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Abstract 

Background: Detection of exotic plant pathogens and preventing their entry 
and establishment are critical for the protection of agricultural systems while securing 
the global trading of agricultural commodities. High‑throughput sequencing (HTS) 
has been applied successfully for plant pathogen discovery, leading to its current 
application in routine pathogen detection. However, the analysis of massive amounts 
of HTS data has become one of the major challenges for the use of HTS more broadly 
as a rapid diagnostics tool. Several bioinformatics pipelines have been developed 
to handle HTS data with a focus on plant virus and viroid detection. However, there 
is a need for an integrative tool that can simultaneously detect a wider range of other 
plant pathogens in HTS data, such as bacteria (including phytoplasmas), fungi, 
and oomycetes, and this tool should also be capable of generating a comprehensive 
report on the phytosanitary status of the diagnosed specimen.

Results: We have developed an open‑source bioinformatics pipeline called Phyto‑
Pipe (Phytosanitary Pipeline) to provide the plant pathology diagnostician community 
with a user‑friendly tool that integrates analysis and visualization of HTS RNA‑seq data. 
PhytoPipe includes quality control of reads, read classification, assembly‑based annota‑
tion, and reference‑based mapping. The final product of the analysis is a compre‑
hensive report for easy interpretation of not only viruses and viroids but also bacteria 
(including phytoplasma), fungi, and oomycetes. PhytoPipe is implemented in Snake‑
make workflow with Python 3 and bash scripts in a Linux environment. The source 
code for PhytoPipe is freely available and distributed under a BSD‑3 license.

Conclusions: PhytoPipe provides an integrative bioinformatics pipeline that can 
be used for the analysis of HTS RNA‑seq data. PhytoPipe is easily installed on a Linux 
or Mac system and can be conveniently used with a Docker image, which includes all 
dependent packages and software related to analyses. It is publicly available on GitHub 
at https:// github. com/ healt hyPla nt/ Phyto Pipe and on Docker Hub at https:// hub. 
docker. com/r/ healt hypla nt/ phyto pipe.
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Background
International trade and consumer demand have increased the worldwide movement of 
plants and plant parts. At the same time, the global distribution and exchange of plant 
germplasm that support the improvement and expansion of agricultural and horti-
cultural industries have also grown dramatically in recent years [1–4]. Imported plant 
germplasm must be thoroughly tested, and proper phytosanitary measures should be 
followed to minimize the risk of introduction of new pests and pathogens of quarantine 
relevance. Therefore, the development of comprehensive diagnostic methods to identify 
both known and unknown plant pathogens, as well as novel variants, is an important 
goal for testing plant material distributed at the global and national levels.

Quarantine centers, certification programs, and plant diagnostic clinics have been 
using traditional virus diagnostic techniques to conduct virus detection, which includes 
biological indexing (mechanical transmission using herbaceous indicator plants such 
as Chenopodium quinoa and Nicotiana tabacum, etc.), enzyme-linked immunosorbent 
assay (ELISA), polymerase chain reaction (PCR), and loop-mediated isothermal amplifi-
cation (LAMP) [5, 6]. More recently, high-throughput sequencing (HTS), also known as 
next-generation sequencing (NGS) or deep sequencing has been used by diagnosticians 
and researchers for detecting and identifying plant pathogens, which has resulted in a 
steady increase in the identification of plant pathogens affecting various crops [2, 7–13]. 
Since it does not require a priori phytosanitary status knowledge of the sample, HTS 
offers certain advantages when compared to targeted-diagnostic techniques such as 
ELISA or PCR [10, 11, 14–18]. The use of HTS is now becoming a gold standard across 
continents after the International Plant Protection Convention (IPPC) recommended it 
as a diagnostic tool for phytosanitary purposes in 2019 [19]. More recently, the Euro-
pean and Mediterranean Plant Protection Organization (EPPO) released a standard for 
plant health diagnostics using HTS in 2022 [20].

HTS-based plant pathogen detection involves two major strategies: amplicon 
sequencing, which uses the power of PCR to amplify specific standardized genetic 
marker(s), such as 16S rRNA gene for bacteria [21] or unique genomic regions of virus 
and viroid genomes [22]; or shotgun sequencing, which captures the complete nucleic 
acids present in a sample [20, 23]. Amplicon sequencing is popularly used for identifi-
cation and comparison of entire microbial communities while shotgun sequencing has 
wider applications for uncovering novel and emerging pathogens [23]. Currently, total 
RNA sequencing (RNA-seq) and small RNA sequencing (sRNA-seq) are the two most 
widely used HTS shotgun approaches for the detection of plant viruses and viroids [27, 
28]. sRNA-seq is designed for virus detection based on the plant viral response mecha-
nism [29] while total RNA-seq, which had traditionally been used for the analysis of the 
transcriptomic landscape of the host, is now also used for the detection of plant path-
ogens such as bacteria (including phytoplasma), fungi, viruses, and viroids [8, 30–32]. 
Although RNA-seq is commonly used for virus and viroid detection by plant virologists 
and in routine diagnostic applications such as post-entry quarantine or certification [11, 
33], non-viral pathogens or pests can also be detected from the same RNA-seq dataset 
used for virus detection [15]. Because of its broad detection spectrum and novel patho-
gen detection ability, it has recently become an increasingly popular tool for pathogen 
detection. It has been used in many crops, such as wheat [34], grapevine [35], citrus 
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[36], fruit trees [37], cucurbit [38], sugarcane [10], grasses [7, 38] etc. for viral pathogen 
detection.

One of the drawbacks of the RNA-seq approach is that it requires higher titer levels of 
the pathogen expressed in the hosts, which corresponds to a high number of pathogen-
derived reads in the data [15]. The RNA-seq approach could miss pathogens with low 
titer. Another obstacle for using RNA-seq to detect pathogens is its demanding bioinfor-
matic requirements for microbiome analysis. To our knowledge, there are few broadly 
accepted standard methods for RNA-seq data generation, processing, and analysis [25, 
39, 40]. The most used analysis methods or pipelines can fall into three main categories: 
(i) mapping sequence reads directly to reference genomes from known pathogens such 
as Pathoscope [41] and CAMAMED [42]; (ii) assembling sequence reads and annotat-
ing contigs such as VirFind [43], VSD toolkit [44], VirusDetect [45], and Virtool [37]; 
and (iii) read-based taxonomic assignments such as Kaiju [46], Kraken2 [47], and Kodoja 
[48]. However, these methods or pipelines do not offer an integrated sequence read qual-
ity control, read assembly, pathogen reference mapping, and read classification to iden-
tify known pathogens and discover novel species, which is a common occurrence during 
plant virus detection. Therefore, an integrative and comprehensive pipeline is needed to 
detect the presence of a wide range of potential plant pathogens in a specimen.

Here we present Phytosanitary Pipeline (PhytoPipe), an integrative pipeline for plant 
pathogen identification using RNA-seq data. The pipeline combines current tools for 
HTS read quality control, the host read filtering, read assembly, contig annotation, refer-
ence mapping, and taxonomic classification. PhytoPipe is equally capable of identifying 
known bacteria (including phytoplasma), fungi, oomycetes, viruses, viroids, and possi-
ble novel viruses. Furthermore, the use of the Snakemake workflow management system 
[49] allows for an efficient and automated deployment on a local multicore computer, 
computing cluster, or a cloud environment.

Implementation
The PhytoPipe framework uses the Snakemake workflow management system [49] 
to organize sequence data processing tools. These tools have been organized into four 
distinct modules: reads preprocessing (Fig. 1A), reads classification (Fig. 1B), assembly-
based annotation (Fig. 1C), and reference-based mapping (Fig. 1D). Each module sum-
marizes the results into HTML or Krona reports and tables (Fig. 2). PhytoPipe can be 
easily set up in a Linux or Mac environment or run using the PhytoPipe docker image 
[50] (https:// hub. docker. com/r/ healt hypla nt/ phyto pipe) on a Linux, Mac, or Windows 
system. PhytoPipe requires at least 300  GB of RAM, 1  TB of fast-speed storage and 
multi-cores (> 32) parallel computing environment. The complete usage and user options 
are outlined on the GitHub wiki page https:// github. com/ healt hyPla nt/ Phyto Pipe/ wiki.

Quality control

PhytoPipe can process sequence reads in the form of single- or paired-end FASTQ files 
and performs raw sequence reads cleaning in four steps: (1) removing host ribosomal 
RNAs (rRNA) with bbduk against the SILVA eukaryote ribosomal 18S and 28S RNA 
database [51], which is summarized by SortMeRNA [52]; (2) removing PCR duplicates 
with clumpify; (3) removing spike-in or positive controls (the default is pre-determined 

https://hub.docker.com/r/healthyplant/phytopipe
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Fig. 1 Flowchart describing processes and steps performed by the PhytoPipe workflow. The pipeline 
integrates reads preprocessing (A), reads classification (B), assembly‑based annotation (C), and 
reference‑based mapping (D) into a single workflow. The entire protocol can be run starting from raw 
sequence data in the form of single‑ or paired‑end FASTQ files. The results are summarized in an HTML report 
file, tables, and Krona plots for an expert interpretation
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as PhiX) with BBSplit; and (4) removing and trimming low-quality reads, bases, and 
adapter sequences with Trimmomatic [53] (Fig. 1A). The tools used in steps 1, 2, and 3 
are implemented in the BBTools suite [54]. The raw and clean-read qualities for a single 
sample are visualized by FastQC [55] and for batch samples by MultiQC [56]. PhytoPipe 
reports read numbers at each cleaning step, so the user can choose them to evaluate the 
wet lab work, such as rRNA depletion efficiency.

Read classification

PhytoPipe uses Kraken2 [47] to query reads against the NCBI nt database for the nucle-
otide-level classification. PhytoPipe also relies on Kaiju [46] to assign reads to taxa 
using the NCBI taxonomy and a microbial non-redundant database (nr + euk) of bacte-
rial, viral, fungal, and other microbial eukaryotic proteins (Fig. 1B). These k-mer-based 
approaches classify sequences based on the presence and frequency of specific k-mers 
in the database [46, 57, 58]. They can discover low titer viruses or phytoplasma, which 
could be missed by assembly-based methods [29]. Besides the text report generated by 
the tools, the sequence profile and the metagenomic classification are also interactively 
visualized by multi-layered Krona pie charts for a given sample [59].

Assembly‑based annotation

Prior to read assembly, host reads are usually subtracted for pathogen detection. Instead 
of mapping reads to the genome to remove host reads, PhytoPipe extracts possible 
pathogen-derived reads, including classified pathogen-derived (bacteria, fungi, oomy-
cetes, viruses, and viroids) and unclassified reads from the Kraken2 classification using 
the modified script “extract_kraken_reads.py” in KrakenTools [60] (Fig. 1C). Then these 
reads are assembled with either SPAdes [61] or Trinity [62] de novo assembler. Trinity 
is used as default due to its robustness and its ability to better perform when dealing 

Fig. 2 Example output from the PhytoPipe workflow. RNA‑seq data from two apple samples (NCBI BioProject 
accession: PRJNA562540 [72]) processed by PhytoPipe show: A an HTML report showing results from 
different methods; B a MultiQC report for samples read quality; C a read mapping graph for a virus; D a Krona 
pie graph showing the taxonomic composition
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with low titer viruses. Assemblies are then evaluated with QUAST [63] followed by con-
tig (length ≥ 200 nucleotides) annotation at the nucleotide level using blastn [64] against 
NCBI nt database and at the protein level using Diamond blastx [65] against NCBI nr 
database. PhytoPipe allows users to obtain the pathogen information in the blast results 
that are combined with pathogen taxonomy along with HTS read count assigned by 
Kraken2 and Kaiju. Blast searches against NCBI databases can be time-consuming (sev-
eral days) depending on the user’s computing environment and the volume of the HTS 
data. Hence, the user who is just interested in the virus discovery can either use their 
own database or other alternative virus databases such as NCBI viral reference genomes 
and Reference Viral Databases (RVDB) protein version [66]. The user’s databases and the 
analysis parameters can be easily set up in the config file. Finally, the users could identify 
possible novel viruses based on Diamond blastx results and the ICTV criteria field [67].

Reference‑based mapping

To further confirm virus discovery derived from HTS read classification and assembly-
based annotation, viral reference genomes are collated before reference-based mapping 
by PhytoPipe (Fig.  1D). The clean reads are mapped to reference genomes by BWA-
MEM [68]. The mapped read number and coverage are calculated by SAMtools [69] and 
a coverage graph is drawn using matplotlib [70] in Python. A consensus sequence is gen-
erated with BCFtools (including mpileup and consensus commands) [71] and is addi-
tionally annotated using blastn against the local NCBI nt database to filter non-pathogen 
sequences.

Results
The PhytoPipe output for each sample includes FastQC/MultiQC reports for HTS read 
quality assessment, Krona taxonomy pie charts for both Kraken2/Kaiju read classifica-
tion and blastn/blastx results for contigs, and QUAST report for assembly evaluation. 
In addition, output also includes blastn/Diamond blastx search result tables, mapping 
statistics and coverage graphs for viruses and viroids, together with a summary report 
in HTML format (report.html). The final text report (report.txt) for viruses and viroids 
includes results from all samples, including the raw/clean-read length and count, read 
mapping information (reference names and related taxonomy, mapped read count, nor-
malized read count (reads per kilobase of transcript per million mapped reads (RPKM)), 
percentage of mapped reads, percentage of viral genome covered, and mean coverage), 
NCBI blast results (blast E-value, blast identity, blast description), and the nucleotide 
sequence (contig or consensus sequence). A comprehensive sequence quality report 
includes a read quality table of raw read count, raw bases (Mbases) count, percentage 
of bases >  = Q30, mean of raw read quality score, percentage of rRNA, read count after 
removing duplicates, spike-in/control read count, read count after trimming, and the 
number of possible pathogen-derived reads used for assembly.

To show the PhytoPipe detection of microbes in the real plant RNA-seq data, two 
apple sample datasets from the study by Wright et al. [72] (host: Malus domestica, NCBI 
BioProject accession: PRJNA562540) were analyzed. Table 1 shows the microbe detec-
tion results. One fungus (Aureobasidium pullulans EXF-150) was found in SRX6762507, 
which could have been derived from the environment (e.g., water or soil). Fungal viruses 
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(also known as mycoviruses) were also found in this sample (not listed). Three species of 
bacteria (Actinoplanes friuliensis DSM 7358, Bradyrhizobium sp. 170, and Steroidobac-
ter denitrificans) were found in SRX6762511, which could be soilborne. The validated 
multiple apple viruses and viroids were also found by PhytoPipe in both samples: apple 
chlorotic leaf spot virus (ACLSV), apple hammerhead viroid (AHVd), apple mosaic virus 
(ApMV), apple rubbery wood virus 2 (ARWV2), apple stem grooving virus (ASGV), 
apple stem pitting virus (ASPV). PhytoPipe also found additional three ones: hop latent 
virus, hop latent viroid, and hop stunt viroid. Besides this output for all microbes, Phy-
toPipe has a specific report for viruses and viroids (report.txt), the Table 1 missed vali-
dated virus, apple green crinkle associated virus (AGCaV), is in the viral report. Figure 2 
shows examples of the PhytoPipe output from this analysis. The HTML report contains 

Table 1 Microbes and pathogens detected by PhytoPipe in samples SRX6762507 and SRX6762511

a 1207 nt is not an expected viroid size. It’s an assembly error
b Sample name in the study

Sample Types of microbes Microbe name Read 
number by 
classification

Contig number Longest 
Contig 
size

SRX6762507 (lL)b Fungi Aureobasidium pul-
lulans EXF‑150

87747 6149 6444

Viruses apple stem pitting 
virus

8552 135 9192

Viruses apple chlorotic leaf 
spot virus

7315 10 7555

Viruses apple stem grooving 
virus

4226 1 6488

Viruses hop latent virus 278 3 4391

Viruses apple mosaic virus 233 8 1992

Viruses apple rubbery wood 
virus 2

104 7 434

Viroids hop stunt viroid 47 1 390

Viroids hop latent viroid 18 1 347

Viroids apple hammerhead 
viroid‑like RNA

12 1 452

SRX6762511 (1R)b Bacteria Actinoplanes friuliensis 
DSM 7358

16231 1732 6952

Bacteria Bradyrhizobium sp. 170 13597 3016 13027

Bacteria Steroidobacter denitri-
ficans

12222 934 9892

Viruses apple stem pitting 
virus

80565 58 9356

Viruses apple hammerhead 
viroid

10059 2 1207a

Viruses apple stem grooving 
virus

4570 1 6482

Viruses apple rubbery wood 
virus 2

2694 9 1626

Viruses apple chlorotic leaf 
spot virus

1670 21 7565

Viruses hop latent virus 357 3 5364

Viruses apple mosaic virus 297 9 1996

Viroids hop stunt viroid 44 1 390

Viroids hop latent viroid 8 1 342
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summary results from different tools (Fig. 2A), the MultiQC report shows read quality 
(Fig. 2B), the read mapping graph shows genome coverage for virus and viroid genomes 
(in this case hop latent viroid: NC_003611) (Fig. 2C), and a Krona pie chart shows the 
taxonomic composition of the sample (Fig. 2D). The Krona pie chart also offers an inter-
active view of different pathogens present in the sample. Details of these result files are 
provided on GitHub (https:// github. com/ healt hyPla nt/ Phyto Pipe/ tree/ main/ doc/ test_ 
report. zip).

To compare PhytoPipe with other plant virus detection pipelines, nine datasets cor-
responding to nine virus detection challenges from the Plant Health Bioinformatics Net-
work (PHBN) VIROMOCK (https:// gitlab. com/ ilvo/ VIROM OCK- chall enge) [73] were 
analyzed. Dataset_2 was excluded since it was designed for mutation detection. Table 2 
shows the results of the virus and viroid detection using four different pipelines. Phy-
toPipe could detect all expected viruses and viroids in the datasets and solved all the 
pre-determined challenges listed for these datasets. Pipelines Kodoja [29], Pathoscope 
[41], and Virtool [37] detected most of the known viruses at the species level but missed 
one to five viruses. Both Kodaja and Pathoscope failed to detect novel viruses. Vir-
tool, on the other hand, could detect novel viruses and solve several challenges. True 
positive rate (TPR), false negative rate (FNR), and false discovery rate (FDR) are calcu-
lated by true positives (TP) (detected expected viruses), false positives (FP) (detected 
unexpected viruses), and false negatives (FN) (missed expected viruses). TPR = TP/
(TP + FN), FNR = FN/(TP + FN) and FDR = FP/(FP + TP). The TPRs for the four pipe-
lines are 100% (PhytoPipe) > 91% (Pathoscope) > 74% (Virtool) > 52% (Kodoja); The FNRs 
are 0% (PhytoPipe) < 9% (Pathoscope) < 26% (Virtool) < 48% (Kodoja); The FDRs are 39% 
(PhytoPipe) > 25% (Kodoja) > 22% (Pathoscope) > 19% (Virtool). PhytoPipe has the high-
est TPR and lowest FNR. It has the highest FDR since some of the identified viruses are 
not in the expected virus list. For example, citrus blight-associated pararetrovirus, citrus 
endogenous pararetrovirus, and cherry virus A in the dataset_1 (citrus sample); grape-
vine fleck virus, grapevine leafroll-associated virus 3, grapevine Kizil Sapak virus, and 
grapevine leafroll-associated virus 7 in the dataset_3 (grapevine sample); pistacia cryptic 
virus in the dataset_9 (pistachio sample). To determine whether they are true or false 
positives, confirmatory experiments such as the use of a PCR-based detection method 
might be necessary.

To demonstrate the capabilities of PhytoPipe to detect bacteria, fungi, and oomycetes, 
twenty-two public RNA-seq sequence datasets (twelve bacteria, eight fungi, and two 
oomycetes) from the pathogen infected plants in the study by Haegeman et al. in 2023 
[15] were analyzed using PhytoPipe. The results in Table 3 show that PhytoPipe detected 
confirmed pathogens in 18 out of 22 (81.8%) samples. PhytoPipe was not able to detect 
bacteria from four samples due to the low abundance of the pathogen-derived reads 
(reads per million reads(rpm) < 10 as reported by Haegeman et al.).

To further assess the ability of the pipeline to detect plant pathogens, twenty-four 
simulated RNA-seq datasets (12 with and 12 without pathogens) were generated using 
ART [74]. Twelve datasets comprising 10 or 20M host reads from 12 crop genomes 
(apple, cassava, citrus, grapevine, maize, peanut, potato, rice, rose, soybean, sweet 
potato, wheat) were generated using ART and the subsample function of seqtk (https:// 
github. com/ lh3/ seqtk). Another twelve spike-in datasets were composed of a host, two 

https://github.com/healthyPlant/PhytoPipe/tree/main/doc/test_report.zip
https://github.com/healthyPlant/PhytoPipe/tree/main/doc/test_report.zip
https://gitlab.com/ilvo/VIROMOCK-challenge
https://github.com/lh3/seqtk
https://github.com/lh3/seqtk
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Table 3 PhytoPipe analyses results for RNA‑seq samples with confirmed pathogen infection

Sample ID/
accession

Host plant Confirmed 
pathogen 
infection

PhytoPipe 
detection

Taxon 
Observed 
in 
PhytoPipe

Contig 
numbers

Longest 
contig 
size

Kraken2 
classified 
read 
number

SRR5100668 Solanum 
tuberosum 
(potato)

Ca. Liberib‑
acter sola‑
nacearum 
(bacterium)

No NA NA NA NA

SRR10148792 Citrus sinensis 
(orange)

Ca. Liberi‑
bacter 
asiaticus 
(bacterium)

Yes Candidatus 
Liberibacter 
asiaticus

6 1799 235

SRR8295844 Citrus sinensis 
(orange)

Ca. Liberi‑
bacter 
asiaticus 
(bacterium)

Yes Candidatus 
Liberibacter 
asiaticus

4 743 1289

SRR9225242 Solanum 
lycopersicum 
(tomato)

Ca. Phy‑
toplasma 
solani (bac‑
terium)

Yes Candidatus 
Phyto‑
plasma 
solani

466 10625 111578

SRR7186379 Glycine max 
(soybean)

Ca. Phyto‑
plasma sp. 
(bacterium)

Yes (differ‑
ent species)

’Parthenium 
hys-
terophorus’ 
phyllody 
phyto‑
plasma

502 4541 23497

SRR17253894 Prunus 
pseudocerasus 
(Chinese 
cherry)

Ca. Phyto‑
plasma sp. 
(bacterium)

Yes (differ‑
ent species)

Candidatus 
Phyto‑
plasma 
ziziphi

13 3154 76

SRR8003868 Solanum 
sisymbriifo-
lium (sticky 
nightshade)

Verticillium 
dahliae 
(fungus)

Yes Verticillium 
dahliae

19 3114 235401

Verticillium 
dahliae 
VdLs.17

15357 7370 23971

Verticillium 
dahliae JR2

446 4269 1159

SRR6760520 Olea europaea 
(olive)

Verticillium 
dahliae 
(fungus)

Yes Verticillium 
dahliae

33 3819 1138562

Verticillium 
dahliae 
VdLs.17

15413 8672 109293

Verticillium 
dahliae JR2

489 17964 4196

SRR1525437 Olea europaea 
(olive)

Verticillium 
dahliae 
(fungus)

Yes Verticillium 
dahliae 
VdLs.17

8 382 46

SRR6053344 Gossypium 
hirsutum 
(upland cot‑
ton)

Verticillium 
dahliae 
(fungus)

Yes Verticillium 
dahliae

54 3908 282087

Verticillium 
dahliae 
VdLs.17

15192 5044 26609

Verticillium 
dahliae JR2

394 4307 1320

SRR7814393 Malus domes-
tica (apple)

Erwinia 
amylovora 
(bacterium)

No NA NA NA NA
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Table 3 (continued)

Sample ID/
accession

Host plant Confirmed 
pathogen 
infection

PhytoPipe 
detection

Taxon 
Observed 
in 
PhytoPipe

Contig 
numbers

Longest 
contig 
size

Kraken2 
classified 
read 
number

SRR13488408 Capsicum 
annuum 
(pepper)

Xan-
thomonas 
camp-
estris pv. 
Vesicatoria 
(bacterium)

Yes (differ‑
ent species)

Xan-
thomonas 
euvesica-
toria

2 2417 6

ERR2036424 Triticum aesti-
vum (wheat)

Xan-
thomonas 
translucens 
(bacterium)

No NA NA NA NA

ILVO_Cpnnyn 
(SRR24305225)

Chrysanthe-
mum × mori-
folium (florist’s 
daisy)

Puccinia 
horiana 
(fungus)

Yes Puccinia 
triticina

105 1976 1010

Puccinia 
graminis 
f. sp. tritici 
CRL 75–36‑
700–3

115 1362 265

Puccinia 
striiformis f. 
sp. tritici

63 875 177

ILVO_Salix 
(SRR24305224)

Salix alba 
(white willow)

Xylella 
fastidiosa 
(bacterium)

No NA NA NA NA

ILVO_Daucu 
(SRR24305223)

Daucus carota 
(carrot)

Ca. Phy‑
toplasma 
asteris (bac‑
terium)

Yes (differ‑
ent species)

Aster 
yellows 
witches’‑
broom phy‑
toplasma 
AYWB

26 2087 2694

AGS_feve 
(SRR24305222)

Vicia faba 
(broad bean)

Ca. Phyto‑
plasma sp. 
Flavescence 
dorée (bac‑
terium)

Yes (differ‑
ent species)

Candidatus 
Phyto‑
plasma vitis

77 2739 1556

AGS_vigne 
(SRR24305220)

Vitis vinifera 
(grapevine)

downy 
mildew 
(fungus)

Yes (differ‑
ent species)

Plasmopara 
viticola

270 3687 40052

KIS_V3417 
(SRR24305219)

Daucus carota 
(carrot)

Alternaria 
sp. (fungus)

Yes (differ‑
ent species)

Alternaria 
solani

3147 2442 38972

KIS_V3418 
(SRR24305218)

Solanum 
tuberosum 
(potato)

Alternaria 
sp. (fungus)

Yes (differ‑
ent species)

Alternaria 
solani

298 911 4760

KIS_V3408 
(SRR24305221)

Solanum 
lycopersicum 
(tomato)

Phytoph-
thora 
infestans 
(oomycete)

Yes Phytoph-
thora 
infestans

25 2215 1265

Phytoph-
thora 
infestans 
T30‑4

92 575 1062

KIS_V3408dup 
(SRR24305217)

Solanum 
lycopersicum 
(tomato)

Phytoph-
thora 
infestans 
(oomycete)

Yes Phytoph-
thora 
infestans

103 2739 9963

Phytoph-
thora 
infestans 
T30‑4

1920 2857 19252
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to three fungi/bacteria/oomycetes, and six to eight viruses/viroids for each crop with 
different quantities. The virus/viroid reads in the spike-in samples ranged from 30 to 
35,250 with a coverage from 2 to 300X, and fungi/bacteria/oomycetes reads ranged from 
877 to 2,185,250 with a coverage from 1 to 10X (Additional file 1: Table S1). The spiked 
pathogens didn’t show up in the results of 11 host datasets as expected, except citrus 
endogenous pararetrovirus in the citrus host. In addition, four unexpected viruses were 
found in the other three host datasets: rice tungro bacilliform virus and citrus exocortis 
viroid in rice, caulimovirus sp. in sweetpotato, and begomovirus-associated DNA-III in 
cassava. These results show that the negative control sample has an important role in 
the analysis. PhytoPipe detected all 79 spiked viruses/viroids that were expected with 
the high level of correlation between the simulated and observed reads (the majority 
were mapped reads; classified reads were for viruses without contigs)  (R2 equals to 0.86) 
(Fig. 3A). Viruses missed by the assembly-based method were detected by the Kraken2 
classification method. In case of citrus endogenous pararetrovirus, the number of 
observed reads was double the number of spiked ones. All 13 bacteria/oomycetes patho-
gens and 13 out of 15 fungi were detected by PhytoPipe at the species level despite the 
low correlation  (R2 equals to 0.35) between the simulated and observed classified reads 
(Fig. 3B). The spiked reads classified by Kraken2 varied from less than 1% to 95% of the 
original ones. Eight pathogens (six fungi and two bacteria) had less than 10% reads clas-
sified at the species level and one of the spiked fungi Diplocarpon rosae had just three 
reads classified to this species. These results showed that the coverage and the database 
are also the keys for RNA-seq to detect pathogens. Although viruses and viroids can be 
detected with less than 1000 reads due to their smaller genomes, fungi, bacteria, and 
oomycetes require high titer because of the large genome size. In summary, PhypoPipe 
can detect spiked microbes in the simulated data with a high level of accuracy. For the 

Fig. 3 Comparison between spike‑in and observed pathogen reads from simulated RNA‑seq data. A 79 
viruses/viroids from 12 crops. Observed reads were obtained by either mapping reads to a viral reference if 
viral contigs are annotated or are from Kraken2 classification. The high correlation between the spike‑in and 
observed viral reads shows high detection ability of PhytoPipe. B 28 bacteria/fungi/oomycetes in 12 crops. 
Observed reads were obtained from Kraken2 classification
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virus detection, TPR, FNR and FDR of the pipeline are 100%, 0%, and 2.4%, respectively. 
Two unexpected viruses, rice tungro bacilliform virus and citrus exocortis viroid were 
detected in both rice and spike-in rice datasets, are counted as false positives. For the 
detection of bacteria, fungi, and oomycetes, if only the same species are treated as true 
positives, TPR, FNR and FDR of the pipeline are 97%, 14%, and 40%, respectively. FDR is 
high because the simulated genome coverage (1 to 10X) is comparatively low and many 
reads are classified into the same family or genus, not into the same species.

Discussion
To assess whether plant material is pathogen-free is critical for regulatory and biosecu-
rity purposes. In contrast to the use of PCR and ELISA, which target a specific pathogen, 
RNA-seq can detect all potential pathogens in a plant sample. However, the results could 
be impacted by several variables, including the type of tissue used, the pathogen titer in 
the sample, the type of nucleic acid under analysis, the sequencing method employed, 
the type of analytical tools, and the reference databases used by each analytical tool. 
Virus detection pipelines can also vary greatly in their ability to detect known and novel 
viruses. For example, an assembly-based analysis could generate false-negative results 
when low titer viruses are present in the sample. This potentially high-risk scenario could 
be due in part to the low incidence of reads that does not allow the generation of sizeable 
contigs. Contrary to this, read classification-based methods can detect those viruses, but 
they could be below the threshold. On the other hand, to speed up the detection process, 
many virus detection pipelines only use viral databases. This could potentially result in 
some host sequences being annotated as part of a virus genome by blast if the thresh-
old is not strict, or some host reads mapping to viruses for the reference-based map-
ping method if the tool parameters are less stringent. To address these limitations, we 
built PhytoPipe, which can integrate read classification, assembly-based annotation, and 
reference-based mapping methods for the detection of known plant pathogens as well 
as novel viruses. The possible known viruses and viroids are identified by the overlap of 
the results from read classification at the nucleotide level by Kraken2 and contig blastn 
against the viral nucleotide database. The selected candidates are further filtered by the 
viral reference genome coverage from the reference-based mapping and their consensus 
sequence annotations from blastn against NCBI nt database. Furthermore, PhytoPipe 
can identify possible new viruses by the overlap of the results between read classification 
at the protein level by Kaiju and contig Diamond blastx against the viral protein data-
base. Moreover, PhytoPipe visualizes the sequence profile as Krona pie charts which the 
users can use to determine the presence of any pathogens (Fig. 2D).

When a method is used for the analysis of HTS data, a threshold is either set by the 
user or by the developer. There is a trade-off between the true positive rate and the 
false positive rate for different thresholds. The more stringent the threshold is, the 
higher could be the number of false negatives, and vice versa. For example, if > 100 
reads is used as a read number threshold for the Kraken2 read classification in the 
sample SRX6762507 (Table 1), three apple viroids (hop stunt viroid, hop latent viroid, 
and apple hammerhead viroid) could result in false negatives. Furthermore if > 60% 
viral genome coverage, which is defined as the percentage of a viral genome/segment 
covered by reads, is used to filter viruses in the PhytoPipe report of SRX6762507, 
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three false positive viruses (apricot latent virus, turnip vein-clearing virus, and rib-
grass mosaic virus) can be classified as non-detectable. Therefore, the use of the most 
appropriate thresholds to reduce false positives and false negatives is critical for an 
accurate diagnostic. PhytoPipe combines three methods to minimize the detection of 
false outcomes. If a virus is found by both the classification and assembly-based anno-
tation methods, and its genome coverage (from the read mapping method) is above 
15%, PhytoPipe reports this virus as a positive. This viral genome coverage thresh-
old could be low and cause more false positives. Moreover, PhytoPipe has a user-
defined pathogen file, named monitorPathogen.txt, which can be modified based on 
the user’s pathogens of interest, such as the nationwide pest priorities. In case these 
monitored pathogens are missed in the report to cause false negatives, they can be 
fished out from the Kraken2 result, even with a low read number support (e.g., < 100 
read). However, these could have higher probabilities of being false positives. In this 
circumstance, the user’s knowledge about the pathogen is key to decide whether there 
is a need for validation or not. Since the pathogen titer is often variable and depends 
on various factors, such as biotic, abiotic, and methodology challenges to the sample, 
it is difficult to establish a general threshold that can be applied for all pathogens. The 
PhytoPipe user can then easily filter the output for all the potential organisms present 
in the sample using the report files. For example, when looking into the virome of a 
sample, mapped reads, viral genome coverage, and blast E-value in the report (report.
txt) can be used for filtering. For bacteria and fungi, classified read number, contig 
number, and longest contig size in the summary files (sample.blastnt.summary.txt 
and sample.blastnr.summary.txt) can be used. Users can determine the present of a 
positive diagnostic based on their expertise and by the inclusion of negative controls 
and taxonomy information from PhytoPipe. For further regulatory action, a wet-lab 
validation should be required for pathogens identified by HTS to minimize the risk 
of reporting false positives. Moreover, the plant pathogens that are detected despite 
a low number of reads, plant pathologists may also need to use alternative methods 
such as PCR, for the confirmatory diagnostics.

A phytosanitary inspection of plant material not only discovers the presence of 
known pathogens in the sample but also ensures a thorough examination to conclude 
that the material is free of detectable pathogens. However, it is difficult to determine 
whether a plant material is clean without a negative control. An HTS report for a 
plant sample could have many organisms, such as a plant, insects, plant fungi or envi-
ronmental fungi (e.g., from soil, water, or air), plant bacteria or environmental bac-
teria, fungal viruses (or mycoviruses), plant viruses, insect viruses, etc. The negative 
control datasets can efficiently help to filter out unrelated organisms. On the other 
hand, inaccurate read classifications (with a low read number) or inaccurate contig 
annotations (with a high blast E-value) are also in the report since similar sequences 
in the databases are used for classification or annotation, and NCBI nt and nr data-
bases are not curated and frequently updated. With negative control datasets, rea-
sonable thresholds can be set up and wrong annotations can be removed. On the 
contrary, the absence of negative control datasets could result in a higher number of 
false positives or even a wrong report for a sample. Therefore, the negative control 
datasets are needed for reducing errors in the analysis to generate a reliable result.
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Ribosomal RNA removal is a key step during the library preparation process when 
using total RNA as the initial sample source for diagnostics. rRNA could take up to 
30–50% of the reads in a sequenced library with inefficient rRNA removal whereas 
efficient removal of rRNA can lead to samples with less than 5% of the reads. The 
PhytoPipe ribosomal RNA removal step uses SILVA Eukaryote ribosomal RNA (18S 
and 28S) database to evaluate the library prep and remove possible host rRNAs. To 
evaluate whether this step impacts the microbe detection, two analyses of 12 bacte-
ria RNA-seq data from the study by Haegeman et al. [15] were done using Kraken2. 
One analysis was for raw reads using rRNA database SILVA 138_1 SSU while the 
other one was for rRNA removed reads using NCBI nt database (PhytoPipe method). 
Our results showed that the rRNA removal step had no impact on bacterial patho-
gen detection (Additional file 2: Table S2). Surprisingly, more reads were classified 
using the PhytoPipe method as compared to the one without rRNA removal.

The available pipelines such as Kodoja [29], VirFind [23], VSD toolkit [24], Virus-
Detect [25], and Virtool [26] are limited to viral pathogen detection. To the best of 
our knowledge, PhytoPipe is the first pipeline that has the potential to detect pos-
sible microbial pathogens in a plant using RNA-seq data. Besides the wider scope of 
pathogen detection, PhytoPipe offers many unique features that other pipelines lack 
(Table  4). First, a k-mer-based read classification method in PhytoPipe can detect 
the viruses missed by assembly- and mapping-based methods. Second, PhytoPipe 
can remove and report the percentage of host ribosomal RNA reads in the sample 
that facilitates the quality assessment of the wet lab work. Third, PhytoPipe sub-
tracts host reads using the k-mer method (based on the Kraken2 result) for all plants 
instead of host genome mapping for only plants having a complete host genome 
available. Fourth, PhytoPipe summarizes results from the comprehensive analysis as 
an HTML report (report.html) that helps users to determine the presence of pos-
sible pathogens in the sample. Lastly, the Snakemake workflow management system 
allows seamless integration and scaling of the pipelines to server, cluster, and cloud 
environments.

Despite our best effort to design a comprehensive phytopathogen detection 
method, PhytoPipe has a few limitations. First, the pipeline is mainly developed for 
the RNA sequencing data generated using the Illumina sequencing platform. How-
ever, it can be extended to other platforms after adjusting for a different platform-
related set of tools. Second, the pipeline uses several different databases, which takes 
time, effort, and significant data storage space for initial construction and mainte-
nance. Third, the pipeline can be used to identify the low titer viruses, which have 
a low read number supporting the output analysis. Such viruses could be false posi-
tives in the report, but this is a limitation found in all the pipelines investigated in 
this study. Fourth, the pipeline reports possible bacteria and fungi from classifica-
tion and assembly-based annotation (see Table 1). The end-users of the results need 
to perform further validation of the results and use their knowledge of plant path-
ogens to make a regulatory decision. Lastly, only simulated datasets were used to 
evaluate PhytoPipe detection of all possible microbes in plant samples. This evalua-
tion is still limited without large real datasets.
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Conclusions
PhytoPipe is a reliable and robust bioinformatic framework for detecting plant 
pathogens (bacteria (including phytoplasma), fungi, oomycetes, viroids, and viruses 
(including novel ones)) using RNA-seq data. Pathogens are identified with HTS read 
classification and assembly-based annotation methods and further validated with ref-
erence-based mapping for viruses. PhytoPipe combines different tools and databases 
to verify the findings from various angles. Although PhytoPipe is uniquely designed 
for plant pathogen discovery, it can also be used for the detection of other organisms. 
A summary HTML file includes metagenomic information from HTS read classifi-
cation, contig blast annotation, and reference-based mapping for downstream anal-
ysis and visualization. An organized running folder keeps detailed information for 

Table 4 Unique features of PhytoPipe in comparison with other pipelines

PhytoPipe Kodoja Pathoscope Virtool VirFind VSD 
toolkit

VirusDetect

Platform Local Linux Local Linux Local Linux Local Linux 
web GUI

Web Web Web/Local 
Linux

Workflow 
manage‑
ment

Snakemake None None None None Yabi None

Sequencing 
technique

RNA seq RNA seq RNA seq RNA seq RNA seq small RNA 
seq

small RNA 
seq

Detection 
of known 
viruses

Yes Yes Yes Yes Yes Yes Yes

Novel virus 
discovery

Blastx + Kaiju No No HMMER Blastx Blastx Blastx

Detection 
of phyto‑
plasma

Yes No Yes No No No No

Detection 
of bacteria

Yes No Yes No No No No

Detection 
of fungi

Yes No Yes No No No No

Read qual‑
ity control

Yes Yes No Yes Yes Yes Yes

Host 
removal

k‑mer based 
extraction

No No Host 
genome 
mapping

Host 
genome 
mapping

Host 
genome 
mapping

Host 
genome 
mapping

Riboso‑
mal RNAs 
removal

Yes No No No No No No

Duplicates 
removal

Yes No No No No No No

Read clas‑
sification

Yes Yes No No No No No

de novo 
assembly

Yes No No Yes Yes Yes Yes

Viral 
reference 
mapping

Yes No Yes Yes No Yes No

Sequence 
profile

Yes No No No No No No

Multiple 
samples

Yes No No No No No Yes
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the user to explore the run information and results. PhytoPipe is implemented using 
Snakemake, which can take advantage of multicore CPUs in a local, cluster, or cloud 
environment. The PhytoPipe docker image can be used on a Linux, Mac, or Windows 
system.

The source code for PhytoPipe is distributed under a BSD-3 license and is freely avail-
able at https:// github. com/ healt hyPla nt/ Phyto Pipe. Software documentation available 
at https:// github. com/ healt hyPla nt/ Phyto Pipe/ wiki describes the pipeline’s installation, 
usage, and testing using the published RNA-seq data from NCBI SRA.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859‑ 023‑ 05589‑2.

Additional file 1. Table S1: Overview of simulated RNA‑seq data using plant genomes and spiked‑in pathogens.

Additional file 2. Table S2: Comparison of bacterial pathogen detection performed by Kraken2 implemented in 
PhytoPipe using raw reads against  SILVA rRNA database and rRNA removed reads against NCBI nt database.
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