], Closeness Centrality 
(CC) [16], Information Centrality (IC) [17], and Subgraph Centrality (SC) [18], meas-
ure topological properties globally based on characteristics of paths or shortest paths 
between proteins. All the above mentioned approaches are included in CytoNCA [19], 
which is a plugin of Cytoscape. Multi-topology-based methods combine various topo-
logical characteristics. For example, SIGEP [20] presents a p value calculation method, 
which utilizes network topology characteristics (degree and local clustering coefficient) 
as test statistics and can outperform the aforementioned methods. Nonetheless, all 
these topology-based methods ignore the topology characteristics of predicted essential 
proteins.

Predicting essential proteins only by using network topology ignores the biological 
properties of proteins. In recent years, researchers have discovered that the biological 
characteristics of proteins are closely related to their essentiality. PeC [21] and JDC [22] 
are developed to identify essential proteins by integrating PPI networks and gene expres-
sion data. LNSPF [23] is proposed to identify essential proteins based on gene expres-
sion data, subcellular localization, homologous information and topological features. 
RSG [24] designs essential proteins prediction method based on RNA-Seq, subcellular 
localization, and GO annotation datasets, the experimental results include two species 
(Saccharomyces cerevisiae and Drosophila melanogaster). RWEP [25] adopts a random 
walk algorithm and integrates topological and biological properties to determine pro-
tein essentiality in PPI networks, RWEP outperforms PeC and RSG in predicting essen-
tial proteins. It incorporates multiple biological properties to enhance the efficiency of 
essential protein prediction. However, it is unclear which biological data is the most 
effective. CPPK and CEPPK [26] predict essential proteins by integrating network topol-
ogy, gene expression data, and certain essential proteins as prior knowledge. However, 
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the performance of CPPK excessively depends on the number of essential proteins. 
NCCO [27] combines orthology datasets from species S.cerevisiae and E.coli with net-
work topology to predict essential proteins. RWO [28] utilizes orthologous relationships 
between yeast and human PPI networks. All these methods that integrate PPI network 
topology with biological data are more effective than those based solely on network 
topology. However, the specific impact of each biological data and individual compo-
nents of these methods on the final prediction results remains unknown. Researchers 
have also proposed some deep learning frameworks that integrate biological features 
and network topology features to identify esssential proteins. DeepEP [29] utilizes multi-
scale convolutional neural networks to extract biological features from gene expression 
profiles, while the node2vec [30] technique is applied to automatically learn topological 
features from PPI networks. These features are then concatenated to predict essential 
proteins. Zeng et  al. [31] propose a deep learning framework for automatically learn-
ing biological features without prior knowledge. They employ the node2vec technique to 
automatically acquire a richer representation of the PPI network topology. Bidirectional 
long short term memory cells [32] are employed to capture non-local relationships in 
gene expression data. Additionally, they utilize a high-dimensional indicator vector to 
characterize biological features related to subcellular localization. Yue et  al. [33] pro-
pose a deep learning framework for predicting essential proteins by integrating features 
obtained from the PPI network, subcellular localization, and gene expression profiles.

In recent years, some studies have been dedicated to constructing PPI sub-networks 
through gene expression analysis in order to infer the activity of protein interactions. 
TS-PIN [34] constructs a network by using gene expression data and subcellular locali-
zation to identify essential proteins. TP-WDPIN [35] mines protein complexes from 
weighted dynamic PPI sub-networks constructed by gene expression data. Inspired by 
this, we construct PPI sub-networks by gene expression data and perform the process of 
seed expansion in these sub-networks.

In this research, we propose an effective method for identifying essential proteins, 
called SESN. SESN is a seed expansion method based on PPI sub-networks and biologi-
cal characteristics. The PPI network forms an undirected graph, where proteins serve 
as nodes and protein-protein interactions as edges. To filter false positive interactions 
in PPI network, we integrate multiple biological characteristics to weight the edges and 
nodes of the PPI network and construct PPI sub-networks based on gene expression 
data. Seed expansion is performed simultaneously in each sub-network, and the expan-
sion results of all the sub-networks will be summarized to the whole PPI network. To 
avoid relying solely on essential proteins, we will not select seeds from the essential pro-
teins dataset. Instead, each sub-network will randomly select a protein as a seed. The 
expansion process is based on the topological features of the predicted essential proteins 
in each sub-network. In this process, we select the protein that is most closely related 
to the predicted essential proteins and add it to the set of predicted essential proteins. 
The error correction mechanism filters out proteins that have been expanded but exhibit 
low essentiality. The weight of a protein in the whole PPI network represents the essen-
tiality of this protein. To ensure the ongoing expansion of the set of predicted essential 
proteins, after removing a protein, we expand the protein with the highest weight that is 
strongly associated with the predicted essential proteins. SESN evaluates the influence 
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of biological data on experimental outcomes and identifies the most effective data to 
achieve optimal results. The output of SESN consists of a set of predicted essential pro-
teins expanded by the seeds of all sub-networks. Proteins that expand earlier are given 
higher rankings. Comparative experiments are conducted across three datasets from 
two species. The experimental results demonstrate that, when compared with other 
methods(CPPK, CEPPK, RWEP, SIGEP, RWO and TS-PIN), SESN achieves the best 
results across three datasets. Analysis of each component within SESN reveals that all 
components are effective, with particular emphasis on the error correction mechanism.

The contributions of SESN are outlined as follows: (1) SESN constructs weighted PPI 
sub-networks by integrating multiple biological data and conducts simultaneous seed 
expansion within each sub-network. (2) The seed expansion process integrates the topo-
logical characteristics of predicted essential proteins in the sub-networks. (3) The error 
correction mechanism integrates the topological characteristics of predicted essential 
proteins in the whole PPI network. (4) SESN selects the biological data yielding the best 
experimental results and integrates multiple biological characteristics to assign weights 
to both PPI sub-networks and the whole PPI network.

The overall process of SESN is shown in Fig. 2, which provides an example to illus-
trate the process of seed expansion. The green part represents the initialization of the 
weighted PPI network and the weighed sub-networks. The detailed process of construct-
ing weighted sub-networks is shown in Fig. 1. The yellow part represents the seed expan-
sion process, and the yellow rounded rectangle on the right illustrates the expansion 
process of K(the definition of K is provided in section ’Initialize the seed set and the 
weight of node or edge’). Initially, there are 4 sub-networks, so K is initialized with 4 
nodes named node 1, 2, 3 and 4. Then, the expansion process is performed simultane-
ously in these 4 sub-networks. The node with the highest weight is chosen and added to 
K. Following this, the error correction mechanism filters out the node with the lowest 
weight in K and introduces node m1. Among all the neighbors of K, m1 is the node with 
the largest weight and the closest connection to K. The expansion of K persists until its 
length reaches the output length n. The blue part illustrates the experimental process of 
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Fig. 1  The process of constructing weighted sub-networks
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SESN, to prove the superiority and effectiveness of SESN, we compare SESN with other 
methods and analyze each component of SESN.

Methods
Experimental datasets

To prove the superiority of SESN across different species, experiments are conducted 
on Saccharomyces cerevisiae and Drosophila melanogaster. We utilize PPI datasets, 
essential proteins, protein complexes, gene expression data, GO annotations and subcel-
lular localization. Additionally, we perform ID mapping across different datasets using 
UniProt(https://​www.​unipr​ot.​org/) as a reference.

PPI datasets For Saccharomyces cerevisiae, the PPI dataset can be downloaded from 
DIP [36](version of 20101010), and BioGRID [37]. As for Drosophila melanogaster, the 
PPI dataset is download from BioGRID, to distinguish it from Saccharomyces cerevisiae, 
it is denoted as fruitfly. The number of proteins and essential proteins and other relevant 
information for these datasets are presented in Table 1.

Fig. 2  The overall process of SESN

https://www.uniprot.org/
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Essential proteins For Saccharomyces cerevisiae, essential proteins are selected from 
MIPS [38], SGD [39], DEG [40], and OGEE [41], and there are 1285 essential proteins in 
total. In the case of Drosophila melanogaster, essential proteins are selected from DEG and 
OGEE, after ID mapping and the removal of duplicate proteins, the fruitfly PPI dataset con-
tains 493 essential proteins.

Protein complex For Saccharomyces cerevisiae, protein complexes are collected from 
MIPS, SGD, ALOY [42], and CYC2008 [43, 44]. Only protein complexes containing two or 
more proteins are retained, resulting in a total of 745 protein complexes in the final data-
set. For Drosophila melanogaster, protein complexes are obtained from AP-MS [45]. After 
mapping these complexes with the fruitfly PPI datasets, the dataset encompasses 1637 pro-
tein complexes.

Gene expression data Gene expression data of Saccharomyces cerevisiae and Drosophila 
melanogaster can be downloaded from GEO (https://www.ncbi.nlm.nih.gov/geo/browse/) 
with accession GSE3431 [46] and GSE7763 [47], respectively. The probe data matrix for 
Saccharomyces cerevisiae consists of 9335 rows, while the probe data matrix for Drosophila 
melanogaster comprises 18952 rows. To map with PPI datasets, we download SOFT for-
matted family files from GEO. In cases where multiple probe data correspond to a single 
ID of PPI datasets, we take the average value of multiple probe data. After preprocess-
ing, we obtain 4981, 5318, and 7378 gene expression data for DIP, BioGRID, and fruitfly, 
respectively.

GO annotations and Subcellular localization For Saccharomyces cerevisiae, GO anno-
tation data is available from(https://​downl​oads.​yeast​genome.​org/​curat​ion/​liter​ature/​go_​
slim_​mappi​ng.​tab). For Drosophila melanogaster, GO annotation data is extracted from the 
COMPARTMENTS database [48]. Subcellular localization is downloaded from the knowl-
edge channel of the COMPARTMENTS database.

Gene expression data‑based method for constructing PPI sub‑networks

Gene expression data is presented in the form of an expression matrix, where each row 
represents the expression level of a protein, and each column corresponds to the expression 
level of a sample point. The number of sample points varies across different species. In the 
case of Saccharomyces cerevisiae, there are 12 sample points, while for Drosophila mela-
nogaster, there are 34 sample points. Each sample point corresponds to an average gene 
expression value.

For gene g of Saccharomyces cerevisiae, the average gene expression value can be 
expressed as Eq. 1.

(1)Gei(g) =
expri(g)+ expri+12(g)+ expri+24(g)

3
, i ∈ [0, 11]

Table 1  Information of PPI datasets

Datasets Proteins Interations Essentialproteins

DIP 5093 24,743 1167

BioGRID 5640 59,748 1200

Fruitfly 7783 35,015 493

https://downloads.yeastgenome.org/curation/literature/go_slim_mapping.tab
https://downloads.yeastgenome.org/curation/literature/go_slim_mapping.tab
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where expri(g) represents the gene expression value from the expression matrix, and i 
denotes the sample point number. The gene expression data of Saccharomyces cerevisiae 
comprises three cell cycles, each containing 12 time points. Each sample point corre-
sponds to the average gene expression value at a specific time point across the three cell 
cycles. For gene g of Drosophila melanogaster, the average gene expression value can be 
expressed as Eq. 2.

where expri(g) represents the gene expression value in the expression matrix, and i sig-
nifies the sample point number. The gene expression data for Drosophila melanogaster 
consists of 136 column values, with every set of 4 columns corresponding to 4 repeated 
experiments for one sample.

Based on gene expression data, we can construct PPI sub-networks. Saccharomyces cer-
evisiae contains 12 sub-networks, and Drosophila melanogaster contains 34 sub-networks. 
PPI networks can be abstracted into graph G = (V ,E) , where V is a set of nodes, E is a set 
of edges. Proteins are abstracted into nodes, and protein-protein interactions are abstracted 
into edges. Sub-networks based on gene expression data can be represented as Gi , G can be 
represented as Gi , forming G = {G1,G2, . . . ,Gi, . . . ,Gn} , where n represents the number 
of sample points of gene expression data. Each Gi = (Vi,Ei) is a sub-network of G, with 
Vi ⊆ V  , Ei ⊆ E . For any edge e ∈ Ei , the protein pairs in e are denoted as va and vb . Only if 
both va and vb are actively expressed at sample point i, will e be added to Ei . This approach 
effectively filters out noisy edges from sub-network Gi.

If the gene expression value of the sample point is greater than the threshold, the corre-
sponding protein is considered to be active at this sample point. So, how to determine the 
threshold? The 3-sigma model calculates the active expression threshold of each protein 
according to the characteristics of the expression value curve [49]. For gene g, the arithme-
tic mean and standard deviation of its gene expression data are Avg(g) and σ(g) , respec-
tively. Avg(g) and σ(g) can be expressed as follows:

where n is the number of sample points of gene expression data. The value of σ(g) 
reflects the fluctuation of gene expression data. k-sigma (k=1,2,3) threshold is calculated 
by three-sigma method [50–53], which is defined as Eq. 5.

where Avg(g) and σ(g) are calculated by Eqs. 3 and  4, respectively. If σ(g) is very small, 
Gei(g) is close to Avg(g), and Thrk(g) is close to Avg(g). Conversely, if σ(g) is very large, 
Gei(g) is not concentrated around Avg(g), but represents a set of strongly oscillating data. 

(2)Gei(g) =
expr4×i(g)+ expr4×i+1(g)+ expr4×i+2(g)+ expr4×i+3(g)

4
, i ∈ [0, 33]

(3)Avg(g) =
n
i=1Gei(g)

n
,

(4)σ(g) =

√

∑n
i=1

(

Gei(g)− Avg(g)
)2

n− 1
.

(5)Thrk(g) = Avg(g)+ k · σ(g) ·

(

1−
1

1+ σ 2(g)

)

,
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In such cases, Thrk(g) is close to Avg(g)+ k · σ(g) , where k is a multiple of σ(g) , Thrk(g) 
is positively correlated with k, a larger k results in a higher Thrk(g) . When k = 3 , Thrk(g) 
achieves the highest confidence. For instance, if Gei(g) ≥ Thr3(g) , Api(g) get the largest 
value 0.99(as defined by Eq. 6).

It is assumed that a set of gene expression data follows a probability distribu-
tion similar to the normal distribution. If this assumption is correct, the mean 
and variance of this group of data are denoted as µ and σ , respectively, then, 
P{|x − µ| < 3σ } ≈ 0.99, P{|x − µ| < 2σ } ≈ 0.95 , andP{|x − µ| < σ } ≈ 0.68 . Based on 
this theory, the probability of active expression of gene g at sample point i can be calcu-
lated as follows:

To further measure the reliability of protein interaction edges in each sub-network, we 
construct weighted sub-graphs. For an edge e = (v,u) ∈ Ei in the weighted sub-graph 
Gi = (Vi,Ei,Wi) , where protein v corresponding to gene v and protein u corresponding 
to gene u, we define Wi(v,u) = Api(v) · Api(u) , the weight of an edge represents the pos-
sibility that both gene v and gene u are active. ID mapping of gene and protein has been 
done in section ’Experimental datasets’.

Biological data‑based method for weighting proteins and protein‑protein interactions.

The essentiality of protein is associated with some biological data, such as protein 
complex, gene expression data, GO annotations and subcellular localization. We uti-
lize multiple types of biological data to characterize the essentiality of protein-protein 
interactions.

GO annotations

GO terms annotate the functional properties of a protein. For two interacted proteins, 
the more common GO terms they have, the more similar their functions are, and the 
greater weight of their interaction is [35]. The weight of an edge based on GO annota-
tions is denoted as Eq. 7.

where GOv is the set of GO terms of protein v. We use GOW(v, u) to assign the weight of 
the edge (v, u).

Gene expression

The interaction between two proteins can be weighted based on the strength of their 
co-expression, as demonstrated in previous studies [21]. The weight is determined by 
the Pearson correlation coefficient (PCC) calculated from gene expression data [21, 54]. 
PCC is denoted as follows:

(6)Api(g) =











0.99 if Gei(g) ≥ Thr3(g)
0.95 if Thr3(g) > Gei(g) ≥ Thr2(g)
0.68 if Thr2(g) > Gei(g) ≥ Thr1(g)
0.0 if Gei(g) < Thr1(g)

(7)GOW (v,u) =
|GOv ∩ GOu|

2

|GOv| · |GOu|
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where X and Y correspond to the gene expression data of protein v and protein u respec-
tively. X = {X1,X2, . . . ,Xi, . . . ,Xn} , Y = {Y1,Y2, . . . ,Yi, . . . ,Yn} , n is the number of 
sample points of gene expression data, which is defined in section ’Construct PPI sub-
networks by gene expression data’. Xi = Gei(v) , and Yi = Gei(u) , gene v and gene u cor-
respond to protein v and protein u, for Saccharomyces cerevisiae, Xi and Yi are defined 
by Eq. 1, and for Drosophila melanogaster, Xi and Yi are defined by Eq. 2.

Since PCC ranges from [−1,+1] , it needs to be standardized. GW(v, u) is the stand-
ardization of PCC, which is denoted as Eq. 9.

where PCC(X,  Y) is denoted as Eq.  8. GW(v,  u) ranges from [0,+1] . We finally use 
GW(v, u) to calculate the weight of the edge (v, u).

Protein complex

Proteins typically carry out biological functions through participation in protein com-
plexes. A protein’s likelihood of being essential often increases with the number of pro-
tein complexes it is involved in, as highlighted in previous studies [55, 56]. Consequently, 
the count of protein complexes in which a protein is located can reflect its essentiality. 
PCv denotes the number of protein complexes in which the protein v is located. Addi-
tionally, PCmax = max(PCv), (v ∈ V ) . The weight of edge (v, u) is denoted as Eq. 10.

Subcellular localization

The essentiality of proteins is related to their subcellular localizations, some subcellular 
localizations have a strong correlation with the essentiality of protein [57, 58]. In this 
section, we firstly select some subcellular localizations which are more relevant to essen-
tial proteins, and then, these selected subcellular localizations are weighted according to 
how important they are. Lastly, we score proteins’ essentiality by the subcellular localiza-
tions they appeared.

Subcellular localizations usually contain 11 compartments [48]. For the 11 subcellular 
localizations, we calculate the proportion EPI as follows:

where subi is the count of the 11 subcellular localizations, EPsubi is the number of essen-
tial proteins in subi, and Psubi is the number of proteins in subi. For the 11 subcellular 
localizations of different datasets, the proportion EPI is shown in Fig. 3.

(8)PCC(X ,Y ) =

∑n
k=1(Xk − X̄)(Yk − Ȳ )

√

∑n
k=1(Xk − X̄)2

√

∑n
k=1(Yk − Ȳ )2

(9)GW (v,u) =
PCC(X ,Y )+ 1

2

(10)PCW (v,u) =
PCv · PCu

PC2
max

(11)EPIsubi =
EPsubi

Psubi
, subi ∈ [1, 11]
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As shown in Fig. 3, the proportion EPI of some subcellular localizations is signifi-
cantly higher than others, such as Nucleus, Cytosol, and Cytoskeleton. On the con-
trary, the proportion EPI of Peroxisome and Extracellular region is significantly lower 
than others. This characteristic is present in different species, such as saccharomyces 
cerevisiae and drosophila melanogaster. Therefore, we select subcellular localizations 
we used based on the DIP dataset. The threshold EPthre is denoted as Eq. 12.

where, ep is the number of essential proteins in datasets DIP, and p is the num-
ber of proteins in datasets DIP. If EPI of subcellular localization is greater 
than threshold EPthre, this subcellular localization is selected in set SC. 
SC = {Nucleus,Cytosol,Cytoskeleton,Endoplasmicreticulum,Golgiapparatus} . For 
every selected subcellular localization SCi , we score it by the number of proteins in it, 
and it is denoted as Eq. 13.

where, NSCi = number of proteins in SCi , NSCmax = max(NSCi) , SCSi ranges from 
[0,+1] . Protein v is weighted based on the subcellular localization score, and its weight is 
denoted by Eq. 14.

(12)EPthre =
ep

p

(13)SCSi =
NSCi

NSCmax

(14)SWv =
SSCv

SSCmax

Fig. 3  Among 11 subcellular localizations, epn/pn is the proportion EPI, which is denoted as Eq. 11. Nucleus, 
Cytosol, Cytoskeleton, Peroxisome, Vacuole/Lysosome, Endoplasmic reticulum, Golgi apparatus, Plasma 
membrane, Endosome, Extracellular region, and Mitochondrion are 11 subcellular localizations, respectively. 
Especially, in datasets DIP and BioGRID, subcellular localization Vacuole/Lysosome is Vacuole. In the dataset 
fruitfly, it is referred to as Lysosome
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where, SSCv =
∑

v∈SCi

SCSi , SSCmax = max(SSCv), (v ∈ V ) . SWv ranges from [0,+1]

Seed expansion method based on sub‑networks and biological data

Essential proteins have a close relationship with each other [26]. CPPK predicts essen-
tial proteins by integrating network topology and some essential proteins as prior 
knowledge. However, the performance of CPPK depends excessively on the number 
of essential proteins used as prior knowledge. To tackle this problem, we randomly 
select a protein as a seed in each sub-network, and the expansion process is based 
on the seed set of each sub-networks. This integrates the topological characteristics 
of predicted essential proteins in sub-networks. The error correction mechanism fil-
ters out proteins that have been expanded but are of low essentiality. This mechanism 
integrates the topological characteristics of predicted essential proteins in the whole 
PPI network, and the weight of each node is based on biological data. To provide a 
more realistic representation of protein interactions, we divide the protein-protein 
interaction network into several sub-networks based on gene expression data. In this 
section, we execute seed expansion in each sub-network simultaneously and summa-
rize the expansion results to the whole PPI network. The detailed proecess of seed 
expansion is presented in Algorithm 1.

Algorithm 1
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Initialization of the seed set and the weight of node and edge

For the whole PPI network, the set of predicted essential protein is initialized as K. 
For the PPI sub-networks, the sets of predicted essential protein are initialized as Ki , 
where i ∈ [1,m] , and m is the number of sub-networks. A protein is randomly chosen 
from each sub-network and added to Ki , ensuring that the intersection of all initial Ki 
is empty. The initial K is formed by taking the union of all the initial Ki sets, expressed 
as K =

⋃m
i=1 Ki . K is the set of predicted essential proteins, and it continues expanding 

until its length reaches the output length n. In other words, the length of output K is n. 
The value of n is initialized as |V |

4
 for Saccharomyces cerevisiae and |V |

10
 for Drosophila 

melanogaster. When |K | = n , the proteins within K constitute all the essential proteins 
predicted by SESN. Furthermore, the ranking of a protein within K is higher if it was 
added earlier.
Nei_Ki is the union of neighbor sets of all proteins in Ki . Subsequently, any protein 

within Nei_Ki that is also present in K is removed.

where, Nu is the set of neighbors of protein u. To clarify, Nei_Ki ∩ K = ∅ , indicating that 
the intersection of Nei_Ki and K is empty. Similarly, Nei_K  is formed by combining the 
neighbor sets of all proteins in K. Subsequently, any protein within Nei_K  that is also 
present in K is removed.

score_initial describes the essentiality of protein in the whole PPI network. We initialize 
a weight matrix, defined as Eq. 17.

where, GOW(v, u) is denoted as Eq. 7, GW(v, u) is denoted as Eq. 9, and PCW(v, u) is 
denoted as Eq. 10. Wv,u is the weight of edge (v, u), then, we initialize the weight of pro-
tein by Eq. 18.

where SWv is denoted as Eq. 14, and Wv,u is denoted as Eq. 17.
Wmatrixi(v,u) describes the weight of protein interaction (v, u) in sub-network. Here, 

i is the count of the sub-networks, with i ∈ [1,m] . For Saccharomyces cerevisiae, m = 12 , 
and for Drosophila melanogaster, m = 34 . Wmatrixi(v,u) ranges from [0,+1] , which is 
denoted as follows:

where, GOW(v,  u) is denoted as Eq.  7, Api(v) and Api(u) are all denoted as Eq.  6, 
PCW(v, u) is denoted as Eq. 10, SWv and SWu are all denoted as Eq. 14.

(15)Nei_Ki = (

Ki
⋃

u∈Ki

Nu) \ K

(16)Nei_K = (

K
⋃

u∈K

Nu) \ K

(17)Wv,u = GOW (v,u) · GW (v,u) · PCW (v,u)

(18)score_initialv = (

Nv
∑

u∈Nv

Wv,u) · SWv

(19)Wmatrixi(v,u) = GOW (v,u) · Api(v) · Api(u) · PCW (v,u) · SWv · SWu
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Seed expansion in sub‑networks

The expansion process is performed simultaneously in all sub-networks and terminates 
when |K | = n . If |K | < n , we select a protein called max_Wmatrix_node from Nei_Ki , 
where i ∈ [1,m] . Owing to Nei_Ki ∩ K = ∅ , the protein selected from Nei_Ki is not in 
K. For each protein (denoted as Nei) in Nei_Ki , calculate score_WNei based on Wmatrix, 
score_WNei is defined as follows:

where, useNei = NNei
⋂

K  , NNei is the set of neighbors of protein Nei. Among the neigh-
bors of protein Nei, only those within K are taken into consideration. When protein 
Nei is more closely connected with set useNei, the value of score_WNei is higher. This 
approach allows us to effectively leverage the topological characteristics of predicted 
essential proteins within sub-networks.

The selection process of protein max_Wmatrix_node consists of two steps. In the 
first step, we find the maximum score_WNei in each sub-network. For all Nei ∈ Nei_Ki , 
the maximum score_WNei is denoted as sub_max_Wmatrixi . In the second step, after 
calculating all the sub-networks, we gather all the sub_max_Wmatrixi values, where 
i ∈ [1,m] . The maximum value among these is denoted as max_Wmatrix , and its cor-
responding node is max_Wmatrix_node.

We add the node max_Wmatrix_node into K if it is not already in K, and if it exists in 
Vi , we also add it to Ki . If we change the node in K(by adding or deleting it), we should 
also change the corresponding node in Ki(by adding or deleting it). Among Nei_Ki of all 
the sub-networks, max_Wmatrix_node is the node with the closest connections to the 
predicted essential proteins set K and possesses crucial biological characteristics.

Seed expansion method with error correction mechanism

The initialization of Ki and K is random, and the expansion process is based on Nei_Ki 
of sub-networks. If the essentiality of the seed in Ki is low, then there is a high prob-
ability that the essentiality of their neighboring nodes will also be low. In other words, 
the essentiality of the node selected from Nei_Ki will also be low. Therefore, we add an 
error correction mechanism to filter out the nodes with low essentiality in K. The error 
correction mechanism is based on score_initial calculates by Eq. 18, which describes the 
essentiality of protein in the whole PPI network.

The error correction mechanism consists of two main steps. In the first step, we find 
two nodes based on score_initial . The first node is min_initial_node , which has minimum 
score_initial(denoted as min_initial ) of all proteins in K that have not been removed. 
The second node is max_initial_node , which has maximum score_initial(denoted as 
max_initial ) of all proteins in Nei_K  . Since Nei_K ∩ K = ∅ , max_initial_node is not 
in K. For all proteins in Nei_K  , max_initial_node has the most important topological 
and biological characteristics. The selection of min_initial_node and max_initial_node 
is based on the whole PPI network. In the second step, we include one node in K while 
removing another node from K. If max_initial > min_initial , we add max_initial_node 

(20)score_WNei =

useNei
∑

v∈useNei

Wmatrixi(Nei, v)
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to K if it is not already in K. Moreover, if min_initial_node has not been removed from 
K before, we remove it. A node in K can only be removed one time. Subsequently we 
update Ki and the state of min_initial_node is altered to ’removed’. In order to ensure 
|K | increases monotonically with the increase of the number of iterations, we remove 
min_initial_node from K if and only if max_initial_node has been added to K during this 
particular iteration.

The error correction mechanism is based on score_initial , which is the weight based 
on biological data. The selection of max_initial_node integrates the topological charac-
teristics of predicted essential proteins in the whole PPI network.

Analysis of biological data

We integrate protein complex, gene expression data, GO annotations and subcellular 
localization into the seed expansion process. More specifically, each biological charac-
teristic is employed to initialize score_initial and Wmatrix. In order to analyze the effect 
of each biological characteristic on the final prediction results, we delete the weighting 
method based on biological data one by one. For example, in Eq. 18, let GOW (v,u) = 1 . 
In other words, we no longer use GO annotations to weight Wmatrix, while everything 
else remains the same. Specifically, Eqs.  18 and 19 are redefined as Eqs.  21 and 22 as 
follows:

where Wv,u of Eq. 17 is redefined as GOW (v,u)α1 · GW (v,u)α2 · PCW (v,u)α3 and SWv of 
Eq. 14 is redefined as SW α4

v .

where Api(v,u) = Api(v) · Api(u) , Api(v) and Api(u) are denoted as Eq.  6, 
SW (v,u) = SWv · SWu , SWv and SWu are denoted as Eq. 14. α1 to α8 determine which 
biological data will be deleted.

The value set (α1,α2, ...α8) = {(0, 1, ..., 1), (1, 0, ..., 1), ..., (1, 1, ..., 0), (1, 1, ..., 1)} includes 
9 groups of values, of which the ninth group consists entirely of 1 s. The values of the 
first eight groups are: α1 to α8 take 0 in sequence, while the remaining seven values are 
all 1 s. For example, the first group is (0, 1, 1, 1, 1, 1, 1, 1).

Table 2 compares the statistical measures of 9 methods. The 9 columns of Table 2 
correspond to 9 groups of values in (α1,α2, ...α8) . The defination of statistical measures 
can be found in the section ’Statistical measures’. Each column of statistical measures 
corresponds to the deletion of GO annotations, gene expression data, protein com-
plex, and subcellular localization of the initialization of score_initial and Wmatrix, 
respectively. Figure 4 shows jackknife curves of the three aforementioned datasets. The 
labels initial_go , initial_gene , initial_com , initial_sub , W _go , W _gene , W _com , W _sub 
and all correspond to the 9 groups of values in (α1,α2, ...α8) . The statistical measures 
and jackknife curves achieved the same experimental results. For Saccharomyces cer-
evisiae, when initializing Wmatrix without protein complex, the DIP and BioGRID 

(21)score_initialv = (

Nv
∑

u∈Nv

GOW (v,u)α1 · GW (v,u)α2 · PCW (v,u)α3) · SW α4
v

(22)Wmatrixi(v,u) = GOW (v,u)α5 · Api(v,u)
α6 · PCW (v,u)α7 · SW (v,u)α8
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datasets achieve the best results. The value set (α1,α2, ...α8) = (1, 1, 1, 1, 1, 1, 0, 1) cor-
responds to these optimal results, which we will employ in subsequent experiments. 
For Drosophila melanogaster, when initializing score_initial without subcellular local-
ization, we achieve the best results, the value set (α1,α2, ...α8) = (1, 1, 1, 0, 1, 1, 1, 1) . 
We also employ these results in the follow-on experiments. The method with the best 
results is SESN.

Experimental results and discussion
Statistical measures

We compare the performance of our method with other identification methods by six 
statistical measures. These statistical measures can also be used to analyze the effect of 
each component and biological data on the final results. We define sensitivity (SN), spec-
ificity (SP), positive predictive value (PPV), negative predictive value (NPV), F-meas-
ure (F), and accuracy (ACC) as follows: SN = TP

TP+FN  , SP = TN
TN+FP , PPV = TP

TP+FP , 
NPV = TN

TN+FN  , F = 2·SN ·PPV
SN+PPV  , ACC = TP+TN

TP+FP+TN+FN  . Where TP is true positives; FP is 
false positives; TN is true negatives; and FN is false positives. The larger these statistical 
measures, the higher the accuracy of the corresponding essential protein identification 
method.

Jackknife curves

We plot jackknife curves to display the number of true positives for essential proteins in 
the predicted set of essential proteins as the ranking increases. We consider a protein’s 
ranking to be higher if it is added to the set K earlier.

Table 2  The effect of biological data

Dataset Measures score_initial Wmatrix All

GO Gene Com Sub GO Gene Com Sub

DIP SN 0.5467 0.5467 0.5510 0.5313 0.5441 0.5476 0.5656 0.5296 0.5476

SP 0.8383 0.8383 0.8395 0.8337 0.8375 0.8385 0.8439 0.8332 0.8385

PPV 0.5012 0.5012 0.5051 0.4870 0.4988 0.5020 0.5185 0.4855 0.5020

NPV 0.8615 0.8615 0.8628 0.8568 0.8607 0.8618 0.8673 0.8563 0.8618

F 0.5230 0.5230 0.5270 0.5082 0.5205 0.5238 0.5410 0.5066 0.5238

ACC​ 0.7715 0.7715 0.7734 0.7644 0.7703 0.7718 0.7801 0.7636 0.7718

BioGRID SN 0.5608 0.5641 0.5742 0.5575 0.5633 0.5633 0.5967 0.5575 0.5642

SP 0.8340 0.8349 0.8376 0.8332 0.8347 0.8347 0.8437 0.8331 0.8350

PPV 0.4773 0.4801 0.4887 0.4745 0.4794 0.4794 0.5078 0.4747 0.4801

NPV 0.8754 0.8764 0.8792 0.8745 0.8761 0.8761 0.8856 0.8745 0.8764

F 0.5157 0.5188 0.5280 0.5126 0.5180 0.5180 0.5486 0.5126 0.5188

ACC​ 0.7759 0.7774 0.7816 0.7745 0.7770 0.7770 0.7912 0.7745 0.7774

Fruitfly SN 0.2880 0.2880 0.2738 0.2982 0.2880 0.2819 0.2535 0.2941 0.2860

SP 0.9128 0.9128 0.9118 0.9134 0.9128 0.9123 0.9104 0.9132 0.9126

PPV 0.1825 0.1825 0.1735 0.1889 0.1825 0.1787 0.1607 0.1864 0.1812

NPV 0.9499 0.9499 0.9489 0.9506 0.9499 0.9495 0.9475 0.9503 0.9498

F 0.2234 0.2234 0.2124 0.2313 0.2234 0.2187 0.1967 0.2282 0.2219

ACC​ 0.8732 0.8732 0.8714 0.8745 0.8732 0.8724 0.8688 0.8740 0.8729
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Analysis of each component

In order to validate the effectiveness of each component of SESN, we remove one or 
several components. Specifically, we remove the sub-networks component, the error 

Fig. 4  Jackknife curves of the effect of biological data
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correction mechanism, the seed expansion component, and the subcellular localization 
selection. When we remove the sub-networks component, the process of seed expansion 
is based on the whole network, and this method is named rm_sub . We remove the error 
correction mechanism, the seed expansion is only based on Wmatrix with no error cor-
rection mechanism. This method is named rm_correction . We remove the seed expan-
sion component, and the process of essential protein identification is only based on 
Wmatrix or score_initial . For Wmatrix, we initialize the weight of a protein based on the 
following equation: score_Wmatrixv =

∑Nv
u∈Nv

Wmatrixv,u , where Wmatrix is denoted 
as Eq.  19. This method is named Wmatrix. The method only based on score_initial 
is named score_initial , where the weight of the protein is based on Eq.  18. In section 
’Subcellular localization’, we select some subcellular localizations highly correlated to 
essential proteins, to validate the effectiveness of this component, we use all subcellular 
localizations, this method is named all_subcellular.

As shown in Table  3 and Fig.  5, compared with rm_sub , rm_correction , Wmatrix, 
score_initial , and all_subcellular , SESN achieves the best results in three datasets. 
All components are effective to SESN. For DIP and BioGRID, all components show a 
significant gap with SESN, especially rm_correction , which indicates that error cor-
rection mechanism is the most effective component. For Drosophila melanogaster, 
without_correction corresponds to rm_correction in Table 3. All components are effec-
tive except all_subcellular . The statistic measures of SESN are slightly higher than those 
of all_subcellular , and their jackknife curves basically coincide, which means that the 
selection of subcellular localization plays a small role in this case. It also demonstrates 
that the unselected subcellular localizations do not work in predicting essential proteins.

Table 3  Effectiveness of each part of SESN

Datasets Measures rm_sub rm_correction Wmatrix score_initial all_subcellular SESN

DIP SN 0.5493 0.5304 0.5501 0.5484 0.5467 0.5656
SP 0.8390 0.8334 0.8393 0.8388 0.8382 0.8439
PPV 0.5035 0.4863 0.5043 0.5027 0.5012 0.5185
NPV 0.8623 0.8565 0.8626 0.8620 0.8615 0.8673
F 0.5254 0.5074 0.5262 0.5246 0.5230 0.5410
ACC​ 0.7726 0.7640 0.7730 0.7722 0.7715 0.7801

BioGRID SN 0.5658 0.5542 0.5658 0.5650 0.5775 0.5967
SP 0.8354 0.8322 0.8354 0.8351 0.8385 0.8437
PPV 0.4816 0.4716 0.4816 0.4809 0.4915 0.5078
NPV 0.8768 0.8735 0.8768 0.8766 0.8801 0.8856
F 0.5203 0.5096 0.5203 0.5195 0.5310 0.5486
ACC​ 0.7780 0.7730 0.7780 0.7777 0.7830 0.7912

Fruitfly SN 0.2819 0.2799 0.2657 0.2779 0.2941 0.2982
SP 0.9123 0.9122 0.9112 0.9121 0.9132 0.9134
PPV 0.1787 0.1774 0.1684 0.1761 0.1864 0.1889
NPV 0.9495 0.9493 0.9483 0.9491 0.9503 0.9506
F 0.2187 0.2172 0.2061 0.2155 0.2282 0.2313
ACC​ 0.8724 0.8722 0.8704 0.8719 0.8740 0.8745
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Fig. 5  Jackknife curves of the effect of each component of SESN
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Analysis of the performance of SESN and other methods

To validate the performance of SESN, we compare it with other methods: CPPK, CEPPK, 
RWEP, SIGEP, RWO and TS-PIN.

The algorithms CPPK and CEPPK are based on the whole protein-protein interaction 
data. To filter false positive interactions, SESN integrate multiple biological character-
istics to construct weighted PPI sub-networks. The algorithms CPPK and CEPPK ran-
domly select k ( k = 100 ) known essential proteins as prior knowledge and add them to a 
set K. However, the performance of CPPK and CEPPK excessively depends on the num-
ber of essential proteins. The algorithm SESN does not use essential proteins as prior 
knowledge. We randomly select a protein in each sub-network and add it to a set Ki . 
K =

⋃m
i=1 Ki . Different from the CPPK and CEPPK algorithms, K is the set of predicted 

essential proteins, not known essential proteins. When the CPPK and CEPPK algo-
rithms perform node expansion on set K within the whole PPI network, they select the 
neighbor node of K with the highest score and add it to set K. Due to the fact that the 
node expansion process of the CPPK and CEPPK algorithms is based on the neighbor 
nodes of K, it results in considering only the topological characteristics of set K within 
the whole PPI network. The algorithm SESN considers topological characteristics of 
predicted essential proteins in Ki and K. The seed expansion process of algorithm SESN 
is based on the neighbor nodes of Ki , which integrates the topological characteristics 
of predicted essential proteins in the sub-networks. The error correction mechanism 
of algorithm SESN is based on the neighbor nodes of K, which integrates the topologi-
cal characteristics of predicted essential proteins in the whole PPI network. CPPK and 
CEPPK are only applied to Saccharomyces cerevisiae, they randomly select 100 essential 
proteins as prior knowledge. For Drosophila melanogaster, the fruitfly dataset only has 
493 essential protein, we randomly select 20 essential proteins as prior knowledge. The 
same as SESN, we regard the earlier a protein is selected as a predicted essential protein, 
the higher its score. SESN does not use essential proteins as prior knowledge, but SESN 
detects essential proteins more effectively than CPPK and CEPPK.

RWEP integrates the same biological properties as SESN. As shown in Table  5 and 
Fig.  7, to achieve optimal results, parameter � of RWEP is set to 0.2, 0.1, and 0.9 for 
DIP, BioGRID, and fruitfly datasets, respectively. SESN analyzes the effect of each bio-
logical data on the final prediction results, and adopts the corresponding biological data 
with the best results. The experimental results show that SESN outperforms RWEP sig-
nificantly, demonstrating the effectiveness of analyzing biological data from a different 
perspective.

SIGEP presents a p-value calculation method in which both degree and local cluster-
ing coefficient are used as test statistic. Proteins are sorted according to p-values. SIGEP 
does not integrate any biological data, and its performance is inferior to that of SESN, 
which indicates that the integration of biological data improves the performance of 
SESN.

RWO uses orthologous relationships to connect yeast and human PPI. Since RWO 
does not give the orthologous relationships applied to the fruitfly, we compare RWO and 
SESN on yeast datasets: DIP and BioGRID. SESN does not integrate orthologous rela-
tionships, but its performance is significantly better than RWO.
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The statistical measures of these methods are shown in Table 4. In the three datasets, 
the values of six statistical measures of SESN are the highest among all these methods. 
Jackknife curves of these methods are shown in Fig. 6, revealing that SESN significantly 
better than other methods.

TS-PIN is an algorithm aimed at optimizing PPI networks. TS-PIN refines the PPI net-
work by removing edges in it. The initial PPI network is denoted as PPI. By utilizing TS-
PIN, specific edges are removed from the PPI network to generate the refined network, 
which is designated as TSPPI. To assess the effectiveness of TS-PIN for SESN, we feed 
the TSPPI network into SESN and execute all the SESN steps. This combined approach 
is denoted as TS-PIN-SESN. The distinction between TS-PIN-SESN and SESN lies solely 
in the input network. The TSPPI network employed by TS-PIN-SESN is a subset of the 
PPI network used by SESN, resulting in the two algorithms utilizing distinct datasets. 
To ensure the validity of the comparative experimental outcomes, we implemented the 
subsequent two procedures on the output results of the two comparative algorithms. 1: 
For the output results of the SESN algorithm, only the proteins appearing in the TSPPI 
network were retained. In this manner, the experimental results of TS-PIN-SESN and 
SESN are based on the TSPPI network. The statistical measures and Jackknife curves of 
SESN and TS-PIN-SESN on TSPPI network are shown in Table 6 and Fig. 8. The exper-
imental results show that the TS-PIN-SESN algorithm do not improve the identifica-
tion accuracy of essential proteins in the TSPPI network. Both TS-PIN-SESN and SESN 
yield identical experimental results for the BioGRID and fruitfly datasets. However, for 
the experimental results regarding the DIP dataset, TS-PIN-SESN exhibits even poorer 
performance. 2: We assign a score of 0 to proteins that have been removed from the 
PPI network, and subsequently add these proteins along with their scores to the out-
put results of the TS-PIN-SESN algorithm. In this manner, the experimental results of 
both TS-PIN-SESN and SESN are based on the PPI network. The statistical measures 

Table 4  Comparison of statistical measures between SESN and other methods

Datasets Measures CPPK CEPPK RWEP SIGEP RWO SESN

DIP SN 0.4893 0.5056 0.5347 0.4627 0.4327 0.5656
SP 0.8212 0.8260 0.8347 0.8133 0.8044 0.8439
PPV 0.4485 0.4635 0.4902 0.4242 0.3967 0.5185
NPV 0.8440 0.8490 0.8579 0.8359 0.8267 0.8673
F 0.4680 0.4836 0.5115 0.4426 0.4139 0.5410
ACC​ 0.7451 0.7526 0.7660 0.7330 0.7192 0.7801

BioGRID SN 0.5383 0.5367 0.5675 0.5367 0.4933 0.5967
SP 0.8280 0.8276 0.8359 0.8276 0.8158 0.8437
PPV 0.4582 0.4567 0.4830 0.4567 0.4199 0.5078
NPV 0.8691 0.8686 0.8774 0.8686 0.8563 0.8856
F 0.4950 0.4935 0.5218 0.4935 0.4536 0.5486
ACC​ 0.7664 0.7657 0.7788 0.7657 0.7473 0.7912

Fruitfly SN 0.2190 0.2130 0.2698 0.1866 0.2982
SP 0.9081 0.9077 0.9115 0.9059 0.9134
PPV 0.1388 0.1350 0.1710 0.1183 0.1889
NPV 0.9450 0.9446 0.9486 0.9428 0.9506
F 0.1699 0.1652 0.2093 0.1448 0.2313
ACC​ 0.8644 0.8637 0.8709 0.8603 0.8745
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and Jackknife curves of SESN and TS-PIN-SESN on PPI network are shown in Table 7 
and Fig. 9. The experimental results show that the SESN algorithm performs better than 
TS-PIN-SESN. In summary, the TS-PIN algorithm is ineffective for SESN.

Fig. 6  Jackknife curves of SESN and other methods
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Conclusions
Essential proteins are crucial for maintaining vital biological functions. Identifying 
essential proteins is of great significance for biology and pathology. In recent years, a 
large number of algorithms based on protein-protein interaction (PPI) networks have 
been proposed to identify essential proteins. However, PPI data obtained through high-
throughput technology often contain many false positives. This will seriously affect 
the accuracy of identifying essential proteins. Therefore, further research is needed to 
improve the accuracy of essential protein identification.

In this paper, we propose a novel method named SESN for identifying essential pro-
teins. SESN is a seed expansion method based on protein-protein interaction (PPI) sub-
networks and biological characteristics. To filter out false positive interactions in PPI 
networks, SESN constructs PPI sub-networks using gene expression data. Seed expan-
sion is performed simultaneously in each sub-network, where each sub-network ran-
domly selects a protein as a seed, and the expansion results are summarized for the 
entire PPI network. The error correction mechanism filters out low-essentiality proteins 
that have been expanded. SESN adopts the biological data combination with the best 
experimental results. The output of SESN is a set of predicted essential proteins.

The analysis of each component of SESN shows that all components are effective, 
especially the error correction mechanism. The comparison experiments are conducted 
on three datasets of two species(DIP, BioGRID, fruitfly). Experiment results show that 
compared with other methods(CPPK, CEPPK, RWEP, SIGEP, RWO, and TS-PIN), SESN 
achieves the best results in three datasets. SESN may provide a useful tool for future 
research on prediction of essential proteins.

Table 5  Statistical measures of different values of � for RWEP

Datasets Measures 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

DIP SN 0.5004 0.5347 0.5338 0.5296 0.5201 0.5167 0.5047 0.5021 0.4996 0.5004

SP 0.8245 0.8347 0.8344 0.8332 0.8304 0.8293 0.8258 0.8250 0.8242 0.8245

PPV 0.4588 0.4902 0.4894 0.4855 0.4768 0.4737 0.4627 0.4603 0.4580 0.4588

NPV 0.8474 0.8579 0.8576 0.8563 0.8534 0.8524 0.8487 0.8479 0.8471 0.8474

F 0.4951 0.5115 0.5107 0.5066 0.4975 0.4943 0.4828 0.4803 0.4779 0.4786

ACC​ 0.7581 0.7660 0.7656 0.7636 0.7593 0.7577 0.7522 0.7510 0.7499 0.7502

BioGRID SN 0.5675 0.5667 0.5550 0.5475 0.5392 0.5308 0.5233 0.5200 0.5150 0.5133

SP 0.8359 0.8356 0.8324 0.8304 0.8282 0.8259 0.8239 0.8230 0.8216 0.8212

PPV 0.4830 0.4823 0.4723 0.4660 0.4589 0.4518 0.4454 0.4426 0.4383 0.4369

NPV 0.8774 0.8771 0.8738 0.8716 0.8693 0.8669 0.8648 0.8638 0.8624 0.8619

F 0.5218 0.5211 0.5103 0.5034 0.4958 0.4881 0.4812 0.4782 0.4736 0.4720

ACC​ 0.7788 0.7784 0.7734 0.7702 0.7667 0.7631 0.7599 0.7585 0.7564 0.7557

Fruitfly SN 0.2535 0.2556 0.2637 0.2657 0.2657 0.2677 0.2677 0.2677 0.2698 0.2535

SP 0.9104 0.9106 0.9111 0.9112 0.9112 0.9114 0.9114 0.9114 0.9115 0.9104

PPV 0.1607 0.1620 0.1671 0.1684 0.1684 0.1697 0.1697 0.1697 0.1710 0.1607

NPV 0.9475 0.9476 0.9482 0.9483 0.9483 0.9485 0.9485 0.9485 0.9486 0.9475

F 0.1967 0.1983 0.2046 0.2061 0.2061 0.2077 0.2077 0.2077 0.2093 0.1967

ACC​ 0.8688 0.8691 0.8701 0.8704 0.8704 0.8706 0.8706 0.8706 0.8709 0.8688
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Fig. 7  Jackknife curves of the effect of parameter � of RWEP
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Table 6  Comparison of statistical measures between SESN and TS-PIN-SESN on TSPPI network

Datasets Measures TS-PIN-SESN SESN

DIP SN 0.4847 0.4872
SP 0.8742 0.8755
PPV 0.6708 0.6743
NPV 0.7622 0.7634
F 0.5627 0.5657
ACC​ 0.7394 0.7412

BioGRID SN 0.5186 0.5186
SP 0.8743 0.8743
PPV 0.6558 0.6558
NPV 0.7973 0.7973
F 0.5791 0.5791
ACC​ 0.7619 0.7619

Fruitfly SN 0.1618 0.1618
SP 0.9090 0.9090
PPV 0.2 0.2
NPV 0.8852 0.8852
F 0.1789 0.1789
ACC​ 0.8169 0.8169

Table 7  Comparison of statistical measures between SESN and TS-PIN-SESN on PPI network

Datasets Measures TS-PIN-SESN SESN

DIP SN 0.4696 0.5656
SP 0.8153 0.8439
PPV 0.4305 0.5185
NPV 0.8380 0.8673
F 0.4492 0.5410
ACC​ 0.7361 0.7801

BioGRID SN 0.5125 0.5967
SP 0.8210 0.8437
PPV 0.4362 0.5078
NPV 0.8618 0.8856
F 0.4713 0.5486
ACC​ 0.7554 0.7912

Fruitfly SN 0.2252 0.2982
SP 0.9085 0.9134
PPV 0.1427 0.1889
NPV 0.9455 0.9506
F 0.1747 0.2313
ACC​ 0.8652 0.8745
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Fig. 8  Jackknife curves of SESN and TS-PIN-SESN on TSPPI network
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GO	� Gene ontology
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Fig. 9  Jackknife curves of SESN and TS-PIN-SESN on PPI network
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