
Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// 
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi 
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Draizen et al. BMC Bioinformatics           (2024) 25:11  
https://doi.org/10.1186/s12859-023-05586-5

BMC Bioinformatics

Prop3D: A flexible, Python-based platform 
for machine learning with protein structural 
properties and biophysical data
Eli J. Draizen1,2*, John Readey3, Cameron Mura1,2* and Philip E. Bourne1,2 

Abstract 

Background: Machine learning (ML) has a rich history in structural bioinformatics, 
and modern approaches, such as deep learning, are revolutionizing our knowledge 
of the subtle relationships between biomolecular sequence, structure, function, 
dynamics and evolution. As with any advance that rests upon statistical learning 
approaches, the recent progress in biomolecular sciences is enabled by the availability 
of vast volumes of sufficiently-variable data. To be useful, such data must be well-struc-
tured, machine-readable, intelligible and manipulable. These and related requirements 
pose challenges that become especially acute at the computational scales typical 
in ML. Furthermore, in structural bioinformatics such data generally relate to protein 
three-dimensional (3D) structures, which are inherently more complex than sequence-
based data. A significant and recurring challenge concerns the creation of large, high-
quality, openly-accessible datasets that can be used for specific training and bench-
marking tasks in ML pipelines for predictive modeling projects, along with reproducible 
splits for training and testing.

Results: Here, we report ‘Prop3D’, a platform that allows for the creation, sharing 
and extensible reuse of libraries of protein domains, featurized with biophysical 
and evolutionary properties that can range from detailed, atomically-resolved phys-
icochemical quantities (e.g., electrostatics) to coarser, residue-level features (e.g., 
phylogenetic conservation). As a community resource, we also supply a ‘Prop3D-20sf’ 
protein dataset, obtained by applying our approach to CATH. We have developed 
and deployed the Prop3D framework, both in the cloud and on local HPC resources, 
to systematically and reproducibly create comprehensive datasets via the Highly Scal-
able Data Service (HSDS). Our datasets are freely accessible via a public HSDS instance, 
or they can be used with accompanying Python wrappers for popular ML frameworks.

Conclusion: Prop3D and its associated Prop3D-20sf dataset can be of broad util-
ity in at least three ways. Firstly, the Prop3D workflow code can be customized 
and deployed on various cloud-based compute platforms, with scalability achieved 
largely by saving the results to distributed HDF5 files via HSDS. Secondly, the linked 
Prop3D-20sf dataset provides a hand-crafted, already-featurized dataset of pro-
tein domains for 20 highly-populated CATH families; importantly, provision of this 
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pre-computed resource can aid the more efficient development (and reproducible 
deployment) of ML pipelines. Thirdly, Prop3D-20sf’s construction explicitly takes 
into account (in creating datasets and data-splits) the enigma of ‘data leakage’, stem-
ming from the evolutionary relationships between proteins.

Keywords: Deep learning, Machine learning, Massively parallel workflows, Protein 
structure, Structural bioinformatics

Introduction
The recent advent of deep learning approaches such as Alpha Fold2 [1] now enables 
one to access the 3D structure of virtually any protein sequence. As was the case for 
sequence-level data in the 1980s-2000s, 3D structural data on proteins has now been 
transformed into a readily available commodity. How might such a wealth of structural 
data inform our understanding of biology’s central sequence ↔ structure ↔ function par-
adigm? Two new, post-Alpha Fold2 challenges can be identified: (i) elucidating the rela-
tionships between all structures in the protein universe, and (ii) armed with millions of 
new protein structures [2], exploring the limits of protein function prediction. Arguably, 
classic structural bioinformatics paradigms and approaches, which are largely founded 
on comparative structural analyses, should now be an even more powerful tool in ana-
lyzing and accurately predicting protein function.

In structural bioinformatics, the ‘data’ center around biomolecular 3D structures. 
Here, we take such ‘data’ to mean the geometric structures themselves, augmented (or 
featurized) by a possible multitude of other properties. These other properties can be 
(i) at potentially varying length-scales (atomic, residue-level, domains, etc.), and (ii) of 
numerous types, either biological in origin (e.g., phylogenetic conservation at a site) or 
physicochemical in nature (e.g., hydrophobicity or partial charge of an atom, concavity of 
a patch of surface residues, etc.). A significant and persistent challenge in developing and 
deploying ML workflows in structural bioinformatics concerns the availability of large, 
high-quality, openly-accessible datasets that can be (easily) used in large-scale analy-
sis and predictive modeling projects. Here, ‘high-quality’ implies that specific training 
and benchmarking tasks can be performed reproducibly and without undue effort, and 
that the data-splits for model training/testing/validation are reproducible. A stronger 
requirement is that the split method also be at least semi-plausible, or not nonsensi-
cal, in terms of the underlying biology of a system—e.g., taking into account evolution-
ary relationships that muddle the assumed (statistical) independence of the splits. (This 
topic of evolutionary ‘data leakage’, and how we handle it, is presented in detail below.)

A common task in classical bioinformatics involves transferring functional annota-
tions from a well-characterized protein to a protein of interest, if given sufficient shared 
evolutionary history between the two proteins. A conventional approach to this task 
typically applies sequence or structure comparison (e.g., via BLAST [3] or TM-Align [4], 
respectively) of a protein of interest to a database of all known proteins, followed by a 
somewhat manual process of ‘copying’ or grafting the previously annotated function into 
a new database record for the protein of interest. However, in the era of ML one can 
now try to go automatically and more directly from sequence or structure to functional 
annotations: an ML model can ‘learn’ these evolutionary relationships between proteins 
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as part of the model, thereby obviating the more manual/tedious (and subjective) align-
ment-related steps.

However, ML workflows for working with proteins—and, in particular, protein 3D 
structures—are far more challenging, from a technological and data-engineering per-
spective, than are many of the standard and more routine ML workflows designed to 
handle inputs in other ML application domains (e.g., for processing images or text). 
Protein structures are more difficult to work with, from both a basic and applied ML 
perspective, for several types of reasons, including: (i) fundamentally, all proteins are 
related at some level through evolution, thereby causing ‘data leakage’ [5]; (ii) raw/
unprocessed protein structures are not always biophysically and chemically well-formed 
(e.g., atoms or entire residues may be missing) [6, 7]; (iii) somewhat related, some pro-
tein structures ‘stress-test’ the flexibility and resiliency of existing data structures by hav-
ing, for instance, multiple rotamers/conformers at some sites; (iv) a protein’s biophysical 
properties, which are not always included and learned in existing ML models, are just 
as critical, if not more so, as the raw 3D geometry itself; and (v) there are many differ-
ent possible representational approaches/models of protein structures (volumetric data, 
contact-based graphs, etc.) that can yield different results. In short, protein structural 
data must be carefully inspected and processed before they can be successfully used and 
split in precise, sensible ways in order to create robust ML models.

Motivated by these challenges, this work presents ‘Prop3D’ and an accompanying 
resource called ‘Prop3D-20sf ’, shown schematically in Fig. 1. As a new Python-based 

Fig. 1 Overview of Prop3D and its components. Prop3D is a framework to create and share protein 
structures featurized with custom sets of properties (biophysical, phylogenetic, etc.), thereby providing 
ML-ready datasets for structural bioinformatics. One works towards this goal, represented by the green- and 
blue-background regions to the right and top of this schematic, by utilizing two distinct packages that lie at 
the core of Prop3D (yellow region at left): (i) ‘Meadowlark’, which enables one to prepare structures, compute 
and apply features, and run bioinformatics tools/utilities as Docker-ized software (sw); and (ii) ‘AtomicToil’, for 
performing massively-parallel calculations, locally or in the cloud, using the Toil pipeline system. Proceeding 
in this way, a dataset of featurized structures can be readily used in the popular ML framework PyTorch, 
for instance using various representational schemes and types of ML models (language models, graphical 
models, etc.), as shown in the green region at right; Prop3D facilitates these steps by providing custom 
PyTorch data loaders that enable rapid, high-volume processing. Prop3D-20sf, a dataset that we created by 
applying Prop3D to CATH, is available as a publicly-available HSDS endpoint
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platform for processing and otherwise manipulating protein domain structures, 
Prop3D includes tools to build one’s own datasets with (i) cleaned/prepared struc-
tures, (ii) pre-calculated biophysical and evolutionary properties and (iii) different 
protein representations, alongside (iv) ML-ready train/test splits. We supply the 
methods by which anyone can readily recreate the Prop3D-20sf dataset supplied 
with Prop3D; these calculations can be done in a distributed manner and read into 
the Prop3D framework for use in one’s own ML models. The pre-computed datasets 
that we provide, using HSDS, can be freely accessed via a standard representational 
state transfer (ReST) application programming interface (API), along with accom-
panying Python wrappers for NumPy and the popular ML framework PyTor ch. In 
what follows, we describe the Prop3D software and Prop3D-20sf dataset after first 
delineating some of the specific considerations that motivated and shaped Prop3D’s 
design.

Motivating factors: data leakage, biophysical properties, and protein 
representations
Evolutionary data leakage

ML with proteins is uniquely challenging because all naturally occurring proteins are 
interrelated via the biological processes of molecular evolution [8]. Therefore, randomly 
chosen train/test splits are not necessarily meaningful, as there are bound to be crosso-
ver relationships between proteins (even if only distantly homologous), ultimately lead-
ing to overfitting of the ML model. Moreover, the available datasets are biased—they 
sample the protein universe in a highly non-uniform (or, rather, non-representative) 
manner (Fig. 2), which leads to biased ML models. For example, there are simply more 
3D structures available in the Protein Data Bank (PDB [9]) for certain protein super-
families because, for instance, some of those families were of specific (historical) inter-
est to specific laboratories, certain types of proteins are more intrinsically amenable to 
crystallization (e.g., lysozyme), some might have been disproportionately more studied 
and structurally characterized because they are drug targets (e.g., kinases), certain pro-
tein families were preferentially selected for during evolution [10], and so on. A possible 
approach to handle these types of inherent biases would be to create training and valida-
tion splits that ensure that no pairs of proteins with ≥ 20% sequence identity occur on 
the same side of the split [11].

In training ML models at the level of full, intact protein chains, another source of bias 
in constructing training and validation sets stems from the phenomenon of domain re-
use. This is an issue because many full-length protein chains are multi-domain (particu-
larly true for polypeptides �120-150 residues), and many of those individual domains 
can share similar 3D structures (and functions) and be grouped, themselves, into dis-
tinct superfamilies. To illustrate the complexities that must be considered, note that 
some multi-domain proteins contain multiples of a given protein domain, and the rep-
licates might be virtually identical or highly homologous; in other words, full-length 
proteins generally evolved so as to utilize individual domains in a highly modular man-
ner (Fig. 3). While assigning domains into groups based on an ≈20% sequence identity 
threshold does limit this problem to some extent (if two domains have less than that 
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level of similarity but are still from the same superfamily), a simple, straight-ahead split 
at 20% identity (or whatever threshold) might negatively impact an ML algorithm at the 
very basic level of model training. In principle, note that this problem of re-use could 

Fig. 2 Uneven distribution of protein superfamilies. This diagram of 20 superfamilies of interest, 
drawn from the CATH hierarchy and shown as a circle-packing diagram, illustrates how the number of 
known structural domains can vary greatly amongst superfamilies. For instance, superfamilies containing 
immunoglobulin (magenta), Rossmann-like (olive) and P-loop NTPase (light green) domains are highly 
abundant versus, e.g., oxidoreductase domains (grey, near center). The Prop3D-20sf dataset is comprised of 
these 20 highly-populated CATH superfamilies

Fig. 3 Data leakage and multi-domain proteins. A prime example of evolutionarily-induced data 
leakage stems from the modular anatomy of many proteins, wherein multiple copies (which often vary 
only slightly, e.g. as paralogs) of a particular domain are stitched together into a full-length protein. This 
type of phenomenon is particularly prevalent among protein homologs from more phylogenetically recent 
species (e.g., eukaryotes like human or yeast, versus archaeal or bacterial lineages). Notably, many proteins 
that contain SH3, OB and Ig domains are found to include multiple copies of those domains. Examples are 
schematically illustrated here, using PDB entries 2QQR, 1SSF, 3WGI, and 3L5H 
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also hold at the finer scale of shared structural fragments (i.e., sub-domain–level) too, 
giving rise to an even more complicated problem.

Possible approaches to mitigate these types of subtle biases would be to (i) create ‘one-
class’ superfamily-specific models; or (ii) create multi-superfamily models, making sure 
to (a) over-sample proteins from under-represented classes and (b) under-sample pro-
teins from over-represented classes [12].

Biophysical properties in ML

In many ML problems on proteins, it is useful to include biophysical properties mapped 
onto 3D locations of atoms and residues, thus providing a learning algorithm with addi-
tional types of information. However, such properties are often ignored, as in purely 
sequence-based methods, which neglect 3D structure entirely and frequently use only 
a one-hot encoding of the sequence, perhaps augmented with some evolutionary infor-
mation. In other cases, 3D structures are used and only the raw geometry of the atomic 
structure is used as input, neglecting the crucial biophysical properties that help define 
a protein’s biochemical properties and physiological functions. There is also a trend in 
ML wherein one lets a model create its own embeddings, using only a small amount of 
hand-curated data (e.g., only atom type). Such approaches are generally taken because (i) 
it is expensive to calculate a full suite of biophysical properties for every atom, say on the 
scale of the entire PDB ( ≈200K structures); and (ii) the available models, theories and 
computational formalisms used to describe the biophysical properties of proteins (e.g., 
approximate electrostatics models, such as the generalized Born) may be insufficiently 
accurate, thereby adversely influencing the resultant ML models.

Irrespective of the specific details of one use-case or set of tasks versus another, we 
have found it useful to have available a database of pre-calculated biophysical proper-
ties. Among other benefits, such a database would: (i) save time during development of 
the ML training process, by avoiding repetition of calculations that many others in the 
community may have already performed on exactly the same proteins (note that this also 
speaks to the key issue of reproducibility of an ML workflow or bioinformatics pipeline); 
and (ii) enable one to compare the predicted embeddings of the ML model to known 
biophysical properties, thereby providing a way to assess the accuracy and veracity of the 
ML model under development, as well as guide its refinement.

Some existing protein feature databases offer various biophysical properties of pro-
teins at different structural ‘levels’ (atomic, residue-based, etc.), as shown in Table 1.

Protein representations

There are various ways to computationally represent a protein for use in ML, each 
with relative strengths and weaknesses. Many protein structure & feature databases 
are ‘hard-wired’ so as to include data that can populate only one type of representa-
tion; however, to be flexible and agile (and therefore more usable), new databases and 
database-construction approaches need to allow facile methods to switch between vari-
ous alternate representations of proteins—i.e., we seek extensible structural representa-
tion schema. The remainder of this section describes approaches that have been used 
(Table 2), wherein a protein is represented as a simple sequence, as a graph-based model 
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(residue•••residue contact networks), or as a 3D volumetric dataset. We now briefly 
consider each of these in turn.

Proteins in 1D: sequences

The pragmatically simplest approach to represent a protein is to treat it as a sequence 
of amino acids, ignoring all structural information (Table  2). In ML workflows, the 
sequence is generally ‘one-hot encoded’, meaning that each individual character(/resi-
due) in the string is attributed with a 20-element vector; in that vector, all elements are 
set to zero, save the index of the amino acid type that matches the current position, 
which is set to one. Biophysical properties can also be appended to such representations, 
giving a feature vector.

Proteins in 2D: residue•••residue graphs

A conceptually straightforward way to capture a protein 3D structure is to build a graph 
(Table 2), treating the amino acid residues as vertices and interatomic contacts between 
those residues (near in 3D space) as edges. Individual nodes can be attributed with the 
one-hot encoded residue type along with biophysical properties, and to each edge can be 
attributed geometric properties such as a simple Euclidean distance (e.g., between the 
two residues/nodes), any arbitrary angle of interest (defined by three atoms), any dihe-
dral angles that one likes (defined by four atoms), and so on. These graphs can be fully 
connected, i.e., with all residues connected to one another, or they may include edges 
only between residues that lie within a certain cutoff distance of one another (e.g., a 5 Å 
limit to capture van der Waals contacts and other noncovalent interactions).

Table 2 Protein structure representations

Some fundamentally different types of protein structure representations (reps) are schematized here, arranged by 
dimensionality of the rep. One can always traverse from higher- to lower-dimensional reps without requiring information, 
while the reverse is not true. Note that some types of reps are more amenable to encapsulation in simple data structures, 
e.g. protein sequences as character strings (built-in types for programming languages), and residue•••residue graphs as 
adjacency matrices (closely related to contact maps). That 3D structures are generally not as ‘cleanly’ representable (in 3D), 
via available data structures for use in ML workflows, motivates much of Prop3D’s functionality

Dimensionality Representation Example

1D Amino Acid Sequence ...MIANE...

2D Residue•••Residue Graph, with Vertices (Resi-
dues) and Edges (Contacts)

3D Protein Structure as a 3D Volume, with Atoms 
as Coordinates in R3
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Proteins in 3D: structures as 3D volumetric data

Another approach to handle a protein structure in ML is to treat it as a spatially discre-
tized 3D image, wherein volumetric elements (voxels) that intersect with an atom are 
attributed with biophysical properties of the overlapping atom. Here, note that one must 
define ‘an atom’ precisely—e.g. as a sphere of a given van der Waals radius, centered at 
a specific point in space (the atom’s coordinates), such that the notion of “intersection 
with a specific voxel” is well-defined. Early work in deep neural nets used these types 
of structural representations, though volumetric approaches have been less prevalent 
recently for reasons that include: (i) size constraints, with large proteins consuming 
much memory (scaling with the cube of protein size, in terms of number of residues); 
(ii) mathematical considerations, such as this representation’s lack of rotational invari-
ance (e.g., structures are manually rotated); (iii) fixed-grid volumetric models are inher-
ently less flexible than graph representations (e.g., 3D images are static and cannot easily 
incorporate fluctuations, imparting a ‘brittleness’ to these types of data structures); and 
(iv) related to the issue of brittleness, there exists a rich and versatile family of graph-
based algorithms, versus more limited (and less easily implemented) approaches for dis-
cretized, volumetric data.

Nevertheless, 3D volumetric approaches, such as are included in Prop3D, have at least 
two benefits: (i) As long as the complexity is managed [21], 3D representations offer a 
quite natural way for humans to visualize a protein structure and ‘hold’ the object in 
mind for analysis [22], versus even 2D graph-based approaches. (ii) The form taken 
by the data in a 3D volumetric representation is more amenable to explainable AI/ML 
approaches, such as layer-wise relevance propagation [23], whereby any voxels identified 
by the algorithm as being ‘important’ can be readily mapped back to specific atoms, resi-
dues, patches, etc. in the 3D structure (and those regions may, in turn, be of biochemical 
or functional interest); such operations are not as readily formulated with 1D (sequence) 
or 2D (graph) representation schemes.

A common approach to voxelize a protein structure into a dense grid is to calculate the 
distance of every atom to every voxel, then use a Lennard–Jones potential to map scaled 
biophysical properties to each voxel [24, 25]. This method is feasible for small proteins, 
but can take an excessively long time for larger structures because of the O(n2) run-time 
scaling. A faster voxelization approach would be to create a sparse 3D grid, preserving 
only those voxels that overlap with a van der Waals envelope around each atom; this 
calculation can be performed using k-d trees, with the resultant advantage of scaling as 
O(n log n) [12, 26].

Finally, note that when treating proteins as 3D images for purposes of training ML 
models one must take into account the importance of rotational invariance. After 
translation to a common origin, all protein 3D structures must be repeatedly rotated 
to achieve (ideally) random sampling of a uniform angular distribution; this task can 
be viewed in terms of the 3D rotation group SO(3), formulated as a Haar distribution 
over unit quaternions [27]. These numerically-intensive steps add significant computa-
tional overhead, thus motivating the pursuit of models that are intrinsically rotationally 
invariant, e.g., equivariant neural networks [28]. While the data representations for such 
approaches are not yet pre-built into Prop3D, this is a future direction to consider.
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Birds-eye view of Prop3D and Prop3D-20sf

The remainder of this work presents Prop3D and Prop3D-20sf, the latter of which is a 
new protein domain structure dataset that includes (i) corrected/sanitized protein 3D 
structures, (ii) annotated/featurized biophysical properties for each atom and residue, to 
allow for multiple representation modes, as well as (iii) pre-constructed train, test & vali-
dation splits that have been specifically formulated for use in ML of proteins (to mitigate 
evolutionary data leakage). The tools provided in the Prop3D platform were used to create 
Prop3D-20sf, for distribution as a community resource.

Overview of the software and associated dataset
Architecture and design

The Prop3D-20sf dataset is created by using Prop3D in tandem with two other frameworks 
that we developed: (i) ‘Meadowlark’, for processing and interrogating individual protein 
structures and (ii) ‘AtomicToil’, for creation of massively parallel workflows of many thou-
sands of structures. An overview of these tools and their relationship to one another is 
given in Fig. 1. While each of these codebases are intricately woven together (in practice), 
giving the Prop3D functionality, it helps to consider them separately when examining their 
utility/capabilities and their respective roles in an overall Prop3D-based ML pipeline.

Meadowlark: an extensible, Dockerized toolkit for reproducible, cross-platform structural 

bioinformatics workflows

In bioinformatics and computational biology more broadly, many tools and codes can be 
less than straightforward to install and operate locally: They each require particular com-
binations of operating system configurations, specific versions of different languages and 
libraries (which may or may not be cross-compatible), have various dependencies for instal-
lation/compilation (and for run-time execution), potentially difficult patterns of interde-
pendencies, and so on. Moreover, considered across the community as a whole, researchers 
spend many hours installing (and perhaps even performance-tuning) these tools them-
selves, only to find that they are conducting similar development and upkeep of this com-
putational infrastructure as are numerous other individuals. All the while, the data, results 
and technical/methodological details underpinning the execution of a computational 
pipeline are typically never shared, at least not before the point of eventual publication—
i.e., months or even years after the point at which it would have been most useful to oth-
ers. Following the examples of the UC Santa Cruz Computational Genomics Laboratory 
(UCSC-CGL) and the Global Alliance for Genomics & Health (GA4GH) [29], in Prop3D 
we Docker-ize common structural bioinformatics tools to make them easily deployable and 
executable on any machine, along with parsers to handle their outputs, all without leaving 
a top-level Python-based workflow. New software can be added into meadowlark if it exists 
as a Docker or Singu larity container [30, 31]; indeed, much of Prop3D’s extensibility stems 
from meadowlark, and new functionality can be readily added beyond the provided pre-
pare() and featurize() tools shown in Fig. 1. For a list of codes and software tools 
that we have thus far made available, see Additional file 1 (Tables S1 and S2) or visit our 
Docke r Hub for the most current information.

https://www.wikidata.org/wiki/Q15206305
https://www.wikidata.org/wiki/Q15206305
https://www.wikidata.org/wiki/Q51294208
https://hub.docker.com/u/edraizen
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AtomicToil: reproducible workflows that map structural information to sets of massively 

parallel tasks

To enable the construction and automated deployment of massively parallel workflows 
in the cloud, we use a Python-based workflow management system (WMS) known as 
Toil [30]. Each top-level Toil job has child jobs and follow-on jobs, enabling the con-
struction of complex MapReduce-like pipelines. A Toil workflow can be controlled 
locally, on the cloud (e.g., AWS, Kuber netes), or on a compute farm or a high-perfor-
mance computing platform such as a Linux-based cluster (equipped with a scheduler 
such as SLURM, Oracl e Grid Engine, or the like). Further information on the data-flow 
paradigm, flow-based programming and related WMS concepts, as they pertain to task-
oriented bioinformatics toolkits such as Toil, can be found in [32].

In Prop3D, we have specifically created multiple ways by which a user can develop and 
instantiate a workflow. Namely, pipelines can be devised based on: 

1 PDB files: A collection of PDB files, each of which can contain a single protein 
domain or perhaps be more complex (e.g., multiple chains), can be aggregated into 
a pool. This group of PDB identifiers can be systemically mapped to jobs in order to 
run a given function/calculation (‘apply’ the function, in the parlance of functional 
programming) on each member of the data pool, thereby processing the full dataset.

2 CATH’s schema: The CATH database is readily amenable to the data-flow paradigm 
by virtue of its hierarchical organization. In this scheme, one job/task can be cre-
ated for each nth level entry in the CATH hierarchy, with child jobs spawned for 
subsidiary n+1th levels in the hierarchy. Once the workflow reaches a job at the level 
of each individual domain (or whatever pre-specified target level), then it can run a 
given, user-provisioned function.

New, user-defined functionality can be added to a workflow by defining new Toil job 
functions; these functions can be arbitrarily complex, or as simple as standalone Python 
functions with specific, well-formed signatures (call/return semantics).

Capabilities and features

This section offers two examples of Prop3D usage, one relatively simple and the other 
more intermediate-level. The more advanced example demonstrates protein structure 
preparation and biophysical property calculations (and annotation). While not included 
here, we note that Prop3D is also useful in creating more intricate workflows, for instance 
(i) to build and validate intermolecular associations, e.g., in studying domain•••domain 
interactions and protein complexes, and (ii) in developing and deploying an AI-driven 
‘DeepUrfold’ framework for quantifying protein structural relationships [12].

Example 1: protein structure preparation

To illustrate the typical first step in a structural bioinformatics analysis pipeline, we 
‘clean’ or ‘sanitize’ a starting protein 3D structure via the following scheme. We begin 
by selecting the first model (from among multiple possible models in a PDB file), 
the desired chain, and the first alternate location (if multiple conformers exist for an 
atom/residue). These two choices are justifiable, in the absence of other information, 

https://www.wikidata.org/wiki/Q114858329
https://www.wikidata.org/wiki/Q114858329
https://www.wikidata.org/wiki/Q114858329
https://www.wikidata.org/wiki/Q456157
https://www.wikidata.org/wiki/Q22661306
https://www.wikidata.org/wiki/Q3459703
https://www.wikidata.org/wiki/Q2708256
https://www.wikidata.org/wiki/Q114858329
https://www.wikidata.org/wiki/Q766195
https://www.wikidata.org/wiki/Q766195
https://www.wikidata.org/wiki/Q766195
https://www.wikidata.org/wiki/Q5008897
https://www.wikidata.org/wiki/Q5008897
https://www.wikidata.org/wiki/Q5008897
https://www.wikidata.org/wiki/Q114858329
https://www.wikidata.org/wiki/Q766195
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because in the PDB file-format it is conventional for (i) the first ‘MODEL’ to be the 
lowest-energy (most energetically favorable) conformation, e.g., in NMR-derived 
structural ensembles or theoretical predictions, and (ii) similarly, the first rotameric 
state, specified by alternate location (‘altloc’) identifiers, corresponds to the most 
highly-populated (and presumably lowest-energy) side-chain conformer. Next, we 
remove hetero-atoms (water or buffer molecules, other crystallization reagents, etc.); 
these steps are achieved in Prop3D  via pdb- tools [33]. Then, in the final phase, we 
modify each domain structure via the following stages: (i) Build/model any missing 
residues with MODEL LER [34]; (ii) Correct/optimize rotamers (e.g., any missing 
atoms) with SCWRL4 [35]; and (3) Add hydrogens and perform a rough potential 
energy minimization with the PDB2P QR toolkit [36]. Again, we note that all these 
software packages and utilities are wrapped into Prop3D’s unified framework. We 
applied this general workflow, schematized in Fig. 4, in constructing the Prop3D-20sf 
dataset.

Example 2: biophysical property calculation and featurization

The Prop3D toolkit enables one to rapidly and efficiently compute biophysical proper-
ties for all structural entities (atoms, residues, etc.) in a dataset of 3D structures (e.g., 
from the PDB or CATH), and then map those values onto the respective entities as 
features for ML model training or other downstream analyses.

For atom-level features, we create one-hot encodings based on 23 atom names, 16 
element names, and 21 residue types (20 standard amino acids and one UNKnown 
placeholder), as defined in AutoD ock. We also include van der Waals radii, charges 
from PDB2P QR [36], electrostatic potentials computed via APBS [37], concavity val-
ues that we calculate via CX [38], various hydrophobicity features of the residue that 
an atom belongs to (the Kyte-Doolittle [39], Biological [40] and Octanol [41] scales), 
and two measures of accessible surface area (per-atom, via FreeS ASA [42], and per-
residue, via DSSP [43]). We also include different types of secondary structure infor-
mation, namely one-hot encodings based on DSSP’s 3-class (helix, strand, loop) 
and more finely-grained 7-class secondary structure classifications (the latter also 
includes an eighth class for ‘unknown’/error types), as well as the backbone torsion 
angles φ and ψ (along with embedded sine and cosine transformations of each). We 
also annotate aromaticity, and hydrogen-bond acceptors and donors, based on AutoD 

Fig. 4 A simple protein preparation pipeline. In working with protein structures, e.g., to create the 
Prop3D-20sf dataset, each domain is typically corrected or ‘sanitized’ by adding missing atoms and residues, 
checking rotameric states (highly-populated rotamers should be assigned, by default), protonating, and 
performing a crude potential energy minimization of the 3D structure; this general workflow is sketched here 
using a tripeptide segment (PDB entry 1KQ2)

https://www.wikidata.org/wiki/Q766195
https://www.wikidata.org/wiki/Q114840802
https://www.wikidata.org/wiki/Q3859815
https://www.wikidata.org/wiki/Q114840881
https://www.wikidata.org/wiki/Q62856803
https://www.wikidata.org/wiki/Q766195
https://www.wikidata.org/wiki/Q5008897
https://www.wikidata.org/wiki/Q4826062
https://www.wikidata.org/wiki/Q62856803
https://www.wikidata.org/wiki/Q65072984
https://www.wikidata.org/wiki/Q114841750
https://www.wikidata.org/wiki/Q114841793
https://www.wikidata.org/wiki/Q5206192
https://www.wikidata.org/wiki/Q5206192
https://www.wikidata.org/wiki/Q4826062
https://www.wikidata.org/wiki/Q766195
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ock atom-name types. As a gauge of phylogenetic conservation, we include sequence 
entropy scores from EPPIC [44]. These biophysical, physicochemical, structural, and 
phylogenetic features are summarized in Fig.  5 and are exhaustively enumerated in 
Table 3. Finally, Prop3D also provides functionality to create discretized values of fea-
tures via the application of Boolean logic operators to the corresponding continuous-
valued quantities of a given descriptor, using simple numerical thresholding (Table 4).

Some of the properties mentioned above are computed at the residue level and 
mapped to each atom in the residue (e.g., hydrophobicity is one such property). That 
is, a ‘child’ atom inherits the value of a given feature from its ‘parent’ residue. For 
other features, residue-level values are calculated by combining atomic quantities, 
via various summation or averaging operations applied to the properties’ numeri-
cal values (as detailed in Table  3 for Prop3D-20sf ). To illustrate the principle that 
residue-level properties may be directly/simply or indirectly/complexly related to 
atomic properties, consider that (i) the mass of a residue is a simple summation of the 
atomic masses of each of its constituent atoms, whereas (ii) properties such as residue 
volume or accessible surface area are not so straightforwardly derived from atomic 
properties, instead requiring the application of geometric methods (e.g., the Shrake-
Rupley numerical algorithm [45]).

While all of the possible features are contained in the Prop3D-20sf dataset and 
undoubtedly will be somewhat correlated, it is possible for one to select only certain 
subsets of features of interest. We also create subsets of the Boolean features that we 
have found to be minimally correlated [46], and those can be selected, for example, in 
training deep neural networks.

As illustrative use-cases, we supply three nontrivial ML examples that involve repre-
senting proteins as sequences, graphs, or full 3D structures. At the sequence level, we 
present an example that uses Prop3D together with the language model–based Evolu-
tionary Scale Model approach (ESM-2 [47]) to predict and annotate residue-level prop-
erties. Next, we illustrate how Prop3D can be used with ProteinMPNN [48], which is a 
recent deep learning approach for protein sequence design wherein structural informa-
tion is encoded as graph neural networks, in order to predict residue-level features. And, 
finally, we briefly highlight a new DeepUrfold framework [12], where Prop3D is instru-
mental in creating superfamily-specific deep convolutional variational autoencoder 

Fig. 5 Calculated properties/features, biophysical and beyond. For each protein domain in Prop3D-20sf, 
we annotate every atom with the following features: atom type, element type, residue type, partial charge & 
electrostatics, concavity, hydrophobicity, accessible surface area, secondary structure type, and evolutionary 
conservation. For a full list of features used in Prop3D-20sf, see the text and Tables 3 and 4. In the ribbon 
diagram shown here (PDB 1KQ2), a featurized (atomic) region is highlighted and demarcated in red, atop a 
voxelized background. Note that any bespoke feature can be defined and applied in Prop3D 

https://www.wikidata.org/wiki/Q4826062
https://www.wikidata.org/wiki/Q114841783
https://www.wikidata.org/wiki/Q766195
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Table 3 All protein descriptors and extracted features that are defined and calculated in Prop3D 

Feature Voxel 
aggregation 
rule

Residue 
aggregation 
rule

Source software or database Wikidata entry

H max MGLTools Q1148 40701

HD max MGLTools Q1148 40701

HS max MGLTools Q1148 40701

C max MGLTools Q1148 40701

A max MGLTools Q1148 40701

N max MGLTools Q1148 40701

NA max MGLTools Q1148 40701

NS max MGLTools Q1148 40701

OA max MGLTools Q1148 40701

OS max MGLTools Q1148 40701

F max MGLTools Q1148 40701

MG max MGLTools Q1148 40701

P max MGLTools Q1148 40701

SA max MGLTools Q1148 40701

S max MGLTools Q1148 40701

CL max MGLTools Q1148 40701

CA max MGLTools Q1148 40701

MN max MGLTools Q1148 40701

FE max MGLTools Q1148 40701

ZN max MGLTools Q1148 40701

BR max MGLTools Q1148 40701

I max MGLTools Q1148 40701

Unk_atom max MGLTools Q1148 40701

C_elem max PDB File

N_elem max PDB File

O_elem max PDB File

S_elem max PDB File

H_elem max PDB File

F_elem max PDB File

MG_elem max PDB File

P_elem max PDB File

CL_elem max PDB File

CA_elem max PDB File

MN_elem max PDB File

FE_elem max PDB File

ZN_elem max PDB File

BR_elem max PDB file

I_elem max PDB file

Unk_elem max PDB file

vdw mean � [62]

Partial charge (charge) Mean sum Pdb2Pqr Q6285 6803

electrostatic_potential mean sum APBS Q6507 2984

concavity (cx) mean mean CX Q1148 41750

hydrophobicity mean � Kyte-Doolittle [39]

biological_hydrophobicity mean � [40]

octanal_hydrophobicity mean � Wimley-White [41]

atom_asa mean FreeSASA Q1148 41793

residue_rasa mean � DSSP Q5206 192

https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q62856803
https://www.wikidata.org/wiki/Q65072984
https://www.wikidata.org/wiki/Q114841750
https://www.wikidata.org/wiki/Q114841793
https://www.wikidata.org/wiki/Q5206192
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Table 3 (continued)

Feature Voxel 
aggregation 
rule

Residue 
aggregation 
rule

Source software or database Wikidata entry

ALA max � PDB file

CYS max � PDB file

ASP max � PDB file

GLU max � PDB file

PHE max � PDB file

GLY max � PDB file

HIS max � PDB file

ILE max � PDB file

LYS max � PDB file

LEU max � PDB file

MET max � PDB file

ASN max � PDB file

PRO max � PDB file

GLN max � PDB file

ARG max � PDB file

SER max � PDB file

THR max � PDB file

VAL max � PDB file

TRP max � PDB file

TYR max � PDB file

Unk_residue max � PDB file

phi mean � BioPython Q4118 434

phi_sin mean � NumPy

phi_cos mean � NumPy

psi mean � BioPython Q4118 434.

psi_sin mean � NumPy

psi_cos mean � NumPy

is_helix max � DSSP Q5206 192

is_sheet max � DSSP Q5206 192

Unk_SS max � DSSP Q5206 192

is_regular_helix max � DSSP Q5206 192

is_beta_bridge max � DSSP Q5206 192

is_extended_strand max � DSSP Q5206 192

is_310_helix max � DSSP Q5206 192

is_pi_helix max � DSSP Q5206 192

is_hbond_turn max � DSSP Q5206 192

is_bend max � DSSP Q5206 192

no_ss max � DSSP Q5206 192

hydrophobic_atom max MGLTools Q1148 40701

aromatic_atom max MGLTools Q1148 40701

hbond_acceptor max MGLTools Q1148 40701

hbond_donor max MGLTools Q1148 40701

metal max MGLTools Q1148 40701

eppic_entropy min � EPPIC Q1148 41783

A voxel aggregation method is used to combine two or more atom-wise features if they impinge upon the same voxel 
(after accounting for the van der Waals sphere volume). The “Residue Aggregation Rule” describes how a given feature is 
aggregated, from atom to residue, if also present as a residue-level feature. A ‘ � ’ indicates if a feature was calculated at the 
residue level and mapped down to the atomic level

https://www.wikidata.org/wiki/Q4118434
https://www.wikidata.org/wiki/Q4118434
https://www.wikidata.org/wiki/Q5206192
https://www.wikidata.org/wiki/Q5206192
https://www.wikidata.org/wiki/Q5206192
https://www.wikidata.org/wiki/Q5206192
https://www.wikidata.org/wiki/Q5206192
https://www.wikidata.org/wiki/Q5206192
https://www.wikidata.org/wiki/Q5206192
https://www.wikidata.org/wiki/Q5206192
https://www.wikidata.org/wiki/Q5206192
https://www.wikidata.org/wiki/Q5206192
https://www.wikidata.org/wiki/Q5206192
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114841783
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(VAE) models at the level of full, intact 3D structures. These three sets of examples 
(complete with Python code), along with much other documentation, can be found at 
https:// prop3d. readt hedocs. io.

Dataset design and open data format (with some historical context)

In order to handle the large amount of protein data in massively parallel workflows, we 
engineered Prop3D to employ the Hierarchical Data Format (HDF5 [49]), along with 
the Highly Scalable Data Service (HSDS). We find the HDF5 file format to be a useful 
way to store and access immense protein datasets because it allows Prop3D to chunk/
compress/navigate a protein structure hierarchy like CATH in a scalable and efficient 
manner. Using this approach versus, for example, creating myriad individual files spread 
across multiple directories, we can combine the data into ‘single’ files/objects that are 
easily shareable and can be accessed via a hierarchical structure of groups and datasets, 
each with attached metadata descriptors; note that hierarchical schemes, such as CATH, 
will generally lend themselves naturally to this sort of approach. Moreover, the HSDS 
extension to this object storage system allows multiple readers and writers which, in 
combination with Toil, affords a degree of parallelization that significantly accelerates 
the creation of new datasets, e.g. as part of a Prop3D-enabled workflow.

Many computational biologists have begun migrating to approaches such as HDF5 
[50–52] and HSDS [53] in recent years because (i) binary data can be rapidly retrieved/
read, (ii) such data are readily manipulable and easily shareable, and (iii) these systems 
provide well-integrated metadata and other beneficial services, schema and features 
(thus, e.g., facilitating attribution of data provenance). Before the relatively recent advent 
of HDF5(/HSDS) and other binary formats, biological data exchange and archival for-
mats for protein 3D structures largely relied on human-readable, plaintext ASCII files 
(i.e., PDB files). For decades, PDB files have been the de facto standard format for shar-
ing, storing and processing protein structure data, such as in structural bioinformatics 
workflows. Originally developed in 1976 to work with punch cards, the legacy PDB for-
mat is an ASCII file with fixed-column width and maximally 80 characters per line [54]. 
Working with traditional PDB files, a structure could be attributed with only one type of 
biophysical property, e.g., by substituting the numerical values of the desired property 
into the B-factor column—a highly limited workaround. Because of the inflexibility of 
the legacy PDB file and its limitations as a data exchange format, the macromolecular 
Crystallographic Information File (mmCIF) was developed; this file format was designed 

Table 4 Discretization of continuous feature values in Prop3D 

Boolean feature Source feature Relation used Threshold

neg_charge charge < 0.

pos_charge charge > 0

is_electronegative electrostatic_potential < 0.

is_concave cx ≤ 2

is_hydrophobic hydrophobicity > 0

residue_buried residue_rasa < 0.2

is_conserved eppic_entropy < 0.5

https://prop3d.readthedocs.io
https://www.wikidata.org/wiki/Q1069215
https://www.wikidata.org/wiki/Q114859023
https://www.wikidata.org/wiki/Q1069215
https://www.wikidata.org/wiki/Q5008897
https://www.wikidata.org/wiki/Q5008897
https://www.wikidata.org/wiki/Q114859023
https://www.wikidata.org/wiki/Q114858329
https://www.wikidata.org/wiki/Q1069215
https://www.wikidata.org/wiki/Q114859023
https://www.wikidata.org/wiki/Q1069215
https://www.wikidata.org/wiki/Q114859023
https://www.wikidata.org/wiki/Q766195
https://www.wikidata.org/wiki/Q766195
https://www.wikidata.org/wiki/Q766195
https://www.wikidata.org/wiki/Q766195
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for better extensibility, flexibility and robustness (e.g., a standardized data dictionary), 
allowing for a 3D structure to be attributed with a plethora of properties, biophysical 
and otherwise [55]. Most recently, spurred by the slow nature of reading ASCII files, 
the Macromolecular Transmission Format (MMTF) has been developed to store protein 
structures in a compact binary format, based on MessagePack format (version 5) [56, 
57]. While the MMTF is almost ideal for ML tasks, it still relies on using individual files 
in a file system, with no efficient, distributed mechanism to read in all files, no way to 
include metadata higher than residue level, and no ability to combine train/test splits 
directly into the schema—these were some of our motivating factors in adopting HDF5 
and HSDS capabilities in Prop3D.

For Prop3D and Prop3D-20sf, an HDF5 file is built by starting with the CATH data-
base, which provides a hierarchical schema—namely, Class ⊃ Architecture ⊃ Topology ⊃ 
Homologous Superfamily—that is naturally amenable to parallelization and efficient data 
traversal, as shown in Fig. 6. In Prop3D, a superfamily can be accessed by its CATH code 
as the group key (e.g., ‘2/60/40/10’ for Immunoglobulin). We then split each superfam-
ily into two groups (Fig. 6): (i) a ‘domains’ dataset, containing groups for each protein 
domain inside that superfamily (Fig. 6B, top half ), and (ii) ‘data_splits’ (Fig. 6B, bot-
tom half ), containing pre-computed train (80%), validation (10%), and test (10%) data 
splits for use in developing ML models, where each domain in each split is hard-linked 
to the group for that domain (dashed green arrows in Fig. 6). Each domain group con-
tains datasets for different types of features: ‘Atoms’, ‘Residues’ and ‘Edges’. The ‘Atoms’ 
dataset contains information drawn from the PDB file’s ATOM field, as well as all of the 
biophysical properties that we calculated for each atom. ‘Residues’ contains biophysical 
properties of each residue and position (average of all of its daughter atoms), e.g. for use 
in coarse-grained models. Finally, ‘Edges’ contains properties for each residue ↔ residue 

Fig. 6 The CATH-inspired hierarchical structure of Prop3D. The inherently hierarchical structure of CATH 
(A) is echoed in the design schema underlying the Prop3D-20sf dataset (B), as illustrated here. Prop3D can be 
accessed as an HDF5 file seeded with the CATH hierarchy for all available superfamilies. For clarity, an example 
of one such superfamily is the individual H-group 2.60.40.10 (Immunoglobulins), shown here as the 
orange sector (denoted by an asterisk near 4 o’clock). Each such superfamily is further split into (i) the domain 
groups, with datasets provided for each domain (atomic features, residue features, and edge features), as 
delineated in the upper-half of (B), and (ii) pre-calculated data splits, shown in the lower-half of (B), which 
exist as hard-links (denoted as dashed green lines) to domain groups. (The ‘sunburst’ style CATH diagram, 
from http:// cathdb. info, is under the Creative Commons Attribution 4.0 International License.)

https://www.wikidata.org/wiki/Q1069215
https://www.wikidata.org/wiki/Q114859023
https://www.wikidata.org/wiki/Q1069215
https://www.wikidata.org/wiki/Q5008897
https://www.wikidata.org/wiki/Q5008897
https://www.wikidata.org/wiki/Q766195
https://www.wikidata.org/wiki/Q5008897
https://www.wikidata.org/wiki/Q1069215
https://www.wikidata.org/wiki/Q5008897
https://www.wikidata.org/wiki/Q5008897
http://cathdb.info


Page 18 of 24Draizen et al. BMC Bioinformatics           (2024) 25:11 

interaction, thereby enabling the construction and annotation of, e.g., contact maps in 
graph-based representations/models.

In terms of data-processing pipelines, HSDS allows HDF5 data stores to be hosted in 
S3-like buckets, such as AWS or MinIO, remotely and with accessibility achieved via a 
ReST API. HSDS data nodes and service nodes (Fig. 7) are controlled via a load-balancer 
in Kuber netes in order to enable efficient, distributed mechanisms to query HDF5 data 
stores, as well as write data with a quick, efficient, distributed mechanism; these proper-
ties of HSDS are achieved via various features of its engineering, including using data-
caching and implicit parallelization of the task mapping across virtual partitions (Fig. 7). 
HSDS allows for multiple readers and multiple writers to read or write to the same file 
simultaneously, using a ‘distributed’ HDF5 multi-reader/multi-writer Python library 
known as h5pyd (Fig. 7). As part of Prop3D, we have setup a local k3s instance, which 
is an easy-to-install, lightweight distribution of Kuber netes that can run on a single 
machine along with MinIO S3 buckets. We have found this approach to be particularly 
useful in enabling flexible scalability: our solution works on HPC data infrastructures 
that can be either large or (relatively) small.

In creating the Prop3D-20sf dataset, HSDS, in combination with a Toil-enabled work-
flow, allows for each parallelized task to write to the same HDF5 data store simulta-
neously. The Prop3D-20sf dataset can be read in parallel as well, e.g. in PyTor ch. We 
provide PyTor ch Data Loaders to read the Prop3D-20sf dataset from an HSDS endpoint 
using multiple processes; that functionality is available in our related DeepUrfold Python 
package [12]. Promisingly, we found that when HSDS was used with Prop3D as a system 
for distributed training of deep generative models in our DeepUrfold ML workflow, as 
opposed to using raw ASCII files, a speedup of ≈33% (8 h) was achieved, corresponding 
to a reduction from ≈24 h to ≈16 h of wall-clock time to train an immunoglobulin-spe-
cific variational autoencoder model with 25,524 featurized Ig domain structures (Fig. 8). 

Fig. 7 Cloud-based access to the Prop3D-20sf Dataset via HSDS. HSDS creates Service Nodes, which are 
containers that handle query requests from clients, and Data Nodes, which are containers that access the 
object storage in an efficient, distributed manner. The Prop3D-20sf dataset can be used as input to train an 
ML model either by accessing the data via a Python client library (h5pyd) or through our separate DeepUrfold 
Python package, which supplies PyTor ch data loaders [12]. This illustration was adapted from one that can be 
found at the HSDS webpage (available under an Apache 2.0 license, which is compatible with CC-by−4.0)
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Thus, we found it clearly and significantly advantageous to utilize the parallelizable data-
handler capacity that is provided by a remote, cloud-based, parallel-processing system 
like HSDS.

Data availability and Prop3D’s FAIRness
As summarized in the rest of this section, and detailed in the Additional file 1 (§3), we 
have sought to make Prop3D FAIR—Findable, Accessible, Interoperable, and Reproduc-
ible [58]. When possible, the FAIR guidelines would apply both to datasets themselves 
as well as to the code that underlies the data-generating and data-processing/analysis/
reduction pipelines—i.e., a software framework would be FAIR-compliant, insofar as its 
resultant data are FAIR. Thus, with Prop3D we provide unique identifiers and searchable 
metadata for open platforms such as Zenodo, WikiData, the Open Science Foundation, 
and the University of Virginia School of Data Science’s Open Data Portal, as detailed 
below.

Fig. 8 HSDS affords significantly improved training runtimes. Using Prop3D, we trained an 
immunoglobulin-specific variational autoencoder with ≈25K domain structures, employing 64 CPUs to 
process data and four GPUs for 30 epochs of training (orange trace; [12]). A Before we chose to implement 
HSDS in Prop3D, we stored and processed domain structures as simple plaintext PDB files (parsed with BioPy 
thon), along with the corresponding biophysical properties for all atoms in these structures as plaintext files 
of comma-separated values (CSV; parsed with Pandas). That computation took ≈24 h of wallclock time for ≈
50K ASCII files on a well-equipped GPU workstation. B. Reformulating and streamlining the Prop3D pipeline 
with HSDS yielded a substantial ( ≈33%) speed-up: training runtimes across many epochs (orange) improved 
by ≈8 h (to ≈16 h total), with there being far more efficient CPU usage while reading all of the data (blue 
traces; note the different vertical scales in A and B). These data-panel images were exported from our Weigh 
ts and Biases training dashboard
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First, the Prop3D-20sf dataset, which contains our prepared structues, pre-com-
puted features and data splits for the 20 highly-populated CATH superfamilies shown 
in Fig. 2, is made available in our HSDS endpoint at the University of Virginia (http:// 
prop3d- hsds. pods. uvarc. io/ about) at the domain /CATH/Prop3D-20.h5 (no 
authentication is necessary; the API must be used as there is not a browser-accessible 
version). The data can be read into a Python program, as part of one’s ML workflow, 
using either h5pyd or our Prop3D library. A copy of the raw HDF5 data, exported 
from our HSDS endpoint, is also available on Zenodo (https:// doi. org/  10. 5281/ 
zenodo. 68730 24).

The Prop3D library, to run predefined workflows and access our HSDS endpoint, 
is freely accessible in our GitHub repository (https:// github. com/ boura lab/ Prop3D), 
with scripts provided to setup HSDS and Kuber netes, e.g. if one plans to run on one’s 
own local system via k3s.

Finally, all of our Docker-ized tools also can be obtained from our Docker Hub at 
https:// hub. docker. com/u/ edrai zen.

We have used Wikidata throughout this article to cite the software we use, as well as to 
create links to the code and data repositories reported herein (e.g., Q1080 40542 points 
to Prop3D) [59].

Summary and outlook
This work has presented Prop3D, a modular, flexible, Python-based platform that we 
developed for large-scale protein property featurization and other data-processing/
pipelining tasks that typically arise in ML workflows for structural bioinformatics. While 
Prop3D was developed and deployed as part of a deep learning framework in another 
project [12], it was intentionally engineered with extensibility and scalability in mind. 
This tool can be used with local HPC resources as well as in the cloud, and allows one to 
systematically and reproducibly create comprehensive datasets via the Highly Scalable 
Data Service (HSDS). Using Prop3D, we have created ‘Prop3D-20sf ’ as a new, shared 
community resource. The Prop3D-20sf protein dataset, freely available as an HSDS end-
point, combines 3D coordinates with biophysical characteristics and evolutionary prop-
erties (for each atom), in each structural domain for 20 highly-populated homologous 
superfamilies in CATH.

The 3D domains in Prop3D-20sf are sanitized via numerous steps, including clean-
up of the covalent structure (e.g., adding missing atoms and residues) and physico-
chemical properties (protonation and energy minimization). Our database schema 
mirrors CATH’s hierarchy, mapped to a system based on HDF5 files and including 
atomic-level features, residue-level features, residue•••residue contacts, and pre-cal-
culated train/test/validate splits (in ratios of 80/10/10) for each superfamily derived 
from CATH’s sequence-identity-based clusters (e.g., ‘S35’ for groups of proteins culled 
at 35% sequence identity). Notably, our construction of Prop3D-20sf sought to directly 
and explicitly address the issue of evolutionary data leakage, thereby hopefully mitigat-
ing any bias in ML models trained with these datasets. The Prop3D approach and its 
attendant Prop3D-20sf pre-computed dataset can be used to compare sequence-based 
(1D), residue-contact-based graphs (2D), and structure-based (3D) methods. For exam-
ple, one could imagine training a supervised model, with input being a protein sequence, 
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to predict a specific residue-based biophysical property. Similarly, unsupervised models 
can be trained using one or all of the biophysical properties to learn protein embed-
dings, such as was the case in our DeepUrfold project [12].

Within Prop3D, we built AtomicToil to enable the facile creation of reproducible 
workflows, starting with PDB files or by traversing the CATH hierarchy, as well as the 
Meadowlark toolkit to run Docker-ized structural bioinformatics software. While we 
primarily developed these tools in order to create the Prop3D-20sf dataset, we envision 
that the toolkit can be integrated into feature-rich, standalone structural bioinformatics 
platforms, e.g. BioPy thon or Bioti te. An appealing future direction would be to enable 
Prop3D’s featurization pipeline to capture information about biomolecular dynamics 
[60, 61], so as to aid the development of ML models that are more detailed and realis-
tic reflections of protein function. More generally, we believe that Prop3D-20sf and its 
underlying Prop3D framework may be useful as a community resource in developing 
workflows that entail processing protein 3D structural information, particularly for pro-
jects that arise at the intersection of machine learning and structural bioinformatics.

Availability and requirements
Project name: Prop3D Project home page: https:// github. com/ boura lab/ Prop3D Oper-
ating system(s): Platform independent Programming language: Python Other require-
ments: Python 3.8 or higher, Singularity or Docker, Toil, Kubernetes License: Creative 
Commons Attribution 4.0 International License (CC-BY-4). Any restrictions to use by 
non-academics: None.

Abbreviations

Structure-based software
AlphaFold2  Deep learning-based code for high-accuracy protein 3D structure prediction Q1077 

11739
AutoDock  A suite of automated protein docking tools Q4826 062
APBS  Adaptive Poisson-Boltzmann Solver, used here to calculate the electrostatic potential for 

each atom in a given protein Q6507 2984
BioPython  General-purpose collection of open-source tools for computational biology Q4118 434
Biotite  A comprehensive library for computational molecular biology Q1148 59551
CX  Get curvature for each atom in a given protein Q1148 41750
DSSP  Calculate secondary structure and accessibility for each residue in a given structure 

Q5206 192
EPPIC  Calculate sequence conservation scores for a given protein and obtain biologically rel-

evant protein interactions (i.e., not resulting from crystal packing) Q1148 41783
FreeSASA  Get solvent accessibility of each atom in a given protein Q1148 41793
MGLTools  Convert atom names to AutoDock names and PDBQT Q1148 40701
MODELLER  Create full atom structures from C α only models, mutate structures with different amino 

acids, ‘remodel structure’ to energy minimize, and model loops Q3859 815
PDB2PQR  Protonate a protein structure, debump hydrogens, energy-minimize, and standardise 

naming (atomic nomenclature) Q6285 6803
pdb-tools  A “Swiss army knife of tools” to manipulate PDB files Q1148 40802
SCWRL4  Correct side-chains using the Dunbrack rotamer library Q1148 40881

Other software
AWS  Amazon Web Services, on-demand cloud computing platforms Q4561 57
Docker  Open-source software for deploying containerized applications Q1520 6305
HDF5  Hierarchical Data Format, version 5 Q1069 215
HSDS  Cloud-native, service-based access to HDF data Q1148 59023
h5pyd  Python client library for HDF5 REST interface Q1148 59536
Kubernetes  Software to manage containers on a server-cluster Q2266 1306
k3s  A light-weight Kubernetes distribution for small servers Q1148 60267
MinIO  Cloud storage server compatible with Amazon S3 Q2895 6397
NumPy  Numerical programming package for the Python programming language Q1975 20
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Pandas  Python library for data manipulation and analysis Q1596 7387
PyTorch  Open-source, Python-based machine learning library Q4750 9047
Toil  Enables creation and deployment of massively parallel workflows in Python Q1148 58329
Singularity  Open-source container software for scientific environments Q5129 4208
SLURM  Free and open-source job scheduler for Linux and similar (Unix-based) operating systems 

Q3459 703
Oracle Grid Engine  Supercomputer batch-queuing system Q2708 256
Weights and Biases (wandb)  Python library to track machine learning experiments, version data and manage models 

Q1073 82092
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Additional file 1: Table 1. Sequence-based bioinformatics tools available in Prop3D. Table 2. Structural bioinformat-
ics software suites available in Prop3D. §3. How Prop3D abides by the FAIR guidelines.
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