
Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Draizen et al. BMC Bioinformatics (2024) 25:11
https://doi.org/10.1186/s12859-023-05586-5

BMC Bioinformatics

Prop3D: A flexible, Python-based platform
for machine learning with protein structural
properties and biophysical data
Eli J. Draizen1,2*, John Readey3, Cameron Mura1,2* and Philip E. Bourne1,2

Abstract

Background: Machine learning (ML) has a rich history in structural bioinformatics,
and modern approaches, such as deep learning, are revolutionizing our knowledge
of the subtle relationships between biomolecular sequence, structure, function,
dynamics and evolution. As with any advance that rests upon statistical learning
approaches, the recent progress in biomolecular sciences is enabled by the availability
of vast volumes of sufficiently-variable data. To be useful, such data must be well-struc-
tured, machine-readable, intelligible and manipulable. These and related requirements
pose challenges that become especially acute at the computational scales typical
in ML. Furthermore, in structural bioinformatics such data generally relate to protein
three-dimensional (3D) structures, which are inherently more complex than sequence-
based data. A significant and recurring challenge concerns the creation of large, high-
quality, openly-accessible datasets that can be used for specific training and bench-
marking tasks in ML pipelines for predictive modeling projects, along with reproducible
splits for training and testing.

Results: Here, we report ‘Prop3D’, a platform that allows for the creation, sharing
and extensible reuse of libraries of protein domains, featurized with biophysical
and evolutionary properties that can range from detailed, atomically-resolved phys-
icochemical quantities (e.g., electrostatics) to coarser, residue-level features (e.g.,
phylogenetic conservation). As a community resource, we also supply a ‘Prop3D-20sf’
protein dataset, obtained by applying our approach to CATH. We have developed
and deployed the Prop3D framework, both in the cloud and on local HPC resources,
to systematically and reproducibly create comprehensive datasets via the Highly Scal-
able Data Service (HSDS). Our datasets are freely accessible via a public HSDS instance,
or they can be used with accompanying Python wrappers for popular ML frameworks.

Conclusion: Prop3D and its associated Prop3D-20sf dataset can be of broad util-
ity in at least three ways. Firstly, the Prop3D workflow code can be customized
and deployed on various cloud-based compute platforms, with scalability achieved
largely by saving the results to distributed HDF5 files via HSDS. Secondly, the linked
Prop3D-20sf dataset provides a hand-crafted, already-featurized dataset of pro-
tein domains for 20 highly-populated CATH families; importantly, provision of this

*Correspondence:
edraizen@gmail.com;
cmura@virginia.edu

1 Department of Biomedical
Engineering, University
of Virginia, Charlottesville, VA,
USA
2 School of Data Science,
University of Virginia,
Charlottesville, VA, USA
3 The HDF Group, Bellevue, WA,
USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05586-5&domain=pdf
https://www.wikidata.org/wiki/Q5008897
https://www.wikidata.org/wiki/Q114859023
https://www.wikidata.org/wiki/Q114859023
https://www.wikidata.org/wiki/Q1069215
https://www.wikidata.org/wiki/Q114859023
https://www.wikidata.org/wiki/Q5008897

Page 2 of 24Draizen et al. BMC Bioinformatics (2024) 25:11

pre-computed resource can aid the more efficient development (and reproducible
deployment) of ML pipelines. Thirdly, Prop3D-20sf’s construction explicitly takes
into account (in creating datasets and data-splits) the enigma of ‘data leakage’, stem-
ming from the evolutionary relationships between proteins.

Keywords: Deep learning, Machine learning, Massively parallel workflows, Protein
structure, Structural bioinformatics

Introduction
The recent advent of deep learning approaches such as Alpha Fold2 [1] now enables
one to access the 3D structure of virtually any protein sequence. As was the case for
sequence-level data in the 1980s-2000s, 3D structural data on proteins has now been
transformed into a readily available commodity. How might such a wealth of structural
data inform our understanding of biology’s central sequence ↔ structure ↔ function par-
adigm? Two new, post-Alpha Fold2 challenges can be identified: (i) elucidating the rela-
tionships between all structures in the protein universe, and (ii) armed with millions of
new protein structures [2], exploring the limits of protein function prediction. Arguably,
classic structural bioinformatics paradigms and approaches, which are largely founded
on comparative structural analyses, should now be an even more powerful tool in ana-
lyzing and accurately predicting protein function.

In structural bioinformatics, the ‘data’ center around biomolecular 3D structures.
Here, we take such ‘data’ to mean the geometric structures themselves, augmented (or
featurized) by a possible multitude of other properties. These other properties can be
(i) at potentially varying length-scales (atomic, residue-level, domains, etc.), and (ii) of
numerous types, either biological in origin (e.g., phylogenetic conservation at a site) or
physicochemical in nature (e.g., hydrophobicity or partial charge of an atom, concavity of
a patch of surface residues, etc.). A significant and persistent challenge in developing and
deploying ML workflows in structural bioinformatics concerns the availability of large,
high-quality, openly-accessible datasets that can be (easily) used in large-scale analy-
sis and predictive modeling projects. Here, ‘high-quality’ implies that specific training
and benchmarking tasks can be performed reproducibly and without undue effort, and
that the data-splits for model training/testing/validation are reproducible. A stronger
requirement is that the split method also be at least semi-plausible, or not nonsensi-
cal, in terms of the underlying biology of a system—e.g., taking into account evolution-
ary relationships that muddle the assumed (statistical) independence of the splits. (This
topic of evolutionary ‘data leakage’, and how we handle it, is presented in detail below.)

A common task in classical bioinformatics involves transferring functional annota-
tions from a well-characterized protein to a protein of interest, if given sufficient shared
evolutionary history between the two proteins. A conventional approach to this task
typically applies sequence or structure comparison (e.g., via BLAST [3] or TM-Align [4],
respectively) of a protein of interest to a database of all known proteins, followed by a
somewhat manual process of ‘copying’ or grafting the previously annotated function into
a new database record for the protein of interest. However, in the era of ML one can
now try to go automatically and more directly from sequence or structure to functional
annotations: an ML model can ‘learn’ these evolutionary relationships between proteins

https://www.wikidata.org/wiki/Q107711739
https://www.wikidata.org/wiki/Q107711739

Page 3 of 24Draizen et al. BMC Bioinformatics (2024) 25:11

as part of the model, thereby obviating the more manual/tedious (and subjective) align-
ment-related steps.

However, ML workflows for working with proteins—and, in particular, protein 3D
structures—are far more challenging, from a technological and data-engineering per-
spective, than are many of the standard and more routine ML workflows designed to
handle inputs in other ML application domains (e.g., for processing images or text).
Protein structures are more difficult to work with, from both a basic and applied ML
perspective, for several types of reasons, including: (i) fundamentally, all proteins are
related at some level through evolution, thereby causing ‘data leakage’ [5]; (ii) raw/
unprocessed protein structures are not always biophysically and chemically well-formed
(e.g., atoms or entire residues may be missing) [6, 7]; (iii) somewhat related, some pro-
tein structures ‘stress-test’ the flexibility and resiliency of existing data structures by hav-
ing, for instance, multiple rotamers/conformers at some sites; (iv) a protein’s biophysical
properties, which are not always included and learned in existing ML models, are just
as critical, if not more so, as the raw 3D geometry itself; and (v) there are many differ-
ent possible representational approaches/models of protein structures (volumetric data,
contact-based graphs, etc.) that can yield different results. In short, protein structural
data must be carefully inspected and processed before they can be successfully used and
split in precise, sensible ways in order to create robust ML models.

Motivated by these challenges, this work presents ‘Prop3D’ and an accompanying
resource called ‘Prop3D-20sf ’, shown schematically in Fig. 1. As a new Python-based

Fig. 1 Overview of Prop3D and its components. Prop3D is a framework to create and share protein
structures featurized with custom sets of properties (biophysical, phylogenetic, etc.), thereby providing
ML-ready datasets for structural bioinformatics. One works towards this goal, represented by the green- and
blue-background regions to the right and top of this schematic, by utilizing two distinct packages that lie at
the core of Prop3D (yellow region at left): (i) ‘Meadowlark’, which enables one to prepare structures, compute
and apply features, and run bioinformatics tools/utilities as Docker-ized software (sw); and (ii) ‘AtomicToil’, for
performing massively-parallel calculations, locally or in the cloud, using the Toil pipeline system. Proceeding
in this way, a dataset of featurized structures can be readily used in the popular ML framework PyTorch,
for instance using various representational schemes and types of ML models (language models, graphical
models, etc.), as shown in the green region at right; Prop3D facilitates these steps by providing custom
PyTorch data loaders that enable rapid, high-volume processing. Prop3D-20sf, a dataset that we created by
applying Prop3D to CATH, is available as a publicly-available HSDS endpoint

https://www.wikidata.org/wiki/Q15206305
https://www.wikidata.org/wiki/Q114858329
https://www.wikidata.org/wiki/Q5008897
https://www.wikidata.org/wiki/Q114859023

Page 4 of 24Draizen et al. BMC Bioinformatics (2024) 25:11

platform for processing and otherwise manipulating protein domain structures,
Prop3D includes tools to build one’s own datasets with (i) cleaned/prepared struc-
tures, (ii) pre-calculated biophysical and evolutionary properties and (iii) different
protein representations, alongside (iv) ML-ready train/test splits. We supply the
methods by which anyone can readily recreate the Prop3D-20sf dataset supplied
with Prop3D; these calculations can be done in a distributed manner and read into
the Prop3D framework for use in one’s own ML models. The pre-computed datasets
that we provide, using HSDS, can be freely accessed via a standard representational
state transfer (ReST) application programming interface (API), along with accom-
panying Python wrappers for NumPy and the popular ML framework PyTor ch. In
what follows, we describe the Prop3D software and Prop3D-20sf dataset after first
delineating some of the specific considerations that motivated and shaped Prop3D’s
design.

Motivating factors: data leakage, biophysical properties, and protein
representations
Evolutionary data leakage

ML with proteins is uniquely challenging because all naturally occurring proteins are
interrelated via the biological processes of molecular evolution [8]. Therefore, randomly
chosen train/test splits are not necessarily meaningful, as there are bound to be crosso-
ver relationships between proteins (even if only distantly homologous), ultimately lead-
ing to overfitting of the ML model. Moreover, the available datasets are biased—they
sample the protein universe in a highly non-uniform (or, rather, non-representative)
manner (Fig. 2), which leads to biased ML models. For example, there are simply more
3D structures available in the Protein Data Bank (PDB [9]) for certain protein super-
families because, for instance, some of those families were of specific (historical) inter-
est to specific laboratories, certain types of proteins are more intrinsically amenable to
crystallization (e.g., lysozyme), some might have been disproportionately more studied
and structurally characterized because they are drug targets (e.g., kinases), certain pro-
tein families were preferentially selected for during evolution [10], and so on. A possible
approach to handle these types of inherent biases would be to create training and valida-
tion splits that ensure that no pairs of proteins with ≥ 20% sequence identity occur on
the same side of the split [11].

In training ML models at the level of full, intact protein chains, another source of bias
in constructing training and validation sets stems from the phenomenon of domain re-
use. This is an issue because many full-length protein chains are multi-domain (particu-
larly true for polypeptides �120-150 residues), and many of those individual domains
can share similar 3D structures (and functions) and be grouped, themselves, into dis-
tinct superfamilies. To illustrate the complexities that must be considered, note that
some multi-domain proteins contain multiples of a given protein domain, and the rep-
licates might be virtually identical or highly homologous; in other words, full-length
proteins generally evolved so as to utilize individual domains in a highly modular man-
ner (Fig. 3). While assigning domains into groups based on an ≈20% sequence identity
threshold does limit this problem to some extent (if two domains have less than that

https://www.wikidata.org/wiki/Q114859023
https://www.wikidata.org/wiki/Q47509047
https://www.wikidata.org/wiki/Q766195

Page 5 of 24Draizen et al. BMC Bioinformatics (2024) 25:11

level of similarity but are still from the same superfamily), a simple, straight-ahead split
at 20% identity (or whatever threshold) might negatively impact an ML algorithm at the
very basic level of model training. In principle, note that this problem of re-use could

Fig. 2 Uneven distribution of protein superfamilies. This diagram of 20 superfamilies of interest,
drawn from the CATH hierarchy and shown as a circle-packing diagram, illustrates how the number of
known structural domains can vary greatly amongst superfamilies. For instance, superfamilies containing
immunoglobulin (magenta), Rossmann-like (olive) and P-loop NTPase (light green) domains are highly
abundant versus, e.g., oxidoreductase domains (grey, near center). The Prop3D-20sf dataset is comprised of
these 20 highly-populated CATH superfamilies

Fig. 3 Data leakage and multi-domain proteins. A prime example of evolutionarily-induced data
leakage stems from the modular anatomy of many proteins, wherein multiple copies (which often vary
only slightly, e.g. as paralogs) of a particular domain are stitched together into a full-length protein. This
type of phenomenon is particularly prevalent among protein homologs from more phylogenetically recent
species (e.g., eukaryotes like human or yeast, versus archaeal or bacterial lineages). Notably, many proteins
that contain SH3, OB and Ig domains are found to include multiple copies of those domains. Examples are
schematically illustrated here, using PDB entries 2QQR, 1SSF, 3WGI, and 3L5H

https://www.wikidata.org/wiki/Q766195

Page 6 of 24Draizen et al. BMC Bioinformatics (2024) 25:11

also hold at the finer scale of shared structural fragments (i.e., sub-domain–level) too,
giving rise to an even more complicated problem.

Possible approaches to mitigate these types of subtle biases would be to (i) create ‘one-
class’ superfamily-specific models; or (ii) create multi-superfamily models, making sure
to (a) over-sample proteins from under-represented classes and (b) under-sample pro-
teins from over-represented classes [12].

Biophysical properties in ML

In many ML problems on proteins, it is useful to include biophysical properties mapped
onto 3D locations of atoms and residues, thus providing a learning algorithm with addi-
tional types of information. However, such properties are often ignored, as in purely
sequence-based methods, which neglect 3D structure entirely and frequently use only
a one-hot encoding of the sequence, perhaps augmented with some evolutionary infor-
mation. In other cases, 3D structures are used and only the raw geometry of the atomic
structure is used as input, neglecting the crucial biophysical properties that help define
a protein’s biochemical properties and physiological functions. There is also a trend in
ML wherein one lets a model create its own embeddings, using only a small amount of
hand-curated data (e.g., only atom type). Such approaches are generally taken because (i)
it is expensive to calculate a full suite of biophysical properties for every atom, say on the
scale of the entire PDB (≈200K structures); and (ii) the available models, theories and
computational formalisms used to describe the biophysical properties of proteins (e.g.,
approximate electrostatics models, such as the generalized Born) may be insufficiently
accurate, thereby adversely influencing the resultant ML models.

Irrespective of the specific details of one use-case or set of tasks versus another, we
have found it useful to have available a database of pre-calculated biophysical proper-
ties. Among other benefits, such a database would: (i) save time during development of
the ML training process, by avoiding repetition of calculations that many others in the
community may have already performed on exactly the same proteins (note that this also
speaks to the key issue of reproducibility of an ML workflow or bioinformatics pipeline);
and (ii) enable one to compare the predicted embeddings of the ML model to known
biophysical properties, thereby providing a way to assess the accuracy and veracity of the
ML model under development, as well as guide its refinement.

Some existing protein feature databases offer various biophysical properties of pro-
teins at different structural ‘levels’ (atomic, residue-based, etc.), as shown in Table 1.

Protein representations

There are various ways to computationally represent a protein for use in ML, each
with relative strengths and weaknesses. Many protein structure & feature databases
are ‘hard-wired’ so as to include data that can populate only one type of representa-
tion; however, to be flexible and agile (and therefore more usable), new databases and
database-construction approaches need to allow facile methods to switch between vari-
ous alternate representations of proteins—i.e., we seek extensible structural representa-
tion schema. The remainder of this section describes approaches that have been used
(Table 2), wherein a protein is represented as a simple sequence, as a graph-based model

https://www.wikidata.org/wiki/Q766195

Page 7 of 24Draizen et al. BMC Bioinformatics (2024) 25:11

Ta
bl

e
1

A
 c

at
al

og
 o

f p
ro

te
in

 fe
at

ur
e

da
ta

se
ts

 th
at

 c
an

 b
e

us
ed

 in
 M

L

M
an

y
di

ffe
re

nt
 d

at
as

et
s

of
 s

eq
ue

nc
es

, s
tr

uc
tu

re
s,

an
d

bi
op

hy
si

ca
l p

ro
pe

rt
ie

s
ex

is
t.

Th
ey

 a
ll

co
nt

ai
n

di
ffe

re
nt

 a
m

ou
nt

s
of

 d
at

a,
 d

at
a

on
 d

iff
er

en
t l

ev
el

s/
sc

al
es

 (c
ha

in
, d

om
ai

n,
 re

si
du

e,
 a

to
m

),
an

d
so

m
e

co
nt

ai
n

bi
op

hy
si

ca
l

pr
op

er
tie

s
at

ta
ch

ed
 to

 e
ac

h
at

om
 a

nd
/o

r r
es

id
ue

. D
at

ab
as

es
 th

at
 u

se
 a

to
m

ic
 c

oo
rd

in
at

es
, b

ut
 w

ith
ou

t b
io

ph
ys

ic
al

 p
ro

pe
rt

ie
s

as
so

ci
at

ed
 w

ith
 th

e
ge

om
et

ric
 c

oo
rd

in
at

es
, a

re
 d

en
ot

ed
 b

y
da

gg
er

s
(†

)

D
at

ab
as

e/
da

ta
se

t
W

ik
id

at
a

en
tr

y
D

om
ai

n
Le

ve
l

Re
si

du
e

le
ve

l
A

to
m

Le

ve
l

Re
si

du
e–

re
si

du
e

gr
ap

h

2
◦

St
ru

ct
ur

e
El

ec
tr

os
ta

tic
s

an
d

ch
ar

ge
Su

rf
ac

e
an

d
cu

rv
at

ur
e

Pr
ot

ei
n

in
te

ra
ct

io
n

si
te

s

Tr
ai

n/
va

lid
at

io
n

sp
lit

s

Cl
us

te
rs

Ev
ol

ut
io

na
ry

in

fo
Fi

le
 fo

rm
at

PD
B

[9
]

Q
76

61
 95

�
�

†
�

�
�

W
eb

, m
m

C
IF

,
M

M
TF

U
ni

Pr
ot

 [1
3]

Q
90

56
 95

�
�

�
W

eb
, R

eS
T

C
AT

H
 [1

4]
Q

50
08

 89
7

�
�

�
†

�
�

PD
B,

 R
eS

T

FE
AT

U
RE

[1

5]
Q

11
48

78

64
8

�
�

�
�

�
A

SC
II

Pr
ed

ic
tP

ro
-

te
in

 [1
6]

Q
72

39
 68

1
�

�
�

�
�

W
eb

, R
eS

T,

JS
O

N

D
es

cr
ib

e-
PR

O
T

[1
7]

Q
11

12

88
73

9
�

�
�

�
W

eb
, J

SO
N

AT
O

M
3D

/
D

IP
S

[1
8]

Q
11

48

78
67

3
�

�
†

�
�

�
JS

O
N

, P
yT

or
ch

Pr
ot

ei
nN

et

[1
9]

Q
11

48

78
71

7
�

�
†

�
�

�
�

Te
ns

or
Fl

ow

Si
de

ch
ai

n-
N

et
 [2

0]
Q

11
48

78

82
2

�
�

†
�

�
�

�
Py

To
rc

h,
 P

ic
kl

e

Pr
op

3D

[t
hi

s
w

or
k]

Q
10

80

40
54

2
�

�
�

�
�

�
�

�
�

�
H

D
F,

 H
SD

S,

Py
To

rc
h

https://www.wikidata.org/wiki/Q766195
https://www.wikidata.org/wiki/Q905695
https://www.wikidata.org/wiki/Q5008897
https://www.wikidata.org/wiki/Q114878648
https://www.wikidata.org/wiki/Q114878648
https://www.wikidata.org/wiki/Q7239681
https://www.wikidata.org/wiki/Q111288739
https://www.wikidata.org/wiki/Q111288739
https://www.wikidata.org/wiki/Q114878673
https://www.wikidata.org/wiki/Q114878673
https://www.wikidata.org/wiki/Q114878717
https://www.wikidata.org/wiki/Q114878717
https://www.wikidata.org/wiki/Q114878822
https://www.wikidata.org/wiki/Q114878822
https://www.wikidata.org/wiki/Q108040542
https://www.wikidata.org/wiki/Q108040542

Page 8 of 24Draizen et al. BMC Bioinformatics (2024) 25:11

(residue•••residue contact networks), or as a 3D volumetric dataset. We now briefly
consider each of these in turn.

Proteins in 1D: sequences

The pragmatically simplest approach to represent a protein is to treat it as a sequence
of amino acids, ignoring all structural information (Table 2). In ML workflows, the
sequence is generally ‘one-hot encoded’, meaning that each individual character(/resi-
due) in the string is attributed with a 20-element vector; in that vector, all elements are
set to zero, save the index of the amino acid type that matches the current position,
which is set to one. Biophysical properties can also be appended to such representations,
giving a feature vector.

Proteins in 2D: residue•••residue graphs

A conceptually straightforward way to capture a protein 3D structure is to build a graph
(Table 2), treating the amino acid residues as vertices and interatomic contacts between
those residues (near in 3D space) as edges. Individual nodes can be attributed with the
one-hot encoded residue type along with biophysical properties, and to each edge can be
attributed geometric properties such as a simple Euclidean distance (e.g., between the
two residues/nodes), any arbitrary angle of interest (defined by three atoms), any dihe-
dral angles that one likes (defined by four atoms), and so on. These graphs can be fully
connected, i.e., with all residues connected to one another, or they may include edges
only between residues that lie within a certain cutoff distance of one another (e.g., a 5 Å
limit to capture van der Waals contacts and other noncovalent interactions).

Table 2 Protein structure representations

Some fundamentally different types of protein structure representations (reps) are schematized here, arranged by
dimensionality of the rep. One can always traverse from higher- to lower-dimensional reps without requiring information,
while the reverse is not true. Note that some types of reps are more amenable to encapsulation in simple data structures,
e.g. protein sequences as character strings (built-in types for programming languages), and residue•••residue graphs as
adjacency matrices (closely related to contact maps). That 3D structures are generally not as ‘cleanly’ representable (in 3D),
via available data structures for use in ML workflows, motivates much of Prop3D’s functionality

Dimensionality Representation Example

1D Amino Acid Sequence ...MIANE...

2D Residue•••Residue Graph, with Vertices (Resi-
dues) and Edges (Contacts)

3D Protein Structure as a 3D Volume, with Atoms
as Coordinates in R3

Page 9 of 24Draizen et al. BMC Bioinformatics (2024) 25:11

Proteins in 3D: structures as 3D volumetric data

Another approach to handle a protein structure in ML is to treat it as a spatially discre-
tized 3D image, wherein volumetric elements (voxels) that intersect with an atom are
attributed with biophysical properties of the overlapping atom. Here, note that one must
define ‘an atom’ precisely—e.g. as a sphere of a given van der Waals radius, centered at
a specific point in space (the atom’s coordinates), such that the notion of “intersection
with a specific voxel” is well-defined. Early work in deep neural nets used these types
of structural representations, though volumetric approaches have been less prevalent
recently for reasons that include: (i) size constraints, with large proteins consuming
much memory (scaling with the cube of protein size, in terms of number of residues);
(ii) mathematical considerations, such as this representation’s lack of rotational invari-
ance (e.g., structures are manually rotated); (iii) fixed-grid volumetric models are inher-
ently less flexible than graph representations (e.g., 3D images are static and cannot easily
incorporate fluctuations, imparting a ‘brittleness’ to these types of data structures); and
(iv) related to the issue of brittleness, there exists a rich and versatile family of graph-
based algorithms, versus more limited (and less easily implemented) approaches for dis-
cretized, volumetric data.

Nevertheless, 3D volumetric approaches, such as are included in Prop3D, have at least
two benefits: (i) As long as the complexity is managed [21], 3D representations offer a
quite natural way for humans to visualize a protein structure and ‘hold’ the object in
mind for analysis [22], versus even 2D graph-based approaches. (ii) The form taken
by the data in a 3D volumetric representation is more amenable to explainable AI/ML
approaches, such as layer-wise relevance propagation [23], whereby any voxels identified
by the algorithm as being ‘important’ can be readily mapped back to specific atoms, resi-
dues, patches, etc. in the 3D structure (and those regions may, in turn, be of biochemical
or functional interest); such operations are not as readily formulated with 1D (sequence)
or 2D (graph) representation schemes.

A common approach to voxelize a protein structure into a dense grid is to calculate the
distance of every atom to every voxel, then use a Lennard–Jones potential to map scaled
biophysical properties to each voxel [24, 25]. This method is feasible for small proteins,
but can take an excessively long time for larger structures because of the O(n2) run-time
scaling. A faster voxelization approach would be to create a sparse 3D grid, preserving
only those voxels that overlap with a van der Waals envelope around each atom; this
calculation can be performed using k-d trees, with the resultant advantage of scaling as
O(n log n) [12, 26].

Finally, note that when treating proteins as 3D images for purposes of training ML
models one must take into account the importance of rotational invariance. After
translation to a common origin, all protein 3D structures must be repeatedly rotated
to achieve (ideally) random sampling of a uniform angular distribution; this task can
be viewed in terms of the 3D rotation group SO(3), formulated as a Haar distribution
over unit quaternions [27]. These numerically-intensive steps add significant computa-
tional overhead, thus motivating the pursuit of models that are intrinsically rotationally
invariant, e.g., equivariant neural networks [28]. While the data representations for such
approaches are not yet pre-built into Prop3D, this is a future direction to consider.

Page 10 of 24Draizen et al. BMC Bioinformatics (2024) 25:11

Birds-eye view of Prop3D and Prop3D-20sf

The remainder of this work presents Prop3D and Prop3D-20sf, the latter of which is a
new protein domain structure dataset that includes (i) corrected/sanitized protein 3D
structures, (ii) annotated/featurized biophysical properties for each atom and residue, to
allow for multiple representation modes, as well as (iii) pre-constructed train, test & vali-
dation splits that have been specifically formulated for use in ML of proteins (to mitigate
evolutionary data leakage). The tools provided in the Prop3D platform were used to create
Prop3D-20sf, for distribution as a community resource.

Overview of the software and associated dataset
Architecture and design

The Prop3D-20sf dataset is created by using Prop3D in tandem with two other frameworks
that we developed: (i) ‘Meadowlark’, for processing and interrogating individual protein
structures and (ii) ‘AtomicToil’, for creation of massively parallel workflows of many thou-
sands of structures. An overview of these tools and their relationship to one another is
given in Fig. 1. While each of these codebases are intricately woven together (in practice),
giving the Prop3D functionality, it helps to consider them separately when examining their
utility/capabilities and their respective roles in an overall Prop3D-based ML pipeline.

Meadowlark: an extensible, Dockerized toolkit for reproducible, cross-platform structural

bioinformatics workflows

In bioinformatics and computational biology more broadly, many tools and codes can be
less than straightforward to install and operate locally: They each require particular com-
binations of operating system configurations, specific versions of different languages and
libraries (which may or may not be cross-compatible), have various dependencies for instal-
lation/compilation (and for run-time execution), potentially difficult patterns of interde-
pendencies, and so on. Moreover, considered across the community as a whole, researchers
spend many hours installing (and perhaps even performance-tuning) these tools them-
selves, only to find that they are conducting similar development and upkeep of this com-
putational infrastructure as are numerous other individuals. All the while, the data, results
and technical/methodological details underpinning the execution of a computational
pipeline are typically never shared, at least not before the point of eventual publication—
i.e., months or even years after the point at which it would have been most useful to oth-
ers. Following the examples of the UC Santa Cruz Computational Genomics Laboratory
(UCSC-CGL) and the Global Alliance for Genomics & Health (GA4GH) [29], in Prop3D
we Docker-ize common structural bioinformatics tools to make them easily deployable and
executable on any machine, along with parsers to handle their outputs, all without leaving
a top-level Python-based workflow. New software can be added into meadowlark if it exists
as a Docker or Singu larity container [30, 31]; indeed, much of Prop3D’s extensibility stems
from meadowlark, and new functionality can be readily added beyond the provided pre-
pare() and featurize() tools shown in Fig. 1. For a list of codes and software tools
that we have thus far made available, see Additional file 1 (Tables S1 and S2) or visit our
Docke r Hub for the most current information.

https://www.wikidata.org/wiki/Q15206305
https://www.wikidata.org/wiki/Q15206305
https://www.wikidata.org/wiki/Q51294208
https://hub.docker.com/u/edraizen

Page 11 of 24Draizen et al. BMC Bioinformatics (2024) 25:11

AtomicToil: reproducible workflows that map structural information to sets of massively

parallel tasks

To enable the construction and automated deployment of massively parallel workflows
in the cloud, we use a Python-based workflow management system (WMS) known as
Toil [30]. Each top-level Toil job has child jobs and follow-on jobs, enabling the con-
struction of complex MapReduce-like pipelines. A Toil workflow can be controlled
locally, on the cloud (e.g., AWS, Kuber netes), or on a compute farm or a high-perfor-
mance computing platform such as a Linux-based cluster (equipped with a scheduler
such as SLURM, Oracl e Grid Engine, or the like). Further information on the data-flow
paradigm, flow-based programming and related WMS concepts, as they pertain to task-
oriented bioinformatics toolkits such as Toil, can be found in [32].

In Prop3D, we have specifically created multiple ways by which a user can develop and
instantiate a workflow. Namely, pipelines can be devised based on:

1 PDB files: A collection of PDB files, each of which can contain a single protein
domain or perhaps be more complex (e.g., multiple chains), can be aggregated into
a pool. This group of PDB identifiers can be systemically mapped to jobs in order to
run a given function/calculation (‘apply’ the function, in the parlance of functional
programming) on each member of the data pool, thereby processing the full dataset.

2 CATH’s schema: The CATH database is readily amenable to the data-flow paradigm
by virtue of its hierarchical organization. In this scheme, one job/task can be cre-
ated for each nth level entry in the CATH hierarchy, with child jobs spawned for
subsidiary n+1th levels in the hierarchy. Once the workflow reaches a job at the level
of each individual domain (or whatever pre-specified target level), then it can run a
given, user-provisioned function.

New, user-defined functionality can be added to a workflow by defining new Toil job
functions; these functions can be arbitrarily complex, or as simple as standalone Python
functions with specific, well-formed signatures (call/return semantics).

Capabilities and features

This section offers two examples of Prop3D usage, one relatively simple and the other
more intermediate-level. The more advanced example demonstrates protein structure
preparation and biophysical property calculations (and annotation). While not included
here, we note that Prop3D is also useful in creating more intricate workflows, for instance
(i) to build and validate intermolecular associations, e.g., in studying domain•••domain
interactions and protein complexes, and (ii) in developing and deploying an AI-driven
‘DeepUrfold’ framework for quantifying protein structural relationships [12].

Example 1: protein structure preparation

To illustrate the typical first step in a structural bioinformatics analysis pipeline, we
‘clean’ or ‘sanitize’ a starting protein 3D structure via the following scheme. We begin
by selecting the first model (from among multiple possible models in a PDB file),
the desired chain, and the first alternate location (if multiple conformers exist for an
atom/residue). These two choices are justifiable, in the absence of other information,

https://www.wikidata.org/wiki/Q114858329
https://www.wikidata.org/wiki/Q114858329
https://www.wikidata.org/wiki/Q114858329
https://www.wikidata.org/wiki/Q456157
https://www.wikidata.org/wiki/Q22661306
https://www.wikidata.org/wiki/Q3459703
https://www.wikidata.org/wiki/Q2708256
https://www.wikidata.org/wiki/Q114858329
https://www.wikidata.org/wiki/Q766195
https://www.wikidata.org/wiki/Q766195
https://www.wikidata.org/wiki/Q766195
https://www.wikidata.org/wiki/Q5008897
https://www.wikidata.org/wiki/Q5008897
https://www.wikidata.org/wiki/Q5008897
https://www.wikidata.org/wiki/Q114858329
https://www.wikidata.org/wiki/Q766195

Page 12 of 24Draizen et al. BMC Bioinformatics (2024) 25:11

because in the PDB file-format it is conventional for (i) the first ‘MODEL’ to be the
lowest-energy (most energetically favorable) conformation, e.g., in NMR-derived
structural ensembles or theoretical predictions, and (ii) similarly, the first rotameric
state, specified by alternate location (‘altloc’) identifiers, corresponds to the most
highly-populated (and presumably lowest-energy) side-chain conformer. Next, we
remove hetero-atoms (water or buffer molecules, other crystallization reagents, etc.);
these steps are achieved in Prop3D via pdb- tools [33]. Then, in the final phase, we
modify each domain structure via the following stages: (i) Build/model any missing
residues with MODEL LER [34]; (ii) Correct/optimize rotamers (e.g., any missing
atoms) with SCWRL4 [35]; and (3) Add hydrogens and perform a rough potential
energy minimization with the PDB2P QR toolkit [36]. Again, we note that all these
software packages and utilities are wrapped into Prop3D’s unified framework. We
applied this general workflow, schematized in Fig. 4, in constructing the Prop3D-20sf
dataset.

Example 2: biophysical property calculation and featurization

The Prop3D toolkit enables one to rapidly and efficiently compute biophysical proper-
ties for all structural entities (atoms, residues, etc.) in a dataset of 3D structures (e.g.,
from the PDB or CATH), and then map those values onto the respective entities as
features for ML model training or other downstream analyses.

For atom-level features, we create one-hot encodings based on 23 atom names, 16
element names, and 21 residue types (20 standard amino acids and one UNKnown
placeholder), as defined in AutoD ock. We also include van der Waals radii, charges
from PDB2P QR [36], electrostatic potentials computed via APBS [37], concavity val-
ues that we calculate via CX [38], various hydrophobicity features of the residue that
an atom belongs to (the Kyte-Doolittle [39], Biological [40] and Octanol [41] scales),
and two measures of accessible surface area (per-atom, via FreeS ASA [42], and per-
residue, via DSSP [43]). We also include different types of secondary structure infor-
mation, namely one-hot encodings based on DSSP’s 3-class (helix, strand, loop)
and more finely-grained 7-class secondary structure classifications (the latter also
includes an eighth class for ‘unknown’/error types), as well as the backbone torsion
angles φ and ψ (along with embedded sine and cosine transformations of each). We
also annotate aromaticity, and hydrogen-bond acceptors and donors, based on AutoD

Fig. 4 A simple protein preparation pipeline. In working with protein structures, e.g., to create the
Prop3D-20sf dataset, each domain is typically corrected or ‘sanitized’ by adding missing atoms and residues,
checking rotameric states (highly-populated rotamers should be assigned, by default), protonating, and
performing a crude potential energy minimization of the 3D structure; this general workflow is sketched here
using a tripeptide segment (PDB entry 1KQ2)

https://www.wikidata.org/wiki/Q766195
https://www.wikidata.org/wiki/Q114840802
https://www.wikidata.org/wiki/Q3859815
https://www.wikidata.org/wiki/Q114840881
https://www.wikidata.org/wiki/Q62856803
https://www.wikidata.org/wiki/Q766195
https://www.wikidata.org/wiki/Q5008897
https://www.wikidata.org/wiki/Q4826062
https://www.wikidata.org/wiki/Q62856803
https://www.wikidata.org/wiki/Q65072984
https://www.wikidata.org/wiki/Q114841750
https://www.wikidata.org/wiki/Q114841793
https://www.wikidata.org/wiki/Q5206192
https://www.wikidata.org/wiki/Q5206192
https://www.wikidata.org/wiki/Q4826062
https://www.wikidata.org/wiki/Q766195

Page 13 of 24Draizen et al. BMC Bioinformatics (2024) 25:11

ock atom-name types. As a gauge of phylogenetic conservation, we include sequence
entropy scores from EPPIC [44]. These biophysical, physicochemical, structural, and
phylogenetic features are summarized in Fig. 5 and are exhaustively enumerated in
Table 3. Finally, Prop3D also provides functionality to create discretized values of fea-
tures via the application of Boolean logic operators to the corresponding continuous-
valued quantities of a given descriptor, using simple numerical thresholding (Table 4).

Some of the properties mentioned above are computed at the residue level and
mapped to each atom in the residue (e.g., hydrophobicity is one such property). That
is, a ‘child’ atom inherits the value of a given feature from its ‘parent’ residue. For
other features, residue-level values are calculated by combining atomic quantities,
via various summation or averaging operations applied to the properties’ numeri-
cal values (as detailed in Table 3 for Prop3D-20sf). To illustrate the principle that
residue-level properties may be directly/simply or indirectly/complexly related to
atomic properties, consider that (i) the mass of a residue is a simple summation of the
atomic masses of each of its constituent atoms, whereas (ii) properties such as residue
volume or accessible surface area are not so straightforwardly derived from atomic
properties, instead requiring the application of geometric methods (e.g., the Shrake-
Rupley numerical algorithm [45]).

While all of the possible features are contained in the Prop3D-20sf dataset and
undoubtedly will be somewhat correlated, it is possible for one to select only certain
subsets of features of interest. We also create subsets of the Boolean features that we
have found to be minimally correlated [46], and those can be selected, for example, in
training deep neural networks.

As illustrative use-cases, we supply three nontrivial ML examples that involve repre-
senting proteins as sequences, graphs, or full 3D structures. At the sequence level, we
present an example that uses Prop3D together with the language model–based Evolu-
tionary Scale Model approach (ESM-2 [47]) to predict and annotate residue-level prop-
erties. Next, we illustrate how Prop3D can be used with ProteinMPNN [48], which is a
recent deep learning approach for protein sequence design wherein structural informa-
tion is encoded as graph neural networks, in order to predict residue-level features. And,
finally, we briefly highlight a new DeepUrfold framework [12], where Prop3D is instru-
mental in creating superfamily-specific deep convolutional variational autoencoder

Fig. 5 Calculated properties/features, biophysical and beyond. For each protein domain in Prop3D-20sf,
we annotate every atom with the following features: atom type, element type, residue type, partial charge &
electrostatics, concavity, hydrophobicity, accessible surface area, secondary structure type, and evolutionary
conservation. For a full list of features used in Prop3D-20sf, see the text and Tables 3 and 4. In the ribbon
diagram shown here (PDB 1KQ2), a featurized (atomic) region is highlighted and demarcated in red, atop a
voxelized background. Note that any bespoke feature can be defined and applied in Prop3D

https://www.wikidata.org/wiki/Q4826062
https://www.wikidata.org/wiki/Q114841783
https://www.wikidata.org/wiki/Q766195

Page 14 of 24Draizen et al. BMC Bioinformatics (2024) 25:11

Table 3 All protein descriptors and extracted features that are defined and calculated in Prop3D

Feature Voxel
aggregation
rule

Residue
aggregation
rule

Source software or database Wikidata entry

H max MGLTools Q1148 40701

HD max MGLTools Q1148 40701

HS max MGLTools Q1148 40701

C max MGLTools Q1148 40701

A max MGLTools Q1148 40701

N max MGLTools Q1148 40701

NA max MGLTools Q1148 40701

NS max MGLTools Q1148 40701

OA max MGLTools Q1148 40701

OS max MGLTools Q1148 40701

F max MGLTools Q1148 40701

MG max MGLTools Q1148 40701

P max MGLTools Q1148 40701

SA max MGLTools Q1148 40701

S max MGLTools Q1148 40701

CL max MGLTools Q1148 40701

CA max MGLTools Q1148 40701

MN max MGLTools Q1148 40701

FE max MGLTools Q1148 40701

ZN max MGLTools Q1148 40701

BR max MGLTools Q1148 40701

I max MGLTools Q1148 40701

Unk_atom max MGLTools Q1148 40701

C_elem max PDB File

N_elem max PDB File

O_elem max PDB File

S_elem max PDB File

H_elem max PDB File

F_elem max PDB File

MG_elem max PDB File

P_elem max PDB File

CL_elem max PDB File

CA_elem max PDB File

MN_elem max PDB File

FE_elem max PDB File

ZN_elem max PDB File

BR_elem max PDB file

I_elem max PDB file

Unk_elem max PDB file

vdw mean � [62]

Partial charge (charge) Mean sum Pdb2Pqr Q6285 6803

electrostatic_potential mean sum APBS Q6507 2984

concavity (cx) mean mean CX Q1148 41750

hydrophobicity mean � Kyte-Doolittle [39]

biological_hydrophobicity mean � [40]

octanal_hydrophobicity mean � Wimley-White [41]

atom_asa mean FreeSASA Q1148 41793

residue_rasa mean � DSSP Q5206 192

https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q62856803
https://www.wikidata.org/wiki/Q65072984
https://www.wikidata.org/wiki/Q114841750
https://www.wikidata.org/wiki/Q114841793
https://www.wikidata.org/wiki/Q5206192

Page 15 of 24Draizen et al. BMC Bioinformatics (2024) 25:11

Table 3 (continued)

Feature Voxel
aggregation
rule

Residue
aggregation
rule

Source software or database Wikidata entry

ALA max � PDB file

CYS max � PDB file

ASP max � PDB file

GLU max � PDB file

PHE max � PDB file

GLY max � PDB file

HIS max � PDB file

ILE max � PDB file

LYS max � PDB file

LEU max � PDB file

MET max � PDB file

ASN max � PDB file

PRO max � PDB file

GLN max � PDB file

ARG max � PDB file

SER max � PDB file

THR max � PDB file

VAL max � PDB file

TRP max � PDB file

TYR max � PDB file

Unk_residue max � PDB file

phi mean � BioPython Q4118 434

phi_sin mean � NumPy

phi_cos mean � NumPy

psi mean � BioPython Q4118 434.

psi_sin mean � NumPy

psi_cos mean � NumPy

is_helix max � DSSP Q5206 192

is_sheet max � DSSP Q5206 192

Unk_SS max � DSSP Q5206 192

is_regular_helix max � DSSP Q5206 192

is_beta_bridge max � DSSP Q5206 192

is_extended_strand max � DSSP Q5206 192

is_310_helix max � DSSP Q5206 192

is_pi_helix max � DSSP Q5206 192

is_hbond_turn max � DSSP Q5206 192

is_bend max � DSSP Q5206 192

no_ss max � DSSP Q5206 192

hydrophobic_atom max MGLTools Q1148 40701

aromatic_atom max MGLTools Q1148 40701

hbond_acceptor max MGLTools Q1148 40701

hbond_donor max MGLTools Q1148 40701

metal max MGLTools Q1148 40701

eppic_entropy min � EPPIC Q1148 41783

A voxel aggregation method is used to combine two or more atom-wise features if they impinge upon the same voxel
(after accounting for the van der Waals sphere volume). The “Residue Aggregation Rule” describes how a given feature is
aggregated, from atom to residue, if also present as a residue-level feature. A ‘ � ’ indicates if a feature was calculated at the
residue level and mapped down to the atomic level

https://www.wikidata.org/wiki/Q4118434
https://www.wikidata.org/wiki/Q4118434
https://www.wikidata.org/wiki/Q5206192
https://www.wikidata.org/wiki/Q5206192
https://www.wikidata.org/wiki/Q5206192
https://www.wikidata.org/wiki/Q5206192
https://www.wikidata.org/wiki/Q5206192
https://www.wikidata.org/wiki/Q5206192
https://www.wikidata.org/wiki/Q5206192
https://www.wikidata.org/wiki/Q5206192
https://www.wikidata.org/wiki/Q5206192
https://www.wikidata.org/wiki/Q5206192
https://www.wikidata.org/wiki/Q5206192
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114841783

Page 16 of 24Draizen et al. BMC Bioinformatics (2024) 25:11

(VAE) models at the level of full, intact 3D structures. These three sets of examples
(complete with Python code), along with much other documentation, can be found at
https:// prop3d. readt hedocs. io.

Dataset design and open data format (with some historical context)

In order to handle the large amount of protein data in massively parallel workflows, we
engineered Prop3D to employ the Hierarchical Data Format (HDF5 [49]), along with
the Highly Scalable Data Service (HSDS). We find the HDF5 file format to be a useful
way to store and access immense protein datasets because it allows Prop3D to chunk/
compress/navigate a protein structure hierarchy like CATH in a scalable and efficient
manner. Using this approach versus, for example, creating myriad individual files spread
across multiple directories, we can combine the data into ‘single’ files/objects that are
easily shareable and can be accessed via a hierarchical structure of groups and datasets,
each with attached metadata descriptors; note that hierarchical schemes, such as CATH,
will generally lend themselves naturally to this sort of approach. Moreover, the HSDS
extension to this object storage system allows multiple readers and writers which, in
combination with Toil, affords a degree of parallelization that significantly accelerates
the creation of new datasets, e.g. as part of a Prop3D-enabled workflow.

Many computational biologists have begun migrating to approaches such as HDF5
[50–52] and HSDS [53] in recent years because (i) binary data can be rapidly retrieved/
read, (ii) such data are readily manipulable and easily shareable, and (iii) these systems
provide well-integrated metadata and other beneficial services, schema and features
(thus, e.g., facilitating attribution of data provenance). Before the relatively recent advent
of HDF5(/HSDS) and other binary formats, biological data exchange and archival for-
mats for protein 3D structures largely relied on human-readable, plaintext ASCII files
(i.e., PDB files). For decades, PDB files have been the de facto standard format for shar-
ing, storing and processing protein structure data, such as in structural bioinformatics
workflows. Originally developed in 1976 to work with punch cards, the legacy PDB for-
mat is an ASCII file with fixed-column width and maximally 80 characters per line [54].
Working with traditional PDB files, a structure could be attributed with only one type of
biophysical property, e.g., by substituting the numerical values of the desired property
into the B-factor column—a highly limited workaround. Because of the inflexibility of
the legacy PDB file and its limitations as a data exchange format, the macromolecular
Crystallographic Information File (mmCIF) was developed; this file format was designed

Table 4 Discretization of continuous feature values in Prop3D

Boolean feature Source feature Relation used Threshold

neg_charge charge < 0.

pos_charge charge > 0

is_electronegative electrostatic_potential < 0.

is_concave cx ≤ 2

is_hydrophobic hydrophobicity > 0

residue_buried residue_rasa < 0.2

is_conserved eppic_entropy < 0.5

https://prop3d.readthedocs.io
https://www.wikidata.org/wiki/Q1069215
https://www.wikidata.org/wiki/Q114859023
https://www.wikidata.org/wiki/Q1069215
https://www.wikidata.org/wiki/Q5008897
https://www.wikidata.org/wiki/Q5008897
https://www.wikidata.org/wiki/Q114859023
https://www.wikidata.org/wiki/Q114858329
https://www.wikidata.org/wiki/Q1069215
https://www.wikidata.org/wiki/Q114859023
https://www.wikidata.org/wiki/Q1069215
https://www.wikidata.org/wiki/Q114859023
https://www.wikidata.org/wiki/Q766195
https://www.wikidata.org/wiki/Q766195
https://www.wikidata.org/wiki/Q766195
https://www.wikidata.org/wiki/Q766195

Page 17 of 24Draizen et al. BMC Bioinformatics (2024) 25:11

for better extensibility, flexibility and robustness (e.g., a standardized data dictionary),
allowing for a 3D structure to be attributed with a plethora of properties, biophysical
and otherwise [55]. Most recently, spurred by the slow nature of reading ASCII files,
the Macromolecular Transmission Format (MMTF) has been developed to store protein
structures in a compact binary format, based on MessagePack format (version 5) [56,
57]. While the MMTF is almost ideal for ML tasks, it still relies on using individual files
in a file system, with no efficient, distributed mechanism to read in all files, no way to
include metadata higher than residue level, and no ability to combine train/test splits
directly into the schema—these were some of our motivating factors in adopting HDF5
and HSDS capabilities in Prop3D.

For Prop3D and Prop3D-20sf, an HDF5 file is built by starting with the CATH data-
base, which provides a hierarchical schema—namely, Class ⊃ Architecture ⊃ Topology ⊃
Homologous Superfamily—that is naturally amenable to parallelization and efficient data
traversal, as shown in Fig. 6. In Prop3D, a superfamily can be accessed by its CATH code
as the group key (e.g., ‘2/60/40/10’ for Immunoglobulin). We then split each superfam-
ily into two groups (Fig. 6): (i) a ‘domains’ dataset, containing groups for each protein
domain inside that superfamily (Fig. 6B, top half), and (ii) ‘data_splits’ (Fig. 6B, bot-
tom half), containing pre-computed train (80%), validation (10%), and test (10%) data
splits for use in developing ML models, where each domain in each split is hard-linked
to the group for that domain (dashed green arrows in Fig. 6). Each domain group con-
tains datasets for different types of features: ‘Atoms’, ‘Residues’ and ‘Edges’. The ‘Atoms’
dataset contains information drawn from the PDB file’s ATOM field, as well as all of the
biophysical properties that we calculated for each atom. ‘Residues’ contains biophysical
properties of each residue and position (average of all of its daughter atoms), e.g. for use
in coarse-grained models. Finally, ‘Edges’ contains properties for each residue ↔ residue

Fig. 6 The CATH-inspired hierarchical structure of Prop3D. The inherently hierarchical structure of CATH
(A) is echoed in the design schema underlying the Prop3D-20sf dataset (B), as illustrated here. Prop3D can be
accessed as an HDF5 file seeded with the CATH hierarchy for all available superfamilies. For clarity, an example
of one such superfamily is the individual H-group 2.60.40.10 (Immunoglobulins), shown here as the
orange sector (denoted by an asterisk near 4 o’clock). Each such superfamily is further split into (i) the domain
groups, with datasets provided for each domain (atomic features, residue features, and edge features), as
delineated in the upper-half of (B), and (ii) pre-calculated data splits, shown in the lower-half of (B), which
exist as hard-links (denoted as dashed green lines) to domain groups. (The ‘sunburst’ style CATH diagram,
from http:// cathdb. info, is under the Creative Commons Attribution 4.0 International License.)

https://www.wikidata.org/wiki/Q1069215
https://www.wikidata.org/wiki/Q114859023
https://www.wikidata.org/wiki/Q1069215
https://www.wikidata.org/wiki/Q5008897
https://www.wikidata.org/wiki/Q5008897
https://www.wikidata.org/wiki/Q766195
https://www.wikidata.org/wiki/Q5008897
https://www.wikidata.org/wiki/Q1069215
https://www.wikidata.org/wiki/Q5008897
https://www.wikidata.org/wiki/Q5008897
http://cathdb.info

Page 18 of 24Draizen et al. BMC Bioinformatics (2024) 25:11

interaction, thereby enabling the construction and annotation of, e.g., contact maps in
graph-based representations/models.

In terms of data-processing pipelines, HSDS allows HDF5 data stores to be hosted in
S3-like buckets, such as AWS or MinIO, remotely and with accessibility achieved via a
ReST API. HSDS data nodes and service nodes (Fig. 7) are controlled via a load-balancer
in Kuber netes in order to enable efficient, distributed mechanisms to query HDF5 data
stores, as well as write data with a quick, efficient, distributed mechanism; these proper-
ties of HSDS are achieved via various features of its engineering, including using data-
caching and implicit parallelization of the task mapping across virtual partitions (Fig. 7).
HSDS allows for multiple readers and multiple writers to read or write to the same file
simultaneously, using a ‘distributed’ HDF5 multi-reader/multi-writer Python library
known as h5pyd (Fig. 7). As part of Prop3D, we have setup a local k3s instance, which
is an easy-to-install, lightweight distribution of Kuber netes that can run on a single
machine along with MinIO S3 buckets. We have found this approach to be particularly
useful in enabling flexible scalability: our solution works on HPC data infrastructures
that can be either large or (relatively) small.

In creating the Prop3D-20sf dataset, HSDS, in combination with a Toil-enabled work-
flow, allows for each parallelized task to write to the same HDF5 data store simulta-
neously. The Prop3D-20sf dataset can be read in parallel as well, e.g. in PyTor ch. We
provide PyTor ch Data Loaders to read the Prop3D-20sf dataset from an HSDS endpoint
using multiple processes; that functionality is available in our related DeepUrfold Python
package [12]. Promisingly, we found that when HSDS was used with Prop3D as a system
for distributed training of deep generative models in our DeepUrfold ML workflow, as
opposed to using raw ASCII files, a speedup of ≈33% (8 h) was achieved, corresponding
to a reduction from ≈24 h to ≈16 h of wall-clock time to train an immunoglobulin-spe-
cific variational autoencoder model with 25,524 featurized Ig domain structures (Fig. 8).

Fig. 7 Cloud-based access to the Prop3D-20sf Dataset via HSDS. HSDS creates Service Nodes, which are
containers that handle query requests from clients, and Data Nodes, which are containers that access the
object storage in an efficient, distributed manner. The Prop3D-20sf dataset can be used as input to train an
ML model either by accessing the data via a Python client library (h5pyd) or through our separate DeepUrfold
Python package, which supplies PyTor ch data loaders [12]. This illustration was adapted from one that can be
found at the HSDS webpage (available under an Apache 2.0 license, which is compatible with CC-by−4.0)

https://www.wikidata.org/wiki/Q114859023
https://www.wikidata.org/wiki/Q1069215
https://www.wikidata.org/wiki/Q456157
https://www.wikidata.org/wiki/Q28956397
https://www.wikidata.org/wiki/Q114859023
https://www.wikidata.org/wiki/Q22661306
https://www.wikidata.org/wiki/Q1069215
https://www.wikidata.org/wiki/Q114859023
https://www.wikidata.org/wiki/Q114859023
https://www.wikidata.org/wiki/Q1069215
https://www.wikidata.org/wiki/Q114859536
https://www.wikidata.org/wiki/Q114860267
https://www.wikidata.org/wiki/Q22661306
https://www.wikidata.org/wiki/Q28956397
https://www.wikidata.org/wiki/Q114859023
https://www.wikidata.org/wiki/Q114858329
https://www.wikidata.org/wiki/Q1069215
https://www.wikidata.org/wiki/Q47509047
https://www.wikidata.org/wiki/Q47509047
https://www.wikidata.org/wiki/Q114859023
https://www.wikidata.org/wiki/Q114859023
https://www.wikidata.org/wiki/Q114859536
https://www.wikidata.org/wiki/Q47509047
https://www.wikidata.org/wiki/Q114859023

Page 19 of 24Draizen et al. BMC Bioinformatics (2024) 25:11

Thus, we found it clearly and significantly advantageous to utilize the parallelizable data-
handler capacity that is provided by a remote, cloud-based, parallel-processing system
like HSDS.

Data availability and Prop3D’s FAIRness
As summarized in the rest of this section, and detailed in the Additional file 1 (§3), we
have sought to make Prop3D FAIR—Findable, Accessible, Interoperable, and Reproduc-
ible [58]. When possible, the FAIR guidelines would apply both to datasets themselves
as well as to the code that underlies the data-generating and data-processing/analysis/
reduction pipelines—i.e., a software framework would be FAIR-compliant, insofar as its
resultant data are FAIR. Thus, with Prop3D we provide unique identifiers and searchable
metadata for open platforms such as Zenodo, WikiData, the Open Science Foundation,
and the University of Virginia School of Data Science’s Open Data Portal, as detailed
below.

Fig. 8 HSDS affords significantly improved training runtimes. Using Prop3D, we trained an
immunoglobulin-specific variational autoencoder with ≈25K domain structures, employing 64 CPUs to
process data and four GPUs for 30 epochs of training (orange trace; [12]). A Before we chose to implement
HSDS in Prop3D, we stored and processed domain structures as simple plaintext PDB files (parsed with BioPy
thon), along with the corresponding biophysical properties for all atoms in these structures as plaintext files
of comma-separated values (CSV; parsed with Pandas). That computation took ≈24 h of wallclock time for ≈
50K ASCII files on a well-equipped GPU workstation. B. Reformulating and streamlining the Prop3D pipeline
with HSDS yielded a substantial (≈33%) speed-up: training runtimes across many epochs (orange) improved
by ≈8 h (to ≈16 h total), with there being far more efficient CPU usage while reading all of the data (blue
traces; note the different vertical scales in A and B). These data-panel images were exported from our Weigh
ts and Biases training dashboard

https://www.wikidata.org/wiki/Q114859023
https://www.wikidata.org/wiki/Q114859023
https://www.wikidata.org/wiki/Q766195
https://www.wikidata.org/wiki/Q4118434
https://www.wikidata.org/wiki/Q4118434
https://www.wikidata.org/wiki/Q15967387
https://www.wikidata.org/wiki/Q114859023
https://www.wikidata.org/wiki/Q107382092
https://www.wikidata.org/wiki/Q107382092

Page 20 of 24Draizen et al. BMC Bioinformatics (2024) 25:11

First, the Prop3D-20sf dataset, which contains our prepared structues, pre-com-
puted features and data splits for the 20 highly-populated CATH superfamilies shown
in Fig. 2, is made available in our HSDS endpoint at the University of Virginia (http://
prop3d- hsds. pods. uvarc. io/ about) at the domain /CATH/Prop3D-20.h5 (no
authentication is necessary; the API must be used as there is not a browser-accessible
version). The data can be read into a Python program, as part of one’s ML workflow,
using either h5pyd or our Prop3D library. A copy of the raw HDF5 data, exported
from our HSDS endpoint, is also available on Zenodo (https:// doi. org/ 10. 5281/
zenodo. 68730 24).

The Prop3D library, to run predefined workflows and access our HSDS endpoint,
is freely accessible in our GitHub repository (https:// github. com/ boura lab/ Prop3D),
with scripts provided to setup HSDS and Kuber netes, e.g. if one plans to run on one’s
own local system via k3s.

Finally, all of our Docker-ized tools also can be obtained from our Docker Hub at
https:// hub. docker. com/u/ edrai zen.

We have used Wikidata throughout this article to cite the software we use, as well as to
create links to the code and data repositories reported herein (e.g., Q1080 40542 points
to Prop3D) [59].

Summary and outlook
This work has presented Prop3D, a modular, flexible, Python-based platform that we
developed for large-scale protein property featurization and other data-processing/
pipelining tasks that typically arise in ML workflows for structural bioinformatics. While
Prop3D was developed and deployed as part of a deep learning framework in another
project [12], it was intentionally engineered with extensibility and scalability in mind.
This tool can be used with local HPC resources as well as in the cloud, and allows one to
systematically and reproducibly create comprehensive datasets via the Highly Scalable
Data Service (HSDS). Using Prop3D, we have created ‘Prop3D-20sf ’ as a new, shared
community resource. The Prop3D-20sf protein dataset, freely available as an HSDS end-
point, combines 3D coordinates with biophysical characteristics and evolutionary prop-
erties (for each atom), in each structural domain for 20 highly-populated homologous
superfamilies in CATH.

The 3D domains in Prop3D-20sf are sanitized via numerous steps, including clean-
up of the covalent structure (e.g., adding missing atoms and residues) and physico-
chemical properties (protonation and energy minimization). Our database schema
mirrors CATH’s hierarchy, mapped to a system based on HDF5 files and including
atomic-level features, residue-level features, residue•••residue contacts, and pre-cal-
culated train/test/validate splits (in ratios of 80/10/10) for each superfamily derived
from CATH’s sequence-identity-based clusters (e.g., ‘S35’ for groups of proteins culled
at 35% sequence identity). Notably, our construction of Prop3D-20sf sought to directly
and explicitly address the issue of evolutionary data leakage, thereby hopefully mitigat-
ing any bias in ML models trained with these datasets. The Prop3D approach and its
attendant Prop3D-20sf pre-computed dataset can be used to compare sequence-based
(1D), residue-contact-based graphs (2D), and structure-based (3D) methods. For exam-
ple, one could imagine training a supervised model, with input being a protein sequence,

https://www.wikidata.org/wiki/Q5008897
https://www.wikidata.org/wiki/Q114859023
http://prop3d-hsds.pods.uvarc.io/about
http://prop3d-hsds.pods.uvarc.io/about
https://www.wikidata.org/wiki/Q114859536
https://www.wikidata.org/wiki/Q1069215
https://doi.org/10.5281/zenodo.6873024
https://doi.org/10.5281/zenodo.6873024
https://github.com/bouralab/Prop3D
https://www.wikidata.org/wiki/Q114859023
https://www.wikidata.org/wiki/Q22661306
https://www.wikidata.org/wiki/Q114860267
https://www.wikidata.org/wiki/Q15206305
https://www.wikidata.org/wiki/Q15206305
https://hub.docker.com/u/edraizen
https://www.wikidata.org/wiki/Q108040542
https://www.wikidata.org/wiki/Q114859023
https://www.wikidata.org/wiki/Q114859023
https://www.wikidata.org/wiki/Q5008897
https://www.wikidata.org/wiki/Q5008897
https://www.wikidata.org/wiki/Q1069215
https://www.wikidata.org/wiki/Q5008897

Page 21 of 24Draizen et al. BMC Bioinformatics (2024) 25:11

to predict a specific residue-based biophysical property. Similarly, unsupervised models
can be trained using one or all of the biophysical properties to learn protein embed-
dings, such as was the case in our DeepUrfold project [12].

Within Prop3D, we built AtomicToil to enable the facile creation of reproducible
workflows, starting with PDB files or by traversing the CATH hierarchy, as well as the
Meadowlark toolkit to run Docker-ized structural bioinformatics software. While we
primarily developed these tools in order to create the Prop3D-20sf dataset, we envision
that the toolkit can be integrated into feature-rich, standalone structural bioinformatics
platforms, e.g. BioPy thon or Bioti te. An appealing future direction would be to enable
Prop3D’s featurization pipeline to capture information about biomolecular dynamics
[60, 61], so as to aid the development of ML models that are more detailed and realis-
tic reflections of protein function. More generally, we believe that Prop3D-20sf and its
underlying Prop3D framework may be useful as a community resource in developing
workflows that entail processing protein 3D structural information, particularly for pro-
jects that arise at the intersection of machine learning and structural bioinformatics.

Availability and requirements
Project name: Prop3D Project home page: https:// github. com/ boura lab/ Prop3D Oper-
ating system(s): Platform independent Programming language: Python Other require-
ments: Python 3.8 or higher, Singularity or Docker, Toil, Kubernetes License: Creative
Commons Attribution 4.0 International License (CC-BY-4). Any restrictions to use by
non-academics: None.

Abbreviations

Structure-based software
AlphaFold2 Deep learning-based code for high-accuracy protein 3D structure prediction Q1077

11739
AutoDock A suite of automated protein docking tools Q4826 062
APBS Adaptive Poisson-Boltzmann Solver, used here to calculate the electrostatic potential for

each atom in a given protein Q6507 2984
BioPython General-purpose collection of open-source tools for computational biology Q4118 434
Biotite A comprehensive library for computational molecular biology Q1148 59551
CX Get curvature for each atom in a given protein Q1148 41750
DSSP Calculate secondary structure and accessibility for each residue in a given structure

Q5206 192
EPPIC Calculate sequence conservation scores for a given protein and obtain biologically rel-

evant protein interactions (i.e., not resulting from crystal packing) Q1148 41783
FreeSASA Get solvent accessibility of each atom in a given protein Q1148 41793
MGLTools Convert atom names to AutoDock names and PDBQT Q1148 40701
MODELLER Create full atom structures from C α only models, mutate structures with different amino

acids, ‘remodel structure’ to energy minimize, and model loops Q3859 815
PDB2PQR Protonate a protein structure, debump hydrogens, energy-minimize, and standardise

naming (atomic nomenclature) Q6285 6803
pdb-tools A “Swiss army knife of tools” to manipulate PDB files Q1148 40802
SCWRL4 Correct side-chains using the Dunbrack rotamer library Q1148 40881

Other software
AWS Amazon Web Services, on-demand cloud computing platforms Q4561 57
Docker Open-source software for deploying containerized applications Q1520 6305
HDF5 Hierarchical Data Format, version 5 Q1069 215
HSDS Cloud-native, service-based access to HDF data Q1148 59023
h5pyd Python client library for HDF5 REST interface Q1148 59536
Kubernetes Software to manage containers on a server-cluster Q2266 1306
k3s A light-weight Kubernetes distribution for small servers Q1148 60267
MinIO Cloud storage server compatible with Amazon S3 Q2895 6397
NumPy Numerical programming package for the Python programming language Q1975 20

https://www.wikidata.org/wiki/Q766195
https://www.wikidata.org/wiki/Q5008897
https://www.wikidata.org/wiki/Q15206305
https://www.wikidata.org/wiki/Q4118434
https://www.wikidata.org/wiki/Q114859551
https://github.com/bouralab/Prop3D
https://www.wikidata.org/wiki/Q107711739
https://www.wikidata.org/wiki/Q107711739
https://www.wikidata.org/wiki/Q4826062
https://www.wikidata.org/wiki/Q65072984
https://www.wikidata.org/wiki/Q4118434
https://www.wikidata.org/wiki/Q114859551
https://www.wikidata.org/wiki/Q114841750
https://www.wikidata.org/wiki/Q5206192
https://www.wikidata.org/wiki/Q114841783
https://www.wikidata.org/wiki/Q114841793
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q3859815
https://www.wikidata.org/wiki/Q62856803
https://www.wikidata.org/wiki/Q114840802
https://www.wikidata.org/wiki/Q114840881
https://www.wikidata.org/wiki/Q456157
https://www.wikidata.org/wiki/Q15206305
https://www.wikidata.org/wiki/Q1069215
https://www.wikidata.org/wiki/Q114859023
https://www.wikidata.org/wiki/Q114859536
https://www.wikidata.org/wiki/Q22661306
https://www.wikidata.org/wiki/Q114860267
https://www.wikidata.org/wiki/Q28956397
https://www.wikidata.org/wiki/Q197520

Page 22 of 24Draizen et al. BMC Bioinformatics (2024) 25:11

Pandas Python library for data manipulation and analysis Q1596 7387
PyTorch Open-source, Python-based machine learning library Q4750 9047
Toil Enables creation and deployment of massively parallel workflows in Python Q1148 58329
Singularity Open-source container software for scientific environments Q5129 4208
SLURM Free and open-source job scheduler for Linux and similar (Unix-based) operating systems

Q3459 703
Oracle Grid Engine Supercomputer batch-queuing system Q2708 256
Weights and Biases (wandb) Python library to track machine learning experiments, version data and manage models

Q1073 82092

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859- 023- 05586-5.

Additional file 1: Table 1. Sequence-based bioinformatics tools available in Prop3D. Table 2. Structural bioinformat-
ics software suites available in Prop3D. §3. How Prop3D abides by the FAIR guidelines.

Acknowledgements
We thank Luis Felipe R Murillo (Notre Dame) for technical guidance and help with HSDS at UVA, as well as Lane Rasberry
(UVA) for critiquing the manuscript and providing support for Wikidata. We appreciate the early efforts of Menuka
Jaiswal, Saad Saleem and Yonghyeon Kweon on this project.

Author contributions
EJD designed and implemented Prop3D, and drafted/revised the manuscript. JR setup HSDS at UVA and advised on
HDF/HSDS best practices. CM advised the work, and drafted/revised the text and figures. PEB advised the overall project.
All authors read and approved the final manuscript.

Funding
Portions of this work were supported by the University of Virginia and by NSF Career award MCB-1350957 (CM). EJD was
supported by a University of Virginia Presidential Fellowship in Data Science.

Availability of data and materials
All code is available at https:// github. com/ boura lab/ Prop3D. The ‘Prop3D-20sf’ dataset is available at https:// doi. org/ 10.
5281/ zenodo. 68730 24 as a raw HDF5 file, with a public HSDS endpoint at http:// prop3d- hsds. pods. uvarc. io/ about in
domain /CATH/Prop3D-20.h5.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 18 April 2023 Accepted: 27 November 2023

References
 1. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction

with AlphaFold. Nature. 2021;596(7873):583–9. https:// doi. org/ 10. 1038/ s41586- 021- 03819-2.
 2. Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, et al. AlphaFold Protein Structure Database:

massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids
Res. 2021;50(D1):D439–44. https:// doi. org/ 10. 1093/ nar/ gkab1 061.

 3. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new genera-
tion of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402.

 4. Zhang Y, Skolnick J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res.
2005;33(7):2302–9.

 5. Whalen S, Schreiber J, Noble WS, Pollard KS. Navigating the pitfalls of applying machine learning in genomics. Nat
Rev Genet. 2021;23(3):169–81. https:// doi. org/ 10. 1038/ s41576- 021- 00434-9.

 6. Joosten RP, Long F, Murshudov GN, Perrakis A. The PDB_REDO server for macromolecular structure model optimiza-
tion. IUCrJ. 2014;1(4):213–20. https:// doi. org/ 10. 1107/ s2052 25251 40093 24.

 7. Eastman P, Swails J, Chodera JD, McGibbon RT, Zhao Y, Beauchamp KA. OpenMM 7: rapid development of high
performance algorithms for molecular dynamics. PLOS Comput Biol. 2017;13(7): e1005659. https:// doi. org/ 10. 1371/
journ al. pcbi. 10056 59.

 8. Graur D, Li WH. Fundamentals of molecular evolution. 2nd ed. New York: Oxford University Press; 1999.

https://www.wikidata.org/wiki/Q15967387
https://www.wikidata.org/wiki/Q47509047
https://www.wikidata.org/wiki/Q114858329
https://www.wikidata.org/wiki/Q51294208
https://www.wikidata.org/wiki/Q3459703
https://www.wikidata.org/wiki/Q2708256
https://www.wikidata.org/wiki/Q107382092
https://doi.org/10.1186/s12859-023-05586-5
https://github.com/bouralab/Prop3D
https://doi.org/10.5281/zenodo.6873024
https://doi.org/10.5281/zenodo.6873024
http://prop3d-hsds.pods.uvarc.io/about
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1093/nar/gkab1061
https://doi.org/10.1038/s41576-021-00434-9
https://doi.org/10.1107/s2052252514009324
https://doi.org/10.1371/journal.pcbi.1005659
https://doi.org/10.1371/journal.pcbi.1005659

Page 23 of 24Draizen et al. BMC Bioinformatics (2024) 25:11

 9. Burley SK, Bhikadiya C, Bi C, Bittrich S, Chen L, Crichlow GV, et al. RCSB Protein Data Bank: powerful new tools for
exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental
biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 2020;49(D1):D437–51.
https:// doi. org/ 10. 1093/ nar/ gkaa1 038.

 10. Riesselman AJ, Ingraham JB, Marks DS. Deep generative models of genetic variation capture the effects of muta-
tions. Nat Methods. 2018;15(10):816–22. https:// doi. org/ 10. 1038/ s41592- 018- 0138-4.

 11. Walsh I, Pollastri G, Tosatto SCE. Correct machine learning on protein sequences: a peer-reviewing perspective. Brief
Bioinform. 2016;17(5):831–40.

 12. Draizen EJ, Veretnik S, Mura C, Bourne PE. Deep generative models of protein structure uncover distant relation-
ships across a continuous fold space. BioRxiv. 2022; https:// www. biorx iv. org/ conte nt/ early/ 2022/ 08/ 01/ 2022. 07. 29.
501943.

 13. The UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res.
2020;49(D1):D480–D489. https:// doi. org/ 10. 1093/ nar/ gkaa1 100.

 14. Sillitoe I, Bordin N, Dawson N, Waman VP, Ashford P, Scholes HM, et al. CATH: increased structural coverage of func-
tional space. Nucleic Acids Res. 2020;49(D1):D266–73. https:// doi. org/ 10. 1093/ nar/ gkaa1 079.

 15. Halperin I, Glazer DS, Wu S, The Altman RB. FEATURE framework for protein function annotation: modeling new
functions, improving performance, and extending to novel applications. BMC Genomics. 2008. https:// doi. org/ 10.
1186/ 1471- 2164-9- s2- s2.

 16. Bernhofer M, Dallago C, Karl T, Satagopam V, Heinzinger M, Littmann M, et al. PredictProtein-predicting protein
structure and function for 29 years. Nucleic Acids Res. 2021;49(W1):W535–40. https:// doi. org/ 10. 1093/ nar/ gkab3 54.

 17. Zhao B, Katuwawala A, Oldfield CJ, Dunker AK, Faraggi E, Gsponer J, et al. DescribePROT: database of amino acid-
level protein structure and function predictions. Nucleic Acids Res. 2020;49(D1):D298–308. https:// doi. org/ 10. 1093/
nar/ gkaa9 31.

 18. Townshend RJL, Vögele M, Suriana P, Derry A, Powers A, Laloudakis Y, et al. ATOM3D: tasks on molecules in three
dimensions. 2020. arXiv. arxiv: 2012. 04035

 19. Al Quraishi M. ProteinNet: a standardized data set for machine learning of protein structure. BMC Bioinform. 2019.
https:// doi. org/ 10. 1186/ s12859- 019- 2932-0.

 20. King JE, Koes DR. SidechainNet: an all-atom protein structure dataset for machine learning. arXiv; 2020. https:// arxiv.
org/ abs/ 2010. 08162.

 21. Bourne PE, Draizen EJ, Mura C. The curse of the protein ribbon diagram. PLOS Biol. 2022;20(12):1–4. https:// doi. org/
10. 1371/ journ al. pbio. 30019 01.

 22. Mura C, McCrimmon CM, Vertrees J, Sawaya MR. An introduction to biomolecular graphics. PLOS Comput Biol.
2010;6(8):1–11. https:// doi. org/ 10. 1371/ journ al. pcbi. 10009 18.

 23. Montavon G, Binder A, Lapuschkin S, Samek W, Müller KR. In: Samek W, Montavon G, Vedaldi A, Hansen LK, Müller KR,
editors. Layer-wise relevance propagation: an overview. Cham: Springer; 2019. p. 193–209. https:// doi. org/ 10. 1007/
978-3- 030- 28954-6_ 10.

 24. Jiménez J, Doerr S, Martínez-Rosell G, Rose AS, Fabritiis GD. DeepSite: protein-binding site predictor using 3D-con-
volutional neural networks. Bioinformatics. 2017;33(19):3036–42. https:// doi. org/ 10. 1093/ bioin forma tics/ btx350.

 25. Simonovsky M, Meyers J. DeeplyTough: learning structural comparison of protein binding sites. J Chem Inf Model.
2020;60(4):2356–66. https:// doi. org/ 10. 1021/ acs. jcim. 9b005 54.

 26. Wald I, Havran V. On building fast kd-trees for ray tracing, and on doing that in O(N log N). In: 2006 IEEE Symposium
on Interactive Ray Tracing; 2006. p. 61–69.

 27. Rummler H. On the distribution of rotation angles: How great is the mean rotation angle of a random rotation?
Math Intell. 2002;24(4):6–11.

 28. Fuchs FB, Worrall DE, Fischer V, Welling M. SE(3)-Transformers: 3D roto-translation equivariant attention networks.
CoRR. 2020;abs/2006.10503. https:// arxiv. org/ abs/ 2006. 10503.

 29. Yuen D, Cabansay L, Duncan A, Luu G, Hogue G, Overbeck C, et al. The Dockstore: enhancing a community platform
for sharing reproducible and accessible computational protocols. Nucleic Acids Res. 2021;49(W1):W624–32. https://
doi. org/ 10. 1093/ nar/ gkab3 46.

 30. Vivian J, Rao AA, Nothaft FA, Ketchum C, Armstrong J, Novak A, et al. Toil enables reproducible, open source, big
biomedical data analyses. Nat Biotechnol. 2017;35(4):314–6. https:// doi. org/ 10. 1038/ nbt. 3772.

 31. Kurtzer GM, Sochat V, Bauer MW. Singularity: scientific containers for mobility of compute. PLOS ONE. 2017;12(5):
e0177459. https:// doi. org/ 10. 1371/ journ al. pone. 01774 59.

 32. Cieślik M, Mura C. A lightweight, flow-based toolkit for parallel and distributed bioinformatics pipelines. BMC Bioin-
form. 2011;12:61.

 33. Rodrigues J, Teixeira J, Trellet M, Bonvin A. pdb-tools: a swiss army knife for molecular structures. F1000Res.
2018;7(1961).

 34. Webb B, Sali A. Comparative protein structure modeling using MODELLER. Curr Prot Bioinform. 2016. https:// doi.
org/ 10. 1002/ cpbi.3.

 35. Krivov GG, Shapovalov MV, Dunbrack RL. Improved prediction of protein side-chain conformations with SCWRL4.
Proteins Struct Funct Bioinform. 2009;77(4):778–95. https:// doi. org/ 10. 1002/ prot. 22488.

 36. Dolinsky TJ, Czodrowski P, Li H, Nielsen JE, Jensen JH, Klebe G, et al. PDB2PQR: expanding and upgrading automated
preparation of biomolecular structures for molecular simulations. Nucleic Acids Res. 2007;35(Web Server):W522–5.
https:// doi. org/ 10. 1093/ nar/ gkm276.

 37. Jurrus E, Engel D, Star K, Monson K, Brandi J, Felberg LE, et al. Improvements to the APBS biomolecular solvation
software suite. Protein Sci. 2017;27(1):112–28. https:// doi. org/ 10. 1002/ pro. 3280.

 38. Pintar A, Carugo O, Pongor S. CX, an algorithm that identifies protruding atoms in proteins. Bioinformatics.
2002;18(7):980–4. https:// doi. org/ 10. 1093/ bioin forma tics/ 18.7. 980.

 39. Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol.
1982;157(1):105–32. https:// doi. org/ 10. 1016/ 0022- 2836(82) 90515-0.

https://doi.org/10.1093/nar/gkaa1038
https://doi.org/10.1038/s41592-018-0138-4
https://www.biorxiv.org/content/early/2022/08/01/2022.07.29.501943
https://www.biorxiv.org/content/early/2022/08/01/2022.07.29.501943
https://doi.org/10.1093/nar/gkaa1100
https://doi.org/10.1093/nar/gkaa1079
https://doi.org/10.1186/1471-2164-9-s2-s2
https://doi.org/10.1186/1471-2164-9-s2-s2
https://doi.org/10.1093/nar/gkab354
https://doi.org/10.1093/nar/gkaa931
https://doi.org/10.1093/nar/gkaa931
http://arxiv.org/abs/2012.04035
https://doi.org/10.1186/s12859-019-2932-0
https://arxiv.org/abs/2010.08162
https://arxiv.org/abs/2010.08162
https://doi.org/10.1371/journal.pbio.3001901
https://doi.org/10.1371/journal.pbio.3001901
https://doi.org/10.1371/journal.pcbi.1000918
https://doi.org/10.1007/978-3-030-28954-6_10
https://doi.org/10.1007/978-3-030-28954-6_10
https://doi.org/10.1093/bioinformatics/btx350
https://doi.org/10.1021/acs.jcim.9b00554
https://arxiv.org/abs/2006.10503
https://doi.org/10.1093/nar/gkab346
https://doi.org/10.1093/nar/gkab346
https://doi.org/10.1038/nbt.3772
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1002/cpbi.3
https://doi.org/10.1002/cpbi.3
https://doi.org/10.1002/prot.22488
https://doi.org/10.1093/nar/gkm276
https://doi.org/10.1002/pro.3280
https://doi.org/10.1093/bioinformatics/18.7.980
https://doi.org/10.1016/0022-2836(82)90515-0

Page 24 of 24Draizen et al. BMC Bioinformatics (2024) 25:11

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

 40. Hessa T, Kim H, Bihlmaier K, Lundin C, Boekel J, Andersson H, et al. Recognition of transmembrane helices by the
endoplasmic reticulum translocon. Nature. 2005;433(7024):377–81. https:// doi. org/ 10. 1038/ natur e03216.

 41. Wimley WC, White SH. Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat
Struct Mol Biol. 1996;3(10):842–8. https:// doi. org/ 10. 1038/ nsb10 96- 842.

 42. Mitternacht S. FreeSASA: an open source C library for solvent accessible surface area calculations. F1000Res.
2016;5:189. https:// doi. org/ 10. 12688/ f1000 resea rch. 7931.1.

 43. Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geo-
metrical features. Biopolymers. 1983;22(12):2577–637. https:// doi. org/ 10. 1002/ bip. 36022 1211.

 44. Bliven S, Lafita A, Parker A, Capitani G, Duarte JM. Automated evaluation of quaternary structures from protein
crystals. PLOS Comput Biol. 2018;14(4):e1006104. https:// doi. org/ 10. 1371/ journ al. pcbi. 10061 04.

 45. Shrake A, Rupley JA. Environment and exposure to solvent of protein atoms: Lysozyme and insulin. J Mol Biol.
1973;79(2):351–71.

 46. Jaiswal M, Saleem S, Kweon Y, Draizen EJ, Veretnik S, Mura C, et al. Deep learning of protein structural classes: any
evidence for an ‘urfold’? In: 2020 IEEE systems and information engineering design symposium (SIEDS); 2020. p. 1–6.

 47. Lin Z, Akin H, Rao R, Hie B, Zhu Z, Lu W, et al. Evolutionary-scale prediction of atomic-level protein structure with a
language model. Science. 2023;379(6637):1123–30. https:// doi. org/ 10. 1126/ scien ce. ade25 74.

 48. Dauparas J, Anishchenko I, Bennett N, Bai H, Ragotte RJ, Milles LF, et al. Robust deep learning-based protein
sequence design using ProteinMPNN. Science. 2022;378(6615):49–56. https:// doi. org/ 10. 1126/ scien ce. add21 87.

 49. The HDF Group. Hierarchical Data Format, version 5; 1997-NNNN. https:// www. hdfgr oup. org/ HDF5/.
 50. Shaikh B, Marupilla G, Wilson M, Blinov ML, Moraru II, Karr JR. RunBioSimulations: an extensible web application

that simulates a wide range of computational modeling frameworks, algorithms, and formats. Nucleic Acids Res.
2021;49(W1):W597–602. https:// doi. org/ 10. 1093/ nar/ gkab4 11.

 51. Renaud N, Geng C, Georgievska S, Ambrosetti F, Ridder L, Marzella DF, et al. DeepRank: a deep learning framework
for data mining 3D protein-protein interfaces. Nat Commun. 2021;1:1. https:// doi. org/ 10. 1038/ s41467- 021- 27396-0.

 52. Réau M, Renaud N, Xue LC, Bonvin AMJJ. DeepRank-GNN: a graph neural network framework to learn patterns in
protein-protein interfaces. BioRxiv. 2021. https:// doi. org/ 10. 1101/ 2021. 12. 08. 471762.

 53. Freiburger A, Shaikh B, Karr J. BioSimulations: a platform for sharing and reusing biological simulations; 2022. https://
www. hdfgr oup. org/ 2022/ 02/ biosi mulat ions-a- platf orm- for- shari ng- and- reusi ng- biolo gical- simul ations.

 54. Berman HM. The protein data bank: a historical perspective. Acta Crystallogr Sect A Found Crystallogr.
2007;64(1):88–95. https:// doi. org/ 10. 1107/ s0108 76730 70356 23.

 55. Bourne PE, Berman HM, McMahon B, Watenpaugh KD, Westbrook JD, Fitzgerald PMD. Macromolecular crystal-
lographic information file. In: Methods in enzymology. Elsevier; 1997. p. 571–590. https:// doi. org/ 10. 1016/ s0076-
6879(97) 77032-0.

 56. Bradley AR, Rose AS, Pavelka A, Valasatava Y, Duarte JM, Prlić A, et al. MMTF—an efficient file format for the transmis-
sion, visualization, and analysis of macromolecular structures. PLOS Comput Biol. 2017;13(6):e1005575. https:// doi.
org/ 10. 1371/ journ al. pcbi. 10055 75.

 57. Valasatava Y, Bradley AR, Rose AS, Duarte JM, Prlić A, Rose PW. Towards an efficient compression of 3D coordinates of
macromolecular structures. PLOS ONE. 2017;12(3): e0174846. https:// doi. org/ 10. 1371/ journ al. pone. 01748 46.

 58. Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, et al. The FAIR Guiding principles for
scientific data management and stewardship. Scientific Data. 2016;3.

 59. Rasberry L, Mietchen D. Scholia for software. Research Ideas and Outcomes. 2022;8.
 60. Mura C, McAnany CE. An introduction to biomolecular simulations and docking. Mol Simul. 2014;40(10–11):732–64.

https:// doi. org/ 10. 1080/ 08927 022. 2014. 935372.
 61. Hoseini P, Zhao L, Shehu A. Generative deep learning for macromolecular structure and dynamics. Curr Opin Struct

Biol. 2021;67:170–7.
 62. Bondi A. van der Waals volumes and radii. J Phys Chem. 1964;68(3):441–51. https:// doi. org/ 10. 1021/ j1007 85a001.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1038/nature03216
https://doi.org/10.1038/nsb1096-842
https://doi.org/10.12688/f1000research.7931.1
https://doi.org/10.1002/bip.360221211
https://doi.org/10.1371/journal.pcbi.1006104
https://doi.org/10.1126/science.ade2574
https://doi.org/10.1126/science.add2187
https://www.hdfgroup.org/HDF5/
https://doi.org/10.1093/nar/gkab411
https://doi.org/10.1038/s41467-021-27396-0
https://doi.org/10.1101/2021.12.08.471762
https://www.hdfgroup.org/2022/02/biosimulations-a-platform-for-sharing-and-reusing-biological-simulations
https://www.hdfgroup.org/2022/02/biosimulations-a-platform-for-sharing-and-reusing-biological-simulations
https://doi.org/10.1107/s0108767307035623
https://doi.org/10.1016/s0076-6879%2897%2977032-0
https://doi.org/10.1016/s0076-6879%2897%2977032-0
https://doi.org/10.1371/journal.pcbi.1005575
https://doi.org/10.1371/journal.pcbi.1005575
https://doi.org/10.1371/journal.pone.0174846
https://doi.org/10.1080/08927022.2014.935372
https://doi.org/10.1021/j100785a001

	Prop3D: A flexible, Python-based platform for machine learning with protein structural properties and biophysical data
	Abstract
	Background:
	Results:
	Conclusion:

	Introduction
	Motivating factors: data leakage, biophysical properties, and protein representations
	Evolutionary data leakage
	Biophysical properties in ML
	Protein representations
	Proteins in 1D: sequences
	Proteins in 2D: residue•••residue graphs
	Proteins in 3D: structures as 3D volumetric data

	Birds-eye view of Prop3D and Prop3D-20sf

	Overview of the software and associated dataset
	Architecture and design
	Meadowlark: an extensible, Dockerized toolkit for reproducible, cross-platform structural bioinformatics workflows
	AtomicToil: reproducible workflows that map structural information to sets of massively parallel tasks
	Capabilities and features
	Example 1: protein structure preparation
	Example 2: biophysical property calculation and featurization

	Dataset design and open data format (with some historical context)

	Data availability and Prop3D’s FAIRness
	Summary and outlook
	Availability and requirements
	Anchor 26
	Acknowledgements
	References

