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Abstract 

Background: The pharmaceutical field faces a significant challenge in validating drug 
target interactions (DTIs) due to the time and cost involved, leading to only a fraction 
being experimentally verified. To expedite drug discovery, accurate computational 
methods are essential for predicting potential interactions. Recently, machine learn-
ing techniques, particularly graph-based methods, have gained prominence. These 
methods utilize networks of drugs and targets, employing knowledge graph embed-
ding (KGE) to represent structured information from knowledge graphs in a continuous 
vector space. This phenomenon highlights the growing inclination to utilize graph 
topologies as a means to improve the precision of predicting DTIs, hence address-
ing the pressing requirement for effective computational methodologies in the field 
of drug discovery.

Results: The present study presents a novel approach called DTIOG for the predic-
tion of DTIs. The methodology employed in this study involves the utilization of a KGE 
strategy, together with the incorporation of contextual information obtained from pro-
tein sequences. More specifically, the study makes use of Protein Bidirectional Encoder 
Representations from Transformers (ProtBERT) for this purpose. DTIOG utilizes a two-
step process to compute embedding vectors using KGE techniques. Additionally, it 
employs ProtBERT to determine target–target similarity. Different similarity measures, 
such as Cosine similarity or Euclidean distance, are utilized in the prediction procedure. 
In addition to the contextual embedding, the proposed unique approach incorporates 
local representations obtained from the Simplified Molecular Input Line Entry Specifi-
cation (SMILES) of drugs and the amino acid sequences of protein targets.

Conclusions: The effectiveness of the proposed approach was assessed 
through extensive experimentation on datasets pertaining to Enzymes, Ion Channels, 
and G-protein-coupled Receptors. The remarkable efficacy of DTIOG was showcased 
through the utilization of diverse similarity measures in order to calculate the similari-
ties between drugs and targets. The combination of these factors, along with the incor-
poration of various classifiers, enabled the model to outperform existing algorithms 

*Correspondence:   
waritheddine.jeddi@isikef.u-
jendouba.tn

1 LR11ES14, Faculty of Sciences 
of Tunis, University of Tunis El 
Manar, Campus Universitaire, 
2092 Tunis, Tunisia
2 High Institute of Informatics 
in Kef, University of Jendouba, 
Saleh Ayech, 8189 Jendouba, 
Tunisia
3 Department of Software 
Science, Tallinn University 
of Technology, Ehitajate tee-5, 
12618 Tallinn, Estonia
4 Bordeaux Population Health 
Inserm 1219, University 
of Bordeaux,  rue Léo Saignat, 
33000 Bordeaux, France
5 The Maersk Mc-Kinney 
Moller Institute, Southern 
Syddansk Universitet, Alsion 2, 
6400 Sønderborg, Denmark

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05593-6&domain=pdf


Page 2 of 41Djeddi et al. BMC Bioinformatics          (2023) 24:488 

in its ability to predict DTIs. The consistent observation of this advantage across all 
datasets underlines the robustness and accuracy of DTIOG in the domain of DTIs. Addi-
tionally, our case study suggests that the DTIOG can serve as a valuable tool for discov-
ering new DTIs.

Keywords: Drug–target interaction prediction, Knowledge graph embedding, COVID-
19, Cosine similarity, ProtBERT

Background
In recent years, pharmaceutical scientists have placed significant emphasis on both 
developing new drugs and repurposing existing ones based on established knowledge. 
Drug repurposing involves identifying new potential uses for existing drugs or discov-
ering new drug candidates. An essential aspect of drug discovery and repurposing is 
identifying interactions between drugs and target proteins. These interactions can be 
determined through various methods, including in  vivo, in  vitro, and in silico experi-
ments. Predicting DTIs can be broken down into four groups based on how much is 
known about the drug compounds and the target proteins: known drug versus known 
target, known drug versus new target candidate, new drug candidate versus known tar-
get, and new drug candidate versus new target candidate. The primary hypothesis of 
these studies is that if drug d interacts with protein p, then drug compounds similar to 
d are likely to interact with protein p, and proteins similar to p are likely to interact with 
drug d. Additionally, drug compounds similar to d are likely to interact with proteins 
similar to p. This idea supports the assumption that drugs and targets with similar traits 
may interact in similar ways. It shows how important it is to use similarity information 
to guess how drugs and targets might interact.

It has been known for a long time that experimental methods based on clinical trials 
are slow, expensive, and require a lot of resources to be used [1–4]. To mitigate these 
challenges, in-silico experiments have gained popularity as a cost-effective alternative. 
In-silico prediction of unknown DTIs has become a widely adopted approach for drug 
repurposing and development. This plan includes two main ways to guess how drugs 
will interact with their targets: molecular docking methods [5] and ML methods [6]. 
Researchers can quickly look into and guess how drugs might interact with their targets 
by using computer simulations and advanced ML algorithms. This speeds up the process 
of finding new drugs and makes drug development more targeted and effective.

For instance, in the context of COVID-19, in the beginning, because of the lack of 
specific effective antiviral therapies, a wide variety of strategies have been investi-
gated to fight this pandemic’s [7]. Among them, one potential strategy is to inhibit the 
interaction between the virus and ACE2 receptors in host cells. In addition, various 
pharmaceuticals, such as glucocorticoids, COX inhibitors, and immunosuppressants, 
have been shown to effectively address the inflammatory response. Notably, muco-
lytic drugs may also mitigate pulmonary edema and combat viral infections. On the 
other hand, DL has emerged as a critical tool in the fight against the COVID-19 pan-
demic, offering valuable insights into epidemiology, diagnosis, and disease progres-
sion [8]. Some researchers are looking at the 3D or 2D structure of the SARS-CoV-2 
virus proteins to learn more about drugs and compounds that could be used as drugs 
[9, 10]. However, the 3D structure of many targets or proteins is not known, which 
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could make it harder for structure-based methods to make predictions. In some other 
approaches, the PPI networks have been studied to discover HP-PPI between SARS-
CoV-2 and human proteins [11]. Other methods, such as SANE [12], try to find new 
uses for drugs that are already in use against COVID-19. The process involves inte-
grating information pertaining to the drugs and the virus sequence into a framework 
designed for attention-based pre-search network embedding. Initially, the researchers 
gathered fundamental data pertaining to drug SMILES and virus sequences, alongside 
a valuable dataset encompassing drug-virus interactions known as the Human Drug-
Virus Interaction Database (HDVD). The process of extracting sequence features 
relies on a configuration consisting of an encoder and a decoder.

On the other side, the problem of no verified virus-drug associations poses a sig-
nificant challenge in the search for effective treatments against emerging viruses like 
SARS-CoV-2 [13]. However, the CMNMF technique offers a promising solution. By 
integrating multiple sources of biological data, including genetic information and 
protein interactions, CMNMF enables a holistic analysis of potential drug interac-
tions. Unlike traditional methods, CMNMF doesn’t rely solely on existing associa-
tions, allowing it to navigate the cold-start problem efficiently. This approach not only 
accelerates the identification of potential drug candidates but also enhances the accu-
racy of predictions.

A KG serves as a structured data framework connecting entities and relationships. 
In this setting, KGE techniques turn entities and relationships into continuous vector 
spaces, which makes ML applications easier to use. This innovation has found practical 
use in the field of drug discovery, where applicable KGs have been increasingly created 
[14, 15]. These specialized KGs incorporate drugs, genes, and diseases as entities, captur-
ing their intricate interactions as relationships. This integration of KGs and embedding 
techniques empowers researchers to gain valuable insights and make informed decisions 
in the complex landscape of drug development. Predicting the missing links between 
these entities can be viewed as one of several essential drug discovery tasks. In con-
trast, target discovery identifies missing links between genes and diseases. KGE models, 
which learn the low-dimensional representation of entities and relationships, have been 
employed to complete these tasks. These models are distinctive in that their predictions 
are components of processes that can culminate in physical experimentation in the real 
world and even clinical trials. The latter can incur substantial financial, regulatory, and 
time-related costs and significantly impact efforts to improve patient health. Recently, 
neural network-based approaches have become popular for KGE due to their ability to 
capture complex and non-linear relationships within the graph data. As an illustration, 
KGNN [16] takes a different approach by incorporating GCNs with neighborhood sam-
pling, enabling the explicit extraction of neighborhood relations. SumGNN [17] utilizes 
KG to extract manageable pathways by incorporating a graph summarization module 
focused on subgraphs. Meanwhile, DDKG [18] refines drug embeddings by considering 
both neighboring node embeddings and triple facts through an attention mechanism. 
Lastly, KG2ECapsule [19] represents a noteworthy advancement by integrating capsule 
networks to model multi-relational DDI data explicitly based on biomedical KG in an 
end-to-end manner.
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Although there are several methods for the prediction of DTIs that have shown prom-
ising results [20], some challenges remain. Current methods do not explicitly consider 
the drug–target knowledge graph (i.e., structured knowledge) and sequence data to 
make accurate predictions.

The contributions of this paper are summarized as follows: 

1.. The proposed approach uses the KG to generate the similarities between drugs–
drugs and targets–targets and the KGEs of drugs and targets. We rely on the knowl-
edge graph since it is a structured knowledge database in which entities (e.g., drugs 
or proteins) are represented as nodes and relationships between these entities are 
represented as edges, providing comprehensive and rich semantics for organizing 
and understanding information.

2 To capture the contextual information from other different embedding strategies, 
we use a KGE for drugs and ProtBERT embeddings [21] for target sequences. Prot-
BERT [21] is a variant of BERT specifically designed for protein sequences. Prot-
BERT embeddings are advantageous because they capture the intricate relationships 
between amino acids in proteins, including spatial and sequential dependencies. This 
representation captures contextual information, allowing the model to understand 
the sequential nature of amino acids in the protein. These embeddings are especially 
useful when dealing with tasks related to protein structure, function, and interac-
tions. By combining these embeddings and feeding them into a specific classifier, 
we enable the model to understand both the semantic relationships between drugs 
and proteins in the knowledge graph and the sequential information within protein 
sequences. This combined representation provides a comprehensive view of the 
drug-protein interactions, allowing our model to make more informed predictions 
based on both structured knowledge and sequence data.

3. The approach can extract the embedding by focusing on the local representations 
from the SMILES of each drug and the amino acid sequence information of the pro-
tein target.

DTIOG extracts the characteristics of KG to better utilize the characteristics of the 
drug–target relationship. Predicting links with knowledge graph integration models 
requires the data to be modeled as a graph [22]. The goal is to predict new links between 
entities in the graph. We use bipartite graphs from biomedical knowledge bases to gen-
erate informative graphs around DTIs.

Related work
Traditional computing methods for discovering DTIs can be broadly divided into two 
categories: ligand-based approaches and structure-based approaches. Docking simula-
tions are used in structure-based approaches [23, 24], but they cannot always be used 
when the 3D structures of the target protein are not available. On the other hand, ligand-
based techniques are another approach to discovering DTIs. Still, they must improve 
their accuracy when only a few binding ligands are available for the target protein [25]. 
Recently, there has been a lot of activity in bioinformatics using data-driven approaches, 
mainly ML and DL algorithms, to guess how biomolecules will connect with each other 
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[26, 27]. These advanced techniques have become increasingly popular due to their abil-
ity to analyze complex biological data. Concurrently, network representation learning 
methods have emerged as a vital component in this endeavor. These methods can be 
broadly classified into three categories: matrix factorization-based, random walk-based, 
and neural network (NN)-based methods [28].

Unlike homogeneous networks, heterogeneous networks integrate data from various 
sources, such as drugs, targets, and related diseases. Several computational approaches 
have been proposed to fuse heterogeneous network data. For example, DeepWalk is a DL 
method that calculates similarities in a tripartite, heterogeneous network constructed 
from linked biomedical datasets [29]. The deepDTnet method [30] uses deep neural net-
works for graph representation algorithms to learn low-dimensional vector representa-
tions for drugs and targets/proteins that are still useful. This approach applies PU-matrix 
completion to predict new DTIs. The DTINet method [3] uses matrix factorization and 
graph embedding to guess new DTIs from a complex graph. Moreover, DTINet com-
bines various types of drugs and target proteins to build a comprehensive, heterogene-
ous network.

AOPEDF [31] presents a computational approach for molecular target identification 
and drug repurposing centered around known drugs and targets. The first step of the 
method is to get reduced-dimensional vector representations of characteristics that cap-
ture arbitrary-order proximity from a biological network that links drugs, targets (i.e., 
proteins), and diseases. This network is highly connected and has many different types 
of connections. Subsequently, AOPEDF utilizes these informative vector representations 
for drugs and targets/proteins, employing a sequence of deep forest classifiers to deduce 
new DTIs.

Zhao et al. suggested the LGDTI method in [32]. It is a new way to determine DTIs 
by learning from large graph representations. This method gathers both local and global 
structural data about the graph, and it uses the GCNs to put together the node’s first-
order neighbor data. Moreover, it learns the high-order neighbor information of nodes 
through the graph embedding method, DeepWalk. The resulting features are fed into a 
Random Forest classifier to infer new DTIs.

Cheng et al. [33] came up with the GraphMS model, which is an end-to-end network 
model made just for figuring out DTIs using low-level representations. One important 
thing about it is that it puts a lot of weight on node-level representation accountabil-
ity. This is done by making sure that node-level and graph-level representations share as 
much information as possible with each other. GraphMS also keeps substructure infor-
mation in the graph-level representation by making the information that flows between 
the graph-level and substructure representations better. Finally, the model learns mean-
ingful feature embeddings from variant information using an autoencoder. This lets the 
model make DTI predictions that are accurate and reliable.

A computer method called DTiGEMS+ [34] combines graph embedding, graph min-
ing, and putting together similarities from different sources of information. This method 
effectively combines similarity-based and feature-based approaches. It treats the prob-
lem of finding new DTIs as a link prediction problem in a complex network. By add-
ing drug–drug and target–target similarity networks to the established DTIs graph, 
DTiGEMS+ creates this diverse network.
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To infer new DTIs, the LRSpNM framework [35] utilizes a matrix completion tech-
nique, specifically minimizing the Laplacian regularized Schatten p-norm, to predict 
new DTIs. The method assumes that similar drugs interact with similar targets and vice 
versa, leading to a low-rank structure in the DTI matrix. Matrix completion algorithms 
can then efficiently approximate lower-rank matrices consistent with known interac-
tions, aiding in discovering new DTIs. Schatten’s p-norm approximates the matrix rank, 
and the regularized Laplacian term is incorporated to enhance the prediction process. 
Additionally, as a significant portion of the DTI matrix contains unknown interactions, a 
pre-filling step is employed to improve prediction accuracy.

LRSpNM involves three main steps. Firstly, a pre-processing step is conducted to esti-
mate partial unknown interaction probabilities by considering the K nearest neighbor 
profiles. Next, Laplacian matrices are computed for drugs and targets based on the origi-
nal similarity matrices.

The presence of missing interactions in the training set can negatively impact DTI pre-
diction models, reducing accuracy. To solve this problem, WkNNIR [36] is suggested. It 
combines WkNN with interaction recovery to guess what will happen on the full inter-
action matrix. WkNNIR has the advantage of appropriately weighting the importance of 
drug and target similarities based on their local imbalance. In the initial phase, WkNNIR 
calculates the recovered interactions, which replace the original interactions during the 
prediction process. Based on the idea that similar drugs interact with similar targets and 
targets interact with similar drugs, interactions that are missing can be guessed by look-
ing at interactions with drugs or targets that are close by.

ALADIN [37] is a localized approach for predicting DTIs. This methodology involves 
three steps: representation based on similarity, ensemble based on projection, and 
prediction of new drugs and targets. In the representation step, drug–drug similari-
ties represent the drugs in the similarity space. Specifically, drug di is represented by a 
vector capturing its chemical similarity to all other drugs, and similarly, targets can be 
represented based on their similarities with other targets. Drug–drug and target–tar-
get similarities are computed based on known interactions using the Jaccard similarity. 
This better representation looks at both how similar two drugs (or targets) are chemi-
cally (genetically) and how similar they are to each other in terms of how they interact 
with each other.

The DTI-HeNE [38] method takes as inputs a bipartite graph of DTIs and two homo-
geneous graphs of drug–drug and target–target interactions. The BINE algorithm is 
then used to turn the DTI bipartite graph into two vectors of drugs and targets that 
are embedded in each other. The SNF algorithm, on the other hand, turns the uniform 
graphs of drug–drug and target–target interactions into two similarity matrices, one for 
drug–drug interactions and the other for target–target interactions. This study uses a 
knowledge graph as input to generate two KGEs for drugs and targets using KGE meth-
ods. Additionally, two similarity matrices, drugs-drugs and targets-targets, are gener-
ated from this KG using KGE similarity.

The algorithm iGRLDTI [39] is a recent approach designed to predict DTIs by 
enhancing the discriminative representations of drugs and targets in a latent feature 
space. It achieves this by constructing a complex HBIN that integrates biological 
knowledge about drugs, protein targets, and their interactions. iGRLDTI employs a 
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node-dependent local smoothing strategy, which determines the propagation depth 
for each biomolecule in HBIN. This adaptive approach mitigates over-smoothing 
issues and enhances the discriminative power of feature representations. Subse-
quently, a GBDT classifier is applied to predict novel drug–target interactions. Simi-
larly to iGRLDTI, LG-DTI [40] operates over a heterogeneous information network, 
modeling the DTI network equipped with biological data on drugs and targets. LG-
DTI utilizes both local and global representations of drugs and target proteins. Firstly, 
it learns local representations from drug molecular structures and protein sequences. 
Secondly, it employs a semi-supervised heterogeneous network embedding method 
to capture global representations, taking into account the topological structure of the 
DTI network. These local and global representations are combined using a concat-
enation aggregation function, forming the final representations of drugs and targets. 
These representations are then fed into a Random Forest classifier, enabling LG-DTI 
to predict DTIs effectively.

We proposed an innovative approach for predicting DTIs, leveraging both contex-
tual and local strategies. In terms of contextual information, DTIOG utilizes KGE 
techniques such as the DistMult model [41] to generate drug and target embedding 
vectors. These vectors are derived from the knowledge graph, capturing associations 
and similarities between drugs and targets. Instead, DTIOG uses ProtBERT, a lan-
guage model that has already been trained on protein sequences, to figure out how 
amino acids in proteins are put together. These embeddings, obtained through either 
KGE or ProtBERT, are integrated into the process of prediction. Adding to that, some 
recent deep learning-based models that have been pre-trained on a large corpus of 
protein sequences, such as ProtBERT, have been utilized to extract features of the 
proteins. For example, ProtBERT can be used to provide meaningful, context-aware 
representations of protein sequences, which are crucial for the accurate identification 
of lysine glutarylation sites [42].

For the local strategy, DTIOG gets information about drugs by using the RDKit [45] 
library to turn SMILES representations into molecular fingerprints. The Avalon fin-
gerprint generator identifies specific fragments within the molecular structure, creat-
ing numerical representations for each drug. Regarding protein sequences, DTIOG 
processes them into feature vectors based on amino acid biochemical properties. A 
sliding window of size 3 categorizes amino acids into groups (i.e., non-polar, polar 
neutral, acidic, and basic), transforming sequences into numerical representations.

Additionally, DTIOG calculates the drug–drug and target–target similarity matri-
ces from contextual or local embedding vectors by employing a variety of similarity 
metrics, including cosine similarity, Euclidean distance, Jaccard similarity, Manhattan 
distance, and Pearson correlation. These diverse metrics contribute to the creation 
of comprehensive similarity matrices, enabling a more nuanced understanding of the 
relationships between drugs and targets. By combining contextual embeddings from 
KGE or ProtBERT or combining local features derived from SMILES and protein 
sequences, DTIOG enables a comprehensive understanding of drug–target relation-
ships. It is worth noting that strategies for combining drug and target embeddings are 
derived from the DTI-HeNE method [38]. These embeddings and features are fed into 
specific classifiers, allowing the model to grasp both the semantic associations in the 
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knowledge graph and the sequential patterns within protein sequences, enhancing its 
accuracy in predicting DTIs.

Materials and methods
Contextual embedding

The KGE

The DTIOG uses a network-based approach to build a weighted heterogeneous graph 
from the DTI’s network. This is further enhanced by incorporating different drug and 
target similarity networks. The resulting graph, denoted as G(V, E), comprises a set of 
n drug nodes, D = d1, d2, . . . , dn , and a set of l target nodes, T = t1, t2, . . . , tl . Notably, 
the knowledge graph G constructed this way contains 131 types of edges. Given G, the 
DTIs prediction problem may be defined as a link prediction challenge, with the objec-
tive being to predict the unknown true interactions between drugs and targets/genes.

The KGE strategies will be implemented to introduce the features of each drug and 
target pair. Specifically, the DistMult embedding method will represent each node in the 
KG with a feature vector smaller than the actual number of nodes while preserving the 
graph’s structure and attributes. Then, after using the heterogeneous and complex graph 
KG to learn feature representations for each drug and target, different similarity metrics 
between each pair of drugs and each pair of targets will be calculated to create various 
similarity matrices (i.e., drug–drug and target–target similarities). The similarity matri-
ces will be calculated as part of our method’s workflow. Then, by combining the asso-
ciation and similarity of drug and target matrices, multiple classifiers will be employed 
to deduce new DTIs (cf. Fig.  1). Our method combines different chemical, genomic, 

Fig. 1 The schematic workflow of DTIOG



Page 9 of 41Djeddi et al. BMC Bioinformatics          (2023) 24:488  

phenotypic, and cellular networks to make features that are useful for biology and phar-
macology. Combining the informative vector representations of drugs and targets yields 
these features.

The ProtBERT embedding

The DTIOG algorithm can rely on ProtBERT embedding [21] of protein sequences 
to serve as an alternative to traditional KGE. The method uses ProtBERT, a cutting-
edge pre-trained language model made just for protein sequences, to gather contex-
tual information. This lets the model understand how the amino acids in the protein 
are put together. The ProtBERT model [21] is specific to uppercase amino acids and 
works with a MLM objective. It is trained using these amino acids, so it can only 
work with capital-letter amino acids. The ProtBERT model was initially trained on 
the UniRef100 [43] dataset, which encompasses a staggering 217 million protein 
sequences. It is possible to get a full picture of protein properties by using these 
embeddings to record complex sequence patterns and biological features.

Local embedding

Drug feature extraction

To extract drug features, we retrieved the SMILES representations of each drug from 
DrugBank [44]. Subsequently, we utilized the RDKit [45] library to convert these 
SMILES strings into molecular fingerprints. For each drug, the positions within its 
fingerprint were assigned a value of 1 if a corresponding fragment was identified 
within the molecular structure and 0 otherwise. We opted for the Avalon fingerprint 
generator, which enumerates specific paths and feature classes within the molecular 
graph, to perform this conversion. We employed a dimensionality reduction strat-
egy using autoencoders [46] to obtain a more compact representation of each drug, 
resulting in a dimensionality of 64.

Protein feature extraction

The DTIOG algorithm provides a systematic way to convert protein sequences into 
numerical representations (i.e., feature vectors) based on the biochemical properties 
of amino acids. The process begins by converting amino acid sequences to feature 
vectors with a sliding window of size 3. It categorizes amino acids into non-polar, 
polar-neutral, acidic, and basic groups. The algorithm reads input protein sequences 
from a FASTA downloaded from the UniProt database [47] and processes them to 
create feature vectors representing the sequence characteristics. Each feature vector 
is of length 64 and is built by considering overlapping triplets of amino acids in the 
protein sequences.

The process of predicting novel DTIs

This section starts with a description of the rationale behind the calculation of con-
textual and local embeddings during the forecasting phase. Then, a thorough explana-
tion of the overall architecture follows the problem formulation explanation. Figure 2 
presents the three main steps: 
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 (i) Step 1: The input consists of a matrix representing DTIs, along with two vector 
embeddings for drugs and targets (cf. Fig.  3). Subsequently, DTIOG computes 
drug–drug and target–target similarity matrices in the prediction process. It’s 
essential to highlight that the similarity among drugs, proteins, and their embed-
ding vectors is derived from three scenarios: (a) One way to get similarity and 
embedding between drugs and targets is to use KGE; (b) Another way is to get 
similarity and embedding between drugs using KGE and then compute ProtBERT 
embeddings for the targets; (c) Finally, we get similarity and embedding between 
drugs using their fingerprints. We also read the targets’ protein sequences in 
FASTA format and put amino acids into four groups (i.e., basic, acidic, non-polar, 
and polar neutral). We then process them to create feature vectors representing the 
sequence characteristics, with each feature vector having a length of 64.

Fig. 2 The process of predicting novel drug–target interactions
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 (ii) Step 2: Begin by identifying the row corresponding to the drug di in the drug–drug 
similarity matrix. Then, sort the values in this row from largest to smallest and 
select the drugs associated with the n largest values. Similarly, in the target–target 
similarity matrix, find the row corresponding to the target tj . Then, identify the n 
targets with the highest similarity. Next, multiply the embedding vector of di by the 
corresponding weights of the selected n nearest drugs in the drug–drug similar-
ity matrix. Repeat this process for each selected drug, summing up the obtained 
products to create a new feature Vdintg . Apply the same procedure to the embed-
ding vector of tj . Multiply it by the corresponding weights of the selected n nearest 
targets in the target–target similarity matrix and sum up these products to obtain a 
new feature Vtintg . The primary objective at this step is to integrate the drug–drug 
and target–target similarity matrices into the respective embedding vectors di and 
tj . Additionally, multiply the embedding vector tj by the weights in the bipartite 
DTIs matrix (i.e., Mat − int ) corresponding to the selected n nearest drugs and 
tj individually. Sum the products generated for each drug to obtain a new feature 
Vdtest . Simultaneously, multiply the embedding vector di by the weights in the 
bipartite DTIs matrix (i.e., Mat − int ) corresponding to the n selected nearest tar-
gets and di individually. Sum up the products obtained for each target to create 
a new feature Vttest . This step enables the modeling of interactive pathway infor-
mation related to known interactions between drugs (more similar to di ) and tj , 
as well as known interactions between di and targets (more similar to tj ). Subse-
quently, a new embedding vector, denoted as Vdfusion , is computed by summing the 

Fig. 3 This flowchart illustrates the first two steps of DTIOG, which are the generation of two vector 
embeddings for drugs (i.e., di ), targets (i.e., tj ), drug–drug similarity (i.e., Mat − Sim− DD ) and target–target 
similarity (i.e., Mat − Sim− TT  ) generated from KGE using Cosine similarity by computing the DistMult model
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vectors Vdintg and Vdtest . Similarly, a novel embedding vector, denoted as Vtfusion , is 
calculated by summing the vectors Vtintg and Vttest.

 Finally, concatenating the embedding vectors Vdfusion and Vtfusion enables the creation of 
an integrated embedding vector for the pair di and tj (cf. Fig. 4). This process effec-
tively incorporates features from both the bipartite DTIs network and the drug–
drug and target–target similarity matrix, fostering a comprehensive representation 
of the relationships between drugs and targets. It is worth noting that the function-
alities of Step 2 are the same strategies used by the DTI-HeNE approach [38] to 
concatenate the embedding vectors Vdfusion and Vtfusion.

 (iii) Step 3: The feature vector is represented by X = x1, x2, . . . , xn∗l and their labels 
Y = y1, y2, . . . , yn∗l where n ∗ l corresponds to the number of drugs multiplied by 
the number of targets, which constitutes the number of all possible drug and tar-
get pairs. Therefore, if there is a known interaction for the drug–target pair, the 
class label y for this pair equals 1 ( y = 1 ); otherwise, the class label is equal to zero 
( y = 0 ). Thus, it is a binary classification task. The aim is to find novel DTIs with 
high accuracy and a low false-positive rate. The negative samples in our approach 
are generated by augmenting a bipartite graph with information regarding the 
interactions between drugs and targets. Subsequently, it generates lists to track 
these interactions and calculates the overall number of potential drug–target pairs. 
Afterwards, it detects and eliminates interactions that are already familiar from the 
dataset. These remaining negative examples act as substitutes for interactions that 
have not been recorded in the original dataset, indicating a deficiency of informa-
tion regarding them. Simultaneously, the code calculates the probability of these 
potential interactions, a pivotal stage in forecasting interactions that we have not 
previously encountered. Ultimately, a specific classifier is employed to forecast 
novel DTIs.

Generation of embedding vectors for drugs ( di ) and targets ( tj)

Contextual embedding vectors

The input is a bipartite graph of DTIs, and two embedding vectors, di and tj , have been 
generated in this step (cf. Fig. 3). DTIOG will use one strategy from the contextual or 
local categories to develop the two embedding vectors of drugs di and targets tj . In 

Fig. 4 The process of predicting novel drug–target interactions by emphasizing the creation of an integrated 
embedding vector for the pair di and tj
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the context of a KG [48] consisting of triplets representing facts ω = ≤ h, r, t ≥ and a 
fixed embedding space of dimension d, KG embedding aims to map each entity h ∈ E 
and relation r ∈ R into a continuous vector in a uniform embedding space of dimension 
k = d . This transformation turns the KG into a set of vectors, capturing its information 
and enabling computations on the graph. KGE tries to make a small, low-dimensional 
feature space that keeps important structural and property data about the graph. This 
makes it easier to do calculations with entities and relations. In the field of KGE, tech-
niques can be broadly classified into two categories: (1) representation learning mod-
els centered on triplet facts [49] and (2) representation learning models based on entity 
descriptions [50]. The DTIOG approach specifically emphasizes the use of triplet fact-
based representation learning models, particularly the DistMult variant.

When it comes to protein sequences that are stored as text, ProtBERT uses trans-
former-based language models, more specifically BERT [51]. Given a set of protein 
sequences denoted as Proteins = p1, p2, . . . , pn , ProtBERT learns to embed these 
sequences into continuous vector representations. The complex dependencies and 
relationships between amino acids in proteins are captured by ProtBERT by process-
ing them as sequences of amino acids. This helps it understand the subtleties of protein 
sequences.

Local embedding vectors

Molecular fingerprinting is a technique used to represent chemical structures numeri-
cally. Initially, the chemical structures of drugs are encoded into SMILES representa-
tions ( SMILESi ). These SMILES strings are then transformed into binary molecular 
fingerprints ( Fi ), where each element ( fij ) in the fingerprint vector indicates the presence 
(1) or absence (0) of specific predefined chemical substructures within the molecule. The 
Avalon fingerprint generator is employed to identify these substructures. Subsequently, a 
dimensionality reduction process using autoencoders ( F ′

i = Autoencoder(Fi) ) is applied 
to obtain a compact representation of the fingerprint, reducing its dimensionality to, for 
example, d = 64 . This reduced-dimensional fingerprint ( F ′

i  ) serves as a concise numeri-
cal descriptor of the drug’s chemical composition, enabling efficient computations and 
analysis in drug discovery and related fields.

In the realm of protein sequence analysis, the goal is to transform amino acid sequences 
into numerical representations, often referred to as feature vectors, which can be utilized 
for various computational tasks. Let us consider a protein sequence P = {a1, a2, . . . , an} , 
where ai represents the (ith) amino acid in the sequence. Each amino acid ai can be asso-
ciated with specific biochemical properties, denoted as φ(ai) = {p1, p2, . . . , pm} , where 
pj represents the (jth) biochemical property of the amino acid.

The DTIOG algorithm employs a systematic approach to convert protein sequences 
into feature vectors. This process begins by adopting a sliding window of size w (in this 
case, w = 3 ) to capture local structural information. For each window position i , a sub-
sequence Si = {ai, ai+1, . . . , ai+w−1} is extracted. Subsequently, each amino acid in the 
subsequence is mapped to its corresponding biochemical properties using the function 
φ(·) . These biochemical property vectors are then concatenated to form a composite fea-
ture vector Vi for the window Si:
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As a result, each Vi captures the local biochemical characteristics of the corresponding 
window in the protein sequence. Considering a protein sequence of length n , this pro-
cess generates n− w + 1 feature vectors.

Moreover, the amino acids can be categorized into distinct groups based on their 
properties. Let A = {a1, a2, . . . , an} represent the set of amino acids in the protein 
sequence, and G = {g1, g2, . . . , gk} denote the set of biochemical groups. The algorithm 
categorizes amino acids into these groups, allowing for the incorporation of group-level 
information into the feature vectors. Consequently, the feature vectors Vi are enhanced 
with group-level biochemical properties, providing a comprehensive representation of 
the protein sequence in a numerical format.

Generation of new drug–target pair embedding vectors

During this particular phase, we utilize the two embedding vectors (i.e., −→di and −→tj  ), 
along with the two matrices of drug–drug similarity and a target–target similarity (i.e., 
Mat − Sim− DD and Mat − Sim− TT  ) and the bipartite DTIs matrix (i.e., Mat − int ) 
to create a new embedding vector of the pair di and tj.

By a specific process [38], we first obtain Vdintg and Vtintg . Next, Vdtest and Vttest are 
generated. Then, Vdintg and Vdtest are added to obtain Vdfusion , and Vtintg and Vttest are 
added to obtain Vtfusion . Finally, Vdfusion and Vtfusion are concatenated to obtain an embed-
ding vector of the pair di and tj.

Prediction of DTIs

After getting an embedding vector of the pair di and tj , different classifiers are used to 
give each pair’s interactions in the vector a probability. Subsequently, the likelihood of 
a possible interaction between each drug–target pair is estimated. The different classi-
fiers provide us with the probability of interaction for each couple, and we have chosen 
to display the couples with the highest probabilities (e.g., the top 10 couples). By show-
ing the 10 pairs with the highest interaction probabilities, we can prioritize pairs more 
likely to have favorable interactions [38]. This approach lets us focus on the most reliable 
and significant predictions while filtering out less relevant results. Consequently, we can 
dedicate our efforts to thoroughly analyzing the most pertinent interactions. To deter-
mine the pair interaction probabilities di and tj , we employed nine distinct classifiers, 
including the RF, DT, MLP, K-Neighbors Classifier, Bagging Classifier, Gradient Boosting 
Classifier, GaussianNB, SGD, etc.

Problem formalization

DTIOG pseudo-code is given in Algorithm  1. The approach takes as inputs the DTIs 
matrix (i.e., Mat − int ), the embedding vectors di , and tj . Initially, we compute the 
embedding similarity between the set of drugs and the set of targets by utilizing the 
predefined cosine similarity function. This step results in the generation of similarity 
matrices for drugs (i.e., Mat − Sim− DD ) and for targets (i.e., Mat − Sim− TT  ). Addi-
tionally, alternative predefined functions, such as Euclidean distance, Jaccard similarity, 
Manhattan distance, or Pearson correlation, can be invoked. Subsequently, we calculate 

Vi = [φ(ai),φ(ai+1), . . . ,φ(ai+w−1)]
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the dot product of the drug embedding vector di and the weights wz
d of the n closest 

drugs Dnear in the Mat − Sim− DD to obtain Vdintg . Adding to that, we computed the 
dot product of the target embedding vector tj and the weights wz

t  of the n closest targets 
Tnear in the Mat − Sim− TT  to obtain Vtintg . Vdintg and Vtintg are computed using the 
following equations [38]:

Then, we compute the dot product of the target embedding vector tj by the weights wz
di

 
of the n closest drugs Dnear in the Mat − int to obtain Vdtest . Therefore, we computed 
the dot product of the drug embedding vector di by the weights wz

tj
 of the n closest tar-

gets Tnear in the Mat − int to obtain Vttest . Vdtest and Vttest are computed using the fol-
lowing equations [38]:

Then Vdintg and Vdtest were added to obtain Vdfusion . On the other side, Vtintg and Vttest 
were added to obtain Vtfusion . Vdfusion and Vtfusion are computed using the following equa-
tions [38]:

Meanwhile, the two vectors Vdfusion and Vtfusion have been concatenated to obtain the 
new embedding vector of the pair of di − tj [38]. Finally, we use a certain classifier to 
predict new DTIs based on a fresh embedding vector of di and tj.

(1)Vdintg =
dz∈Dnear

W z
d

−→
di

(2)Vtintg =
∑

tz∈Tnear

W z
t

−→
tj

(3)Vdtest =
∑

dz∈Dnear

W z
tj

−→
tj

(4)Vttest =
∑

tz∈Tnear

wz
di

−→
di

(5)Vdfusion = Vdintg + Vdtest

(6)Vtfusion = Vtintg + Vttest
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Algorithm 1 The process of concatenating the embedding vector of the pair di and tj

Illustrative case

Figure 5 presents an illustration that outlines the process of obtaining the vector for the 
pair di − tj . The pair (DB01071, P35367) and its respective embedding vectors were uti-
lized to execute several steps in generating new vectors for drug–target pairs:

Firstly, we calculate the dot product of the drug embedding vector di associated with 
DB01071 and the top-5 closest drugs in Mat − Sim− DD to acquire Vdintg . Next, we 
perform the dot product of the target embedding vector tj associated with P35367 with 
the weights of the top-5 closest drugs in Mat − int to obtain Vdtest . Subsequently, Vdintg 
and Vdtest are added to yield Vdfusion.

Secondly, we compute the dot product of the target embedding vector tj associated 
with P35367 and the five closest targets in Mat − Sim− TT  to obtain Vtintg . Similarly, 
we compute the dot product of the drug embedding vector di associated with DB01071 
with the weights of the five closest targets in Mat − int to obtain Vttest . Then, Vtintg and 

Fig. 5 A toy example representing the different steps to obtain new pair vector di − tj
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Vttest are added to produce Vtfusion . As a result, both vectors Vdfusion and Vtfusion are con-
catenated to form the new embedding vector of the pair di and tj.

Finally, DTIOG employs a selected classifier to predict new DTIs based on the newly 
created embedding vector of the pair di and tj.

Table 1 20 known relationships in the knowledge graph network

Relationship Species Database Total interactions

Gene-disease SARS-CoV-2 CTD database [61] 28

Gene-drug Homo-sapiens CTD database [61] 9291

Protein–drug Homo-sapiens DrugBank [44] 20, 992

Protein–protein Homo-sapiens STRING database [55] 11,606735

Protein–protein Mus-musculus STRING database [55] 10, 016742

Protein-GOT CC Mus-musculus UniProt-GOA [62] 69, 373

Protein-GOT BP Mus-musculus UniProt-GOA [62] 125, 658

Protein-GOT MF Mus-musculus UniProt-GOA [62] 56, 322

Protein-GOT CC Homo-sapiens UniProt-GOA [62] 65, 295

Protein-GOT BP Homo-sapiens UniProt-GOA [62] 101, 177

Protein-GOT MF Homo-sapiens UniProt-GOA [62] 54, 638

Protein-gene SARS-CoV-2 UniProt [47] 18, 387

Protein-gene Homo-sapiens UniProt [47] 195, 659

Protein-gene Mus-musculus UniProt [47] 110, 421

Anatomy-gene Homo-sapiens Hetionet [54] 726, 495

Gene-pathway Homo-sapiens Hetionet [54] 84, 372

Drug-side effect Homo-sapiens Hetionet [54] 138, 944

Drug-gene Homo-sapiens GNBR [53] 80, 803

DrugBank [44] 24, 801

IntAct [63] 1, 805

DGIdb [52] 26, 290

Hetionet [54] 51, 429

Bibliography 25, 666

Disease-gene Homo-sapiens GNBR [53] 95, 399

Hetionet [54] 27, 977

Bibliography 461

Drug-disease Homo-sapiens Drugbank [44] 4, 968

GNBR [53] 77, 782

Hetionet [54] 1, 145

Table 2 Test average evaluation of the training of the DistMult model

Metrics Value

MRR 0.527

Hits@1 0.399

Hits@3 0.594

Hits@10 0.785

Time 3008,041 s
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Results and discussion
The input data

Using the DGLKE methodology, we integrate various chemicals, genomic, pheno-
typic, and cellular networks to generate meaningful feature representations for drugs 
and targets. By combining informative vector representations, we construct a com-
prehensive knowledge graph comprising approximately 29 million edges that span 
131 relationships connecting drugs, diseases, proteins, genes, PPIs for SARS-CoV-2, 

Fig. 6 An example of the built knowledge graph by DTIOG that includes roughly 97 edges across 21 types of 
relationships connecting drugs, diseases, proteins, genes, PPIs for the gene IL10, CSF2, CXCL10, and so on the 
relation used in this example are from different sources, namely a the DGIDB [52] database (blue color); b the 
DrugBank database (purple color); c the GNBR [53] database (yellow color); d Hetionet biomedical knowledge 
(black color); e the STRING database (green color); and f UniProt database (red color)  (color figure online)
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homo-sapiens, side effects, and more. Table 1 showcases 20 well-established relation-
ships established during the network’s development. In Fig. 6, we present a subset of 
the constructed KG that interconnects drugs, genes, and PPIs for certain genes. Nota-
bly, we emphasize the sources of some connections used in this illustration, which 

Fig. 7 Entity cosine similarity distribution for: a ENZ data, b GPCR data, c IC data
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were derived from diverse repositories, including the DGIDB [52] database, the Drug-
Bank database (version 5.1.8), the GNBR [53] database, Hetionet (version 1.0) [54] 
biomedical knowledge, the STRING [55] database (version 11.0), and the UniProt [47] 
database. After that, the DistMult model has been used to learn the representations 
of the entities and relationships in an informative, low-dimensional vector space. We 
choose the DistMult [41] than using the TransE [56], TransR [57] since it yields the 
best evaluation of the training model in terms of MRR, Hits@1, Hits@3 and Hits@10 
(cf. Table 2) and in terms of entity cosine similarity distribution (cf. Fig. 7). The evalu-
ation experiments of these methods are carried out using a set of reference datasets. 
Specifically, this dataset is used by [58], which is typically used in DTI prediction, tar-
geting ENZ, IC, and the GPCR. It consists of three different data subsets: 

1. ENZ consists of 346 drugs, 657 proteins and 2926 interactions.
2. IC comprises 169 drugs, 204 proteins and 1476 interactions.
3. GPCR encompasses 188 drugs, 94 proteins and 634 interactions.

During the prediction process and for the embedding sizes of the drugs and proteins, 
we fixed the following: (a) 400 dimensions for the prediction process based on KGE for 
the ENZ, GPCR, and IC datasets; (b) 150 dimensions for the prediction process based 
on KGE and ProtBERT for the IC dataset; (c) 90 dimensions for the prediction process 
based on KGE and ProtBERT for the GPCR dataset; (d) 64 dimensions for the prediction 
process based on local strategies (i.e., molecular fingerprint and protein characteristics) 
for the ENZ, GPCR, and IC datasets.

Table 3 The classifier parameters are fixed by the choice from three scenarios responsible for 
determining the similarity between drugs, proteins, and their embedding vectors

Classifiers KGE KGE-ProtBERT Molecular fingerprint and 
protein characteristics

ETC n-estimators = trees, 
random-state = 1357

n-estimators = trees, 
random-state = 1357

n-estimators = trees, random-
state = 1357

DT random-state = 1357 random-state = 1357 random-state = 1357

MLP solver = lbfgs, alpha = 
1e−5, hidden-layer-sizes = 
(5, 2), random-state = 1

solver = lbfgs, alpha = 
1e−5, hidden-layer-sizes  =  
(240, 96), random-state = 1

solver = lbfgs, alpha = 1e−5, 
hidden-layer-sizes = (240, 96), 
random-state = 1

SGD loss = log, penalty = l2, 
max-iter = 5

loss = log, penalty = l2, 
max-iter = 2

loss = log, penalty = l2, max-
iter = 2

Gaussian-NB

Gradient Boosting n-estimators = 100, learn-
ing-rate = 1.0,max-depth = 
1, random-state = 0

n-estimators = 100, learn-
ing-rate = 1.0,max-depth = 
2, random-state = 0

n-estimators = 100, learning-
rate = 1.0,max-depth = 2, 
random-state = 0

Bagging Classifier KNeighborsClassifier(), max-
samples = 0.5, max-features 
= 0.5

KNeighborsClassifier(n-
neighbors = 1),max-samples 
= 1, max-features = 1

KNeighborsClassifier(n-neigh-
bors = 1),max-samples = 1, 
max-features = 1

K-Neighbors n-neighbors = 7 n-neighbors = 2 n-neighbors = 2

RF n-estimators = trees, 
n-jobs = 6, criterion = c, 
class-weight =  balanced, 
random-state = 1357

n-estimators = trees, 
n-jobs = 6, criterion = c, 
class-weight =  balanced, 
random-state = 1357

n-estimators = trees, n-jobs = 
6, criterion = c, class-weight 
=  balanced, random-state 
= 1357
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It is worth noting that we compute the PCA [59] in order to reduce the dimensions 
of each vector, enabling them to have the same shape as the drug and target embedding 
vectors.

Experimental setup and evaluation metrics

We have applied DTIOG in 9 different modes: DTIOG-RF, DTIOG-DT, DTIOG-MLP, 
DTIOG-KNeighbors, DTIOG-BaggingClassifier, DTIOG-GradientBoosting, DTIOG-
GaussianNB, DTIOG-SGD, and DTIOG-ETC, utilizing the classifiers RF, DT, MLP, 
K-Neighbors, Bagging Classifier, Gradient Boosting, GaussianNB, SGD, and ETC, 
respectively. We compared DTIOG versus the pioneering approaches of the literature, 
namely iGRLDTI [39], DTI-HeNE [38], BLM-NII [60], and ALADIN [37]. It is worth 
noting that the number of epochs is 10, used by all the DTIOG variants and all their 
competitors. Table 3 provides an overview of the parameters of the classifiers used in 
our comparisons. Similar to the DTIOG strategy, the iGRLDTI method involves obtain-
ing drug information by utilizing the RDKit library [45] by converting SMILES repre-
sentations into molecular fingerprints, and we specifically use the Avalon fingerprint 
generator to identify distinct fragments in the molecular structure. In the case of protein 
sequences, we transform them into feature vectors based on the biochemical properties 
of amino acids. Using a sliding window of size 3, we categorize amino acids into groups 
such as non-polar, polar neutral, acidic, and basic, thereby converting the sequences into 
numerical representations.

We employ a diverse set of evaluation metrics to provide a holistic assessment of 
our approach for drug–target interaction prediction. Using a combination of metrics, 
including AUC, AUPR, ACC, MCC, and the F1, allows us to examine the performance 
of the model from various angles. These metrics collectively offer insights into different 
aspects of the prediction, such as the ability to distinguish between positive and nega-
tive instances, precision in correctly identifying true positives, and the model’s balance 
between sensitivity and specificity. By employing this array of metrics, we ensure a well-
rounded evaluation that takes into account the intricacies of drug–target interaction 
prediction. In the process of assessing performance, we document the average scores 
achieved by each prediction method. The specific definitions of the above mentioned 
metrics are as follows:

(7)Precision =
TP

TP + FP

(8)Recall =
TP

TP + FN

(9)ACC =
TN + TP

FP + TP + FN + TN

(10)F1 =
2 · Precision · Recall
Precision+ Recall
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Table 4 Performance comparison of DTIOG variants on the ENZ dataset using KGE

The best results are indicated in bold concerning each row

Approaches AUPR AUC ACC MCC F1

Cosine similarity

DTIOG-RF 0.963 0.994 0.991 0.958 0.962

DTIOG-DT 0.976 0.996 0.994 0.972 0.975

DTIOG-MLP 0.973 0.996 0.980 0.902 0.913

DTIOG-KNeighbors 0.973 0.996 0.968 0.869 0.879

DTIOG-BaggingClassifier 0.986 0.998 0.970 0.878 0.887

DTIOG-GradientBoosting 0.509 0.836 0.902 0.416 0.436

DTIOG-GaussianNB 0.586 0.840 0.848 0.452 0.513

DTIOG-SGD 0.661 0.922 0.921 0.574 0.608

DTIOG-ETC 0.967 0.995 0.991 0.962 0.966

Euclidean distance

DTIOG-RF 0.964 0.995 0.991 0.959 0.963

DTIOG-DT 0.976 0.996 0.994 0.973 0.976

DTIOG-MLP 0.950 0.992 0.970 0.854 0.871

DTIOG-KNeighbors 0.974 0.996 0.970 0.876 0.885

DTIOG-BaggingClassifier 0.986 0.998 0.974 0.890 0.899

DTIOG-GradientBoosting 0.459 0.808 0.902 0.418 0.434

DTIOG-GaussianNB 0.583 0.833 0.831 0.423 0.486

DTIOG-SGD 0.656 0.922 0.919 0.561 0.595

DTIOG-ETC 0.967 0.995 0.992 0.963 0.966

Manhattan distance

DTIOG-RF 0.965 0.995 0.991 0.960 0.964

DTIOG-DT 0.976 0.996 0.994 0.972 0.975

DTIOG-MLP 0.952 0.993 0.970 0.855 0.872

DTIOG-KNeighbors 0.981 0.997 0.974 0.893 0.902

DTIOG-BaggingClassifier 0.989 0.998 0.976 0.898 0.907

DTIOG-GradientBoosting 0.612 0.885 0.915 0.526 0.553

DTIOG-GaussianNB 0.584 0.838 0.838 0.440 0.502

DTIOG-SGD 0.662 0.923 0.917 0.554 0.585

DTIOG-ETC 0.969 0.995 0.992 0.964 0.968

Jaccard similarity

DTIOG-RF 0.962 0.994 0.990 0.956 0.960

DTIOG-DT 0.975 0.996 0.993 0.971 0.974

DTIOG-MLP 0.956 0.993 0.971 0.855 0.870

DTIOG-KNeighbors 0.963 0.994 0.960 0.844 0.855

DTIOG-BaggingClassifier 0.979 0.997 0.963 0.852 0.862

DTIOG-GradientBoosting 0.606 0.879 0.914 0.512 0.539

DTIOG-GaussianNB 0.569 0.827 0.774 0.371 0.432

DTIOG-SGD 0.658 0.921 0.921 0.570 0.603

DTIOG-ETC 0.966 0.995 0.991 0.961 0.965

Pearson correlation coefficient

DTIOG-RF 0.963 0.994 0.991 0.958 0.962

DTIOG-DT 0.975 0.996 0.994 0.971 0.974

DTIOG-MLP 0.973 0.996 0.980 0.906 0.917

DTIOG-KNeighbors 0.970 0.995 0.962 0.851 0.861

DTIOG-BaggingClassifier 0.985 0.998 0.965 0.860 0.869

DTIOG-GradientBoosting 0.650 0.900 0.920 0.556 0.583

DTIOG-GaussianNB 0.578 0.843 0.855 0.456 0.519

DTIOG-SGD 0.656 0.923 0.919 0.560 0.594

DTIOG-ETC 0.967 0.995 0.991 0.962 0.966
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Results

Comparison between DTIOG variants focusing on KGE

ENZ dataset using KGE In Table 4, we find that DTIOG-DT consistently outperforms 
the competition across various similarity metrics. Notably, when assessed with the 
Cosine similarity metric, DTIOG-DT exhibits remarkable results with an AUPR that is 
1.2% higher (0.976 vs. 0.963), an AUC that is 0.9% higher, an ACC that is 1.0% higher, 
an MCC that is 2.0% higher, and an F1 that is 1.1% higher than the next best classifier, 
DTIOG-ETC. This significant performance margin highlights the exceptional predic-
tive capabilities of DTIOG-DT. Similarly, DTIOG-DT excels when evaluated using the 
Euclidean distance, Manhattan distance, Jaccard similarity, and Pearson correlation coef-
ficient metrics, consistently achieving superior results compared to the other methods. 
DTIOG-ETC follows as the second-best classifier, delivering robust results across these 
similarity metrics, even though it trails slightly behind DTIOG-DT. In contrast, DTIOG-
GradientBoosting, DTIOG-GaussianNB, and DTIOG-SGD consistently underperform, 
particularly when assessed using these similarity metrics, exhibiting lower in a diverse 
set of evaluation metrics values. For instance, DTIOG-GradientBoosting falls behind 
DTIOG-DT by 15.6% in AUPR, 19.6% in AUC, 3.2% in ACC, 4.2% in MCC, and 3.9% in F1 
using Cosine similarity, indicating that these classifiers may not be suitable choices for the 
GPCR dataset. These findings underscore the importance of classifier selection in DTI 
prediction, with DTIOG-DT emerging as a top-performing option consistently.

The GPCR dataset using KGE In Table 5, we find that DTIOG-DT consistently outper-
forms the competition across various similarity metrics. Notably, when assessed with the 
Cosine similarity metric, DTIOG-DT exhibits remarkable results with an AUPR that is 1.7% 
higher, an AUC that is 0.7% higher, an ACC that is 1.0% higher, an MCC that is 2.4% higher, 
and an F1 that is 1.8% higher than the next best classifier, DTIOG-ETC. This significant per-
formance margin highlights the exceptional predictive capabilities of DTIOG-DT.

Similarly, DTIOG-DT consistently does better than the other methods when tested 
using the Euclidean distance, Manhattan distance, Jaccard similarity, and Pearson cor-
relation coefficient metrics. DTIOG-ETC follows as the second-best classifier, deliv-
ering robust results across these similarity metrics, although it trails slightly behind 
DTIOG-DT.

On the other hand, DTIOG-GradientBoosting, DTIOG-GaussianNB, and DTIOG-
SGD always do worse, especially when these similarity metrics are used to measure 
performance, showing lower values in a diverse set of evaluation metrics. For instance, 
DTIOG-GradientBoosting falls behind DTIOG-DT by 21.3% in AUPR, 9.9% in AUC, 
1.0% in ACC, 4.9% in MCC, and 4.0% in F1 using Cosine similarity, indicating that these 
classifiers may not be suitable choices for the GPCR dataset.

The IC dataset using KGE In Table 6, we find that DTIOG-DT consistently outperforms 
the competition across various similarity metrics. The Cosine similarity metric shows 

(11)MCC =
TP · TN − FP · FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )
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Table 5 Performance comparison of DTIOG variants on the GPCR dataset using KGE

The best results are indicated in bold concerning each row

Approaches AUPR AUC ACC MCC F1

Cosine similarity

DTIOG-RF 0.951 0.980 0.971 0.931 0.949

DTIOG-DT 0.968 0.987 0.981 0.955 0.967

DTIOG-MLP 0.970 0.992 0.977 0.944 0.959

DTIOG-KNeighbors 0.949 0.979 0.899 0.792 0.843

DTIOG-BaggingClassifier 0.951 0.984 0.896 0.787 0.839

DTIOG-GradientBoosting 0.755 0.908 0.855 0.625 0.720

DTIOG-GaussianNB 0.655 0.784 0.716 0.405 0.586

DTIOG-SGD 0.617 0.822 0.775 0.438 0.574

DTIOG-ETC 0.962 0.984 0.977 0.947 0.960

Euclidean distance

DTIOG-RF 0.956 0.982 0.974 0.938 0.954

DTIOG-DT 0.967 0.987 0.981 0.954 0.966

DTIOG-MLP 0.960 0.990 0.979 0.950 0.963

DTIOG-KNeighbors 0.946 0.977 0.901 0.797 0.846

DTIOG-BaggingClassifier 0.947 0.983 0.898 0.790 0.841

DTIOG-GradientBoosting 0.736 0.888 0.847 0.601 0.700

DTIOG-GaussianNB 0.653 0.778 0.709 0.388 0.575

DTIOG-SGD 0.589 0.811 0.765 0.417 0.555

DTIOG-ETC 0.964 0.985 0.979 0.949 0.962

Manhattan distance

DTIOG-RF 0.953 0.980 0.972 0.933 0.951

DTIOG-DT 0.966 0.986 0.980 0.952 0.965

DTIOG-MLP 0.969 0.992 0.980 0.952 0.964

DTIOG-KNeighbors 0.963 0.985 0.908 0.808 0.855

DTIOG-BaggingClassifier 0.958 0.986 0.898 0.790 0.841

DTIOG-GradientBoosting 0.762 0.909 0.862 0.644 0.736

DTIOG-GaussianNB 0.646 0.781 0.719 0.418 0.594

DTIOG-SGD 0.599 0.817 0.777 0.435 0.570

DTIOG-ETC 0.966 0.986 0.980 0.952 0.965

Jaccard similarity

DTIOG-RF 0.952 0.980 0.971 0.932 0.950

DTIOG-DT 0.966 0.986 0.980 0.953 0.965

DTIOG-MLP 0.936 0.982 0.960 0.906 0.931

DTIOG-KNeighbors 0.957 0.983 0.907 0.801 0.844

DTIOG-BaggingClassifier 0.971 0.990 0.911 0.813 0.859

DTIOG-GradientBoosting 0.779 0.920 0.868 0.660 0.748

DTIOG-GaussianNB 0.654 0.782 0.726 0.423 0.597

DTIOG-SGD 0.627 0.830 0.783 0.443 0.553

DTIOG-ETC 0.961 0.984 0.977 0.945 0.959

Pearson correlation coefficient

DTIOG-RF 0.952 0.980 0.971 0.933 0.950

DTIOG-DT 0.965 0.986 0.980 0.951 0.964

DTIOG-MLP 0.965 0.991 0.980 0.951 0.964

DTIOG-KNeighbors 0.958 0.983 0.902 0.797 0.847

DTIOG-BaggingClassifier 0.957 0.986 0.892 0.780 0.834

DTIOG-GradientBoosting 0.754 0.907 0.856 0.628 0.723

DTIOG-GaussianNB 0.648 0.783 0.725 0.414 0.592

DTIOG-SGD 0.597 0.815 0.775 0.424 0.556

DTIOG-ETC 0.962 0.985 0.978 0.947 0.961
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that DTIOG-DT does much better than the next best classifier, DTIOG-ETC. It has an 
AUPR that is 1.2% higher, an AUC that is 0.9% higher, an ACC that is 0.9% higher, an MCC 
that is 1.7% higher, and an F1 that is 1.3% higher. This significant performance margin 
highlights the exceptional predictive capabilities of DTIOG-DT. The Euclidean distance, 
Manhattan distance, Jaccard similarity, and Pearson correlation coefficient metrics also 
show that DTIOG-DT is very good. It consistently achieves superior results compared 
to the other methods, demonstrating higher values in a diverse set of evaluation met-
rics. DTIOG-ETC follows as the second-best classifier, delivering robust results across 
these similarity metrics, although it trails slightly behind DTIOG-DT. On the other hand, 
DTIOG-GradientBoosting, DTIOG-GaussianNB, and DTIOG-SGD always do worse, 
especially when these similarity metrics are used to measure them. For instance, DTIOG-
GradientBoosting falls behind DTIOG-DT by 15.6% in AUPR, 19.6% in AUC, 3.2% in 
ACC, 4.2% in MCC, and 3.9% in F1 using Cosine similarity, indicating that these classi-
fiers may not be suitable choices for the IC dataset.

Comparison between DTIOG variants focused on KGE and ProtBERT

The ENZ dataset using ProtBERT

Table 7 depicts the performance of DTIOG variants using ProtBERT and the ENZ data-
set. DTIOG-DT consistently performs better on a number of similarity metrics. Most 
notably, when appraised using the Cosine similarity metric, DTIOG-DT demonstrates 
exceptional results, with an AUPR that surpasses the closest competitor by 1.7% , an AUC 
that exceeds by 0.7% , an ACC that outperforms by 1.0% , an MCC that excels by 2.4% , and 
an F1 score that excels by 1.8% . This substantial performance differential underscores the 
outstanding predictive capabilities of DTIOG-DT.

Using the Euclidean distance, Manhattan distance, Jaccard similarity, and Pearson 
correlation coefficient metrics, DTIOG-DT always does better than other methods. 
DTIOG-ETC emerges as the second-best classifier, offering robust performance across 
these similarity metrics, albeit slightly trailing DTIOG-DT.

DTIOG-GradientBoosting, DTIOG-GaussianNB, and DTIOG-SGD, on the other 
hand, always do worse, especially when tested with these similarity metrics, giving 
lower values in a diverse set of evaluation metrics. For example, when assessed using the 
Cosine similarity, DTIOG-GradientBoosting lags behind DTIOG-DT by 21.3% in AUPR, 
9.9% in AUC, 1.0% in ACC, 4.9% in MCC, and 4.0% in F1. These results suggest that these 
classifiers may not be suitable choices for the ENZ dataset. The results make it clear how 
important it is to choose the right classifier for DTI prediction, with DTIOG-DT con-
sistently coming out on top.

IC dataset using ProtBERT

As Table  8 depicts, DTIOG-DT consistently emerges as the top-performing classifier, 
showcasing its exceptional predictive capabilities. For instance, with the Cosine simi-
larity metric, DTIOG-DT outperforms competitors, such as DTIOG-ETC, by 1.4% in 
AUPR, 0.7% in AUC, 1.0% in ACC, 2.1% in MCC, and 1.6% in F1. This trend holds true 
across other similarity metrics, underscoring DTIOG-DT’s robustness in a diverse set of 
evaluation metrics. As an alternative, DTIOG-ETC often comes in second place among 
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Table 6 Performance comparison of DTIOG variants on the IC dataset using KGE

The best results are indicated in bold concerning each row

Approaches AUPR AUC ACC MCC F1

Cosine similarity

DTIOG-RF 0.960 0.980 0.973 0.941 0.958

DTIOG-DT 0.972 0.987 0.982 0.959 0.971

DTIOG-MLP 0.988 0.995 0.981 0.958 0.971

DTIOG-KNeighbors 0.987 0.994 0.955 0.904 0.932

DTIOG-BaggingClassifier 0.989 0.996 0.951 0.896 0.9272

DTIOG-GradientBoosting 0.834 0.926 0.865 0.681 0.776

DTIOG-GaussianNB 0.757 0.854 0.803 0.547 0.6914

DTIOG-SGD 0.767 0.895 0.828 0.597 0.715

DTIOG-ETC 0.970 0.985 0.980 0.955 0.969

Euclidean distance

DTIOG-RF 0.962 0.981 0.974 0.944 0.960

DTIOG-DT 0.977 0.989 0.985 0.967 0.977

DTIOG-MLP 0.962 0.984 0.952 0.887 0.920

DTIOG-KNeighbors 0.986 0.993 0.955 0.904 0.932

DTIOG-BaggingClassifier 0.988 0.995 0.953 0.900 0.929

DTIOG-GradientBoosting 0.831 0.927 0.872 0.697 0.787

DTIOG-GaussianNB 0.757 0.855 0.798 0.543 0.690

DTIOG-SGD 0.753 0.885 0.813 0.552 0.669

DTIOG-ETC 0.973 0.987 0.982 0.961 0.973

Manhattan distance

DTIOG-RF 0.962 0.982 0.975 0.944 0.961

DTIOG-DT 0.976 0.988 0.984 0.965 0.975

DTIOG-MLP 0.983 0.993 0.971 0.936 0.955

DTIOG-KNeighbors 0.985 0.993 0.957 0.908 0.935

DTIOG-BaggingClassifier 0.988 0.995 0.954 0.902 0.931

DTIOG-GradientBoosting 0.827 0.924 0.871 0.694 0.785

DTIOG-GaussianNB 0.771 0.863 0.801 0.555 0.699

DTIOG-SGD 0.752 0.883 0.815 0.560 0.683

DTIOG-ETC 0.973 0.987 0.982 0.960 0.972

Jaccard similarity

DTIOG-RF 0.958 0.979 0.972 0.938 0.956

DTIOG-DT 0.973 0.987 0.982 0.961 0.973

DTIOG-MLP 0.981 0.993 0.980 0.955 0.969

DTIOG-KNeighbors 0.983 0.992 0.940 0.874 0.911

DTIOG-BaggingClassifier 0.981 0.992 0.931 0.858 0.900

DTIOG-GradientBoosting 0.834 0.928 0.867 0.685 0.778

DTIOG-GaussianNB 0.754 0.848 0.809 0.555 0.693

DTIOG-SGD 0.779 0.899 0.828 0.592 0.705

DTIOG-ETC 0.967 0.984 0.978 0.951 0.966

Pearson correlation coefficient

DTIOG-RF 0.957 0.979 0.971 0.937 0.9560

DTIOG-DT 0.972 0.986 0.982 0.959 0.971

DTIOG-MLP 0.987 0.995 0.978 0.951 0.966

DTIOG-KNeighbors 0.984 0.992 0.945 0.883 0.918

DTIOG-BaggingClassifier 0.988 0.995 0.940 0.875 0.912

DTIOG-GradientBoosting 0.837 0.927 0.866 0.682 0.776

DTIOG-GaussianNB 0.757 0.849 0.799 0.542 0.689

DTIOG-SGD 0.770 0.894 0.824 0.601 0.724

DTIOG-ETC 0.968 0.985 0.979 0.953 0.967
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classifiers, especially when it comes to Cosine similarity, Pearson correlation coefficient, 
and Manhattan distance metrics. The percentage differences between these tests and 
DTIOG-DT are significant, but they are also within a reasonable range. They are usu-
ally between 0.7% and 2.1% for AUPR, between 1% and 2% for AUC, between 0.6% and 
1% for ACC, between 1.3% and 2.1% for MCC, and between 0.5% and 1.3% for F1. On the 
other side, it is worth mentioning that DTIOG-GradientBoosting, DTIOG-GaussianNB, 
and DTIOG-SGD are not very good at predicting across a number of similarity met-
rics. Compared to DTIOG-DT, they also have large negative percentage differences. For 
example, when using the Cosine similarity metric, DTIOG-GradientBoosting underper-
forms DTIOG-DT by 19.6% in AUPR, 20.5% in AUC, 15.2% in ACC, 25.6% in MCC, and 
18.3% in F1. This indicates that these classifiers may not be suitable choices for this par-
ticular task across the diverse set of evaluation metrics.

The GPCR dataset using ProtBERT

In Table 9, when evaluating the performance of various classifiers on the GPCR data-
set using the various similarity metrics, DTIOG-DT emerges as the top performer, sur-
passing its competitors by significant percentages. DTIOG-DT achieves an AUPR that 
is 1.2% higher, an AUC that is 0.9% higher, an ACC that is 1.0% higher, an MCC that is 
2.0% higher, and an F1 that is 1.1% higher than the next best classifier, DTIOG-ETC. This 
substantial performance margin underscores the exceptional predictive capabilities of 
DTIOG-DT.

The second-best classifier, DTIOG-ETC, comes in close behind with strong results: its 
AUPR is 0.3% lower, its AUC is 0.2% lower, its ACC is 0.3% lower, its MCC is 1.1% lower, 
and its F1 is 0.4% lower than DTIOG-DT. Despite slightly lower values, DTIOG-ETC 
still demonstrates strong predictive performance, making it a reliable alternative choice 
among the classifiers assessed in this study.

However, DTIOG-GradientBoosting, DTIOG-GaussianNB, and DTIOG-SGD con-
sistently underperform, particularly when assessed with the various similarity metrics, 
exhibiting lower values in the diverse set of evaluation metrics. For instance, DTIOG-
GradientBoosting falls behind DTIOG-DT by 15.6% in AUPR and 19.6% in AUC using 
Cosine similarity. These classifiers may not be suitable choices for the GPCR dataset, 
and these findings underscore the significance of classifier selection in predictive perfor-
mance assessment.

Comparison of DTIOG versus other DTI competitor prediction methods

To see how well the DTIOG stacks up against alternative approaches in Table  10, we 
chose the DTIOG-DT as it consistently shows itself to be the best classifier among the 
different versions of DTIOG. We have applied DTIOG-DT in three different modes, 
depending on the contextual and local strategies. DTIOG-DT-KGE utilizes KGE for 
drugs and targets; DTIOG-DT-PRTB employs KGE for drugs and ProtBERT for targets 
in the contextual strategy. DTIOG-DT-FP figures out molecular fingerprints for drugs 
as part of the local strategy, and for proteins, sequence characteristics are used. Addi-
tionally, for each submode, various similarity metrics were taken into consideration. In 
this order, these groups used Cosine similarity, Euclidian distance, Manhattan distance, 
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Table 7 Performance comparison of DTIOG variants on the ENZ dataset using ProtBERT

The best results are indicated in bold concerning each row

Approaches AUPR AUC ACC MCC F1

Cosine similarity

DTIOG-RF 0.950 0.992 0.987 0.942 0.948

DTIOG-DT 0.963 0.994 0.990 0.957 0.961

DTIOG-MLP 0.701 0.928 0.924 0.590 0.621

DTIOG-KNeighbors 0.968 0.995 0.968 0.870 0.879

DTIOG-BaggingClassifier 0.980 0.997 0.978 0.906 0.914

DTIOG-GradientBoosting 0.455 0.808 0.898 0.384 0.402

DTIOG-GaussianNB 0.496 0.532 0.237 0.047 0.214

DTIOG-SGD 0.566 0.881 0.902 0.411 0.425

DTIOG-ETC 0.956 0.993 0.988 0.949 0.954

Euclidean distance

DTIOG-RF 0.958 0.994 0.989 0.952 0.956

DTIOG-DT 0.971 0.996 0.993 0.967 0.970

DTIOG-MLP 0.944 0.991 0.968 0.844 0.861

DTIOG-KNeighbors 0.972 0.996 0.971 0.882 0.891

DTIOG-BaggingClassifier 0.978 0.992 0.971 0.898 0.906

DTIOG-GradientBoosting 0.644 0.908 0.918 0.548 0.578

DTIOG-GaussianNB 0.425 0.711 0.494 0.158 0.264

DTIOG-SGD 0.652 0.920 0.916 0.533 0.562

DTIOG-ETC 0.963 0.994 0.990 0.957 0.962

Manhattan distance

DTIOG-RF 0.959 0.994 0.989 0.953 0.958

DTIOG-DT 0.973 0.996 0.993 0.969 0.972

DTIOG-MLP 0.964 0.995 0.975 0.882 0.893

DTIOG-KNeighbors 0.964 0.995 0.966 0.864 0.873

DTIOG-BaggingClassifier 0.976 0.997 0.973 0.889 0.898

DTIOG-GradientBoosting 0.380 0.698 0.895 0.311 0.278

DTIOG-GaussianNB 0.517 0.796 0.831 0.419 0.483

DTIOG-SGD 0.654 0.923 0.919 0.564 0.599

DTIOG-ETC 0.961 0.994 0.990 0.956 0.960

Jaccard similarity

DTIOG-RF 0.943 0.991 0.985 0.933 0.939

DTIOG-DT 0.962 0.994 0.990 0.956 0.961

DTIOG-MLP 0.701 0.903 0.925 0.574 0.586

DTIOG-KNeighbors 0.969 0.995 0.970 0.877 0.886

DTIOG-BaggingClassifier 0.980 0.997 0.977 0.902 0.910

DTIOG-GradientBoosting 0.585 0.869 0.910 0.473 0.489

DTIOG-GaussianNB 0.490 0.539 0.254 0.045 0.213

DTIOG-SGD 0.579 0.872 0.906 0.434 0.440

DTIOG-ETC 0.954 0.993 0.988 0.946 0.951

Pearson correlation coefficient

DTIOG-RF 0.950 0.992 0.987 0.942 0.947

DTIOG-DT 0.962 0.994 0.990 0.956 0.961

DTIOG-MLP 0.709 0.921 0.925 0.587 0.612

DTIOG-KNeighbors 0.967 0.995 0.968 0.869 0.879

DTIOG-BaggingClassifier 0.980 0.997 0.978 0.904 0.912

DTIOG-GradientBoosting 0.363 0.708 0.893 0.319 0.320

DTIOG-GaussianNB 0.493 0.528 0.235 0.038 0.211

DTIOG-SGD 0.567 0.880 0.901 0.422 0.446

DTIOG-ETC 0.954 0.993 0.988 0.947 0.952
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Jaccard similarity, and Pearson correlation, named as DTIOG-DT-KGE-COS, DTIOG-
DT-KGE-ED, DTIOG-DT-KGE-MD, DTIOG-DT-KGE-JCC, and DTIOG-DT-KGE-
PCC, respectively.

Table 10 depicts the performance of various DTIs prediction methods using diverse 
evaluation metrics across three DTI classes: GPCR, IC, and ENZ. The evaluated pre-
diction methods include different variants of DTIOG, iGRLDTI, DTI-HeNE, ALA-
DIN, and BLM-NII. In all three DTI classes, DTIOG variants consistently do better 
than iGRLDTI, DTI-HeNE, ALADIN, and BLM-NII in a number of evaluation metrics. 
Notably, DTIOG variants that use KGE have very good predictive power, as shown by 
their high AUPR scores. In particular, DTIOG-DT-KGE-COS, DTIOG-DT-KGE-ED, 
DTIOG-DT-KGE-MD, and DTIOG-DT-KGE-JCC excel at achieving the highest AUPR 
scores across various classes. To sum up, DTIOG is the best way to predict DTI because 
it can be used in a number of different ways, including using latent representations, fea-
ture representations of drugs and proteins, and different similarity metrics. Variants 
that use KGE work especially well, showing how important it is to represent DTIs in a 
latent space. Despite being a respectable method, iGRLDTI fails to outperform DTIOG 
across most metrics, underscoring the power of latent representation-based approaches. 
If we compare ALADIN and BLM-NII to DTIOG and other top methods, they do not do 
nearly as well. This shows how important it is to combine knowledge and latent repre-
sentations for accurate DTI prediction.

DTIOG does much better than its competitors because it uses KGE to show compli-
cated connections in KGs, which makes it better at modeling complicated drug-protein 
interactions. Adding to that, the novel approach, can extract features for both drugs 
and proteins. This gives a more complete picture of DTIs by looking at structural and 
sequential features.

Case study

The aim of our case study is to evaluate the practical efficacy of the DTIOG-Bagging-
Classifier variant using the KGE in identifying unknown DTIs. This classifier demon-
strated strong performance during the training process, as indicated in Tables  4, 5, 6, 
and 7, providing well-validated predictions in terms of AUPR or AUC metrics.

Concerning prediction scores, the top 10 pairs in the testing dataset were selected for 
further validation. Each pair of drug and target was then verified against the latest ver-
sions of the DrugBank [44], CTD [61], KEGG [64] and ChEMBL [65] databases. These 
verified drug–target pairs did not exist in KG input during the embedding process or 
the training of the DTIOG variants. Instead, they were later added to the latest version 
of databases. Additionally, the DTIs for the different datasets (i.e., ENZ, GPCR, and IC 
datasets) were collected before 2008 [58], allowing verification using newly updated 
DTIs in the aforementioned databases.

Tables  11, 12, and 13 present the top 10 pairs of drugs and targets from the ENZ, 
GPCR, and IC datasets, respectively, with the highest prediction scores. Following a 
meticulous literature review of the predicted DTIs for the ENZ dataset, five of them 
were confirmed by the latest versions of the DrugBank, KEGG, CTD, or ChEMBL data-
bases. Interestingly, in the GPCR dataset, the DTIOG-BaggingClassifier performed well 
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Table 8 Performance comparison of DTIOG variants on the IC dataset using ProtBERT

The best results are indicated in bold concerning each row

Approaches AUPR AUC ACC MCC F1

Cosine similarity

DTIOG-RF 0.951 0.976 0.966 0.927 0.949

DTIOG-DT 0.965 0.983 0.976 0.948 0.963

DTIOG-MLP 0.926 0.971 0.917 0.809 0.869

DTIOG-KNeighbors 0.974 0.987 0.932 0.860 0.901

DTIOG-BaggingClassifier 0.981 0.993 0.941 0.878 0.913

DTIOG-GradientBoosting 0.776 0.877 0.823 0.569 0.686

DTIOG-GaussianNB 0.659 0.779 0.785 0.458 0.523

DTIOG-SGD 0.687 0.816 0.775 0.451 0.600

DTIOG-ETC 0.961 0.981 0.974 0.942 0.960

Euclidean distance

DTIOG-RF 0.956 0.978 0.970 0.934 0.954

DTIOG-DT 0.972 0.986 0.981 0.959 0.971

DTIOG-MLP 0.997 0.999 0.995 0.988 0.992

DTIOG-KNeighbors 0.971 0.986 0.971 0.936 0.955

DTIOG-BaggingClassifier 0.654 0.500 0.691 0.000 0.000

DTIOG-GradientBoosting 0.889 0.961 0.913 0.797 0.860

DTIOG-GaussianNB 0.713 0.817 0.784 0.492 0.647

DTIOG-SGD 0.745 0.877 0.816 0.566 0.696

DTIOG-ETC 0.966 0.983 0.977 0.949 0.964

Manhattan distance

DTIOG-RF 0.957 0.979 0.971 0.936 0.955

DTIOG-DT 0.973 0.987 0.982 0.961 0.972

DTIOG-MLP 0.997 0.999 0.995 0.989 0.992

DTIOG-KNeighbors 0.977 0.989 0.960 0.914 0.940

DTIOG-BaggingClassifier 0.981 0.993 0.965 0.924 0.947

DTIOG-GradientBoosting 0.809 0.916 0.859 0.664 0.762

DTIOG-GaussianNB 0.694 0.800 0.780 0.471 0.622

DTIOG-SGD 0.749 0.875 0.813 0.561 0.692

DTIOG-ETC 0.970 0.985 0.980 0.956 0.969

Jaccard similarity

DTIOG-RF 0.954 0.977 0.969 0.932 0.952

DTIOG-DT 0.969 0.985 0.979 0.954 0.968

DTIOG-MLP 0.988 0.995 0.976 0.945 0.962

DTIO-KNeighbors 0.979 0.990 0.948 0.889 0.922

DTIOGBaggingClassifier 0.991 0.996 0.960 0.913 0.939

DTIO-GradientBoosting 0.802 0.895 0.845 0.624 0.727

DTIO-GaussianNB 0.663 0.783 0.776 0.436 0.477

DTIO-SGD 0.722 0.846 0.800 0.518 0.648

DTIOG-ETC 0.965 0.983 0.976 0.948 0.963

Pearson correlation coefficient

DTIOG-RF 0.955 0.978 0.970 0.933 0.953

DTIOG-DT 0.968 0.985 0.979 0.953 0.967

DTIOG-MLP 0.992 0.997 0.991 0.980 0.986

DTIOG-KNeighbors 0.982 0.991 0.955 0.904 0.932

DTIOG-BaggingClassifier 0.991 0.996 0.966 0.926 0.948

DTIOG-GradientBoosting 0.806 0.900 0.850 0.639 0.741

DTIOG-GaussianNB 0.672 0.791 0.785 0.458 0.523

DTIOG-SGD 0.738 0.858 0.810 0.541 0.669

DTIOG-ETC 0.968 0.984 0.979 0.953 0.967



Page 31 of 41Djeddi et al. BMC Bioinformatics          (2023) 24:488  

by predicting 10 confirmed DTIs validated by DrugBank or KEGG databases. On the 
other hand, for the IC dataset, our approach successfully predicted six confirmed DTIs 
validated by DrugBank or KEGG databases.

Regarding the prediction results, we find that the DTIOG-BaggingClassifier could 
predict validated DTIs, most of which are related to COVID-19, such as the predicted 
interaction between the drug Pentobarbital (i.e., DB00312) and the target Proto-
oncogene tyrosine-protein kinase Src (i.e., P12931) (cf. Table  11). Barbiturate drugs 
like pentobarbital are mostly used as sedatives, hypnotics, or anesthetics. They work 
on the central nervous system by increasing the calming effects of the neurotrans-
mitter gamma-aminobutyric acid (GABA) [66]. The proto-oncogene tyrosine-protein 
kinase Src target is a member of the tyrosine-protein kinase class, playing a pivotal 
role in cell signaling and regulation. While these kinases are vital for normal cellular 
processes, mutations or overexpression can render them oncogenic, thereby contrib-
uting to cancer development.

Furthermore, our approach has identified a drug–target interaction involving Caf-
feine (DB00201) and 3 beta-hydroxysteroid dehydrogenase/Delta 5–>4-isomerase 
type 1 (P14060) (cf. Table  11). Many studies, including [67–69], have shown that 
caffeine can effectively reduce inflammation and change the way the immune sys-
tem works. In the airway smooth muscle, it exerts bronchodilator effects primarily 
through its role as a phosphodiesterase inhibitor and adenosine receptor antagonist. 
On the other hand, the enzyme P14060, encoded by the gene HSD3B1, plays a vital 
role in the biosynthesis of steroid hormones. Specifically, it is instrumental in con-
verting pregnenolone to progesterone and actively contributes to the production of 
diverse steroid hormones. Its significance extends to the synthesis of various steroid 
hormones, particularly those crucial for the reproductive system and stress response.

Additionally, the DTIOG variant has the capability to predict an interaction 
between Nifedipine (DB01115) and the target Cytochrome P450 2C9 (P11712) (cf. 
Table 11). Nifedipine is a calcium channel blocker that is mostly used to treat angina 
and high blood pressure. It works by stopping calcium ions from entering the heart 
and smooth muscle cells, which opens up blood vessels and lowers the heart’s work-
load. Nifedipine could potentially serve as a therapeutic molecule for managing the 
pathophysiological conditions of the lungs in severe COVID-19 patients [70, 71]. 
Cytochrome P450 2C9 (CYP2C9), a member of the cytochrome P450 enzyme family, 
plays a crucial role in drug metabolism. Predominantly located in the liver, CYP2C9 
is responsible for metabolizing a wide range of drugs, including Nifedipine. The inter-
action between Nifedipine and CYP2C9 involves the enzyme’s function in breaking 
down the drug, thereby influencing its pharmacokinetics.

In particular, we notice that DTIOG successfully identifies the interaction between 
the drug Cinnarizine (DB00568) and the target protein Muscarinic acetylcholine 
receptor M4 (P08173) (cf. Table 12). Cinnarizine has demonstrated positive outcomes 
in patients with COVID-19-associated CLLs, likely owing to its antihistaminic and 
calcium channel-blocking properties [72]. On the other hand, P08173 is a G-protein-
coupled receptor activated by the neurotransmitter acetylcholine, predominantly 
located in the central nervous system. Upon activation, it can modulate various physi-
ological processes.
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Table 9 Performance comparison of DTIOG variants on the GPCR dataset using ProtBERT

The best results are indicated in bold concerning each row

Approaches AUPR AUC ACC MCC F1

Cosine similarity

DTIOG-RF 0.930 0.969 0.956 0.899 0.925

DTIOG-DT 0.948 0.978 0.968 0.926 0.945

DTIOG-MLP 0.836 0.936 0.874 0.673 0.755

DTIOG-KNeighbors 0.946 0.977 0.939 0.865 0.899

DTIOG-BaggingClassifier 0.635 0.500 0.683 0.000 0.042

DTIOG-GradientBoosting 0.792 0.923 0.872 0.669 0.755

DTIOG-GaussianNB 0.431 0.628 0.439 0.108 0.437

DTIOG-SGD 0.454 0.691 0.720 0.274 0.443

DTIOG-ETC 0.951 0.980 0.971 0.931 0.949

Euclidean distance

DTIOG-RF 0.950 0.979 0.970 0.930 0.948

DTIOG-DT 0.963 0.985 0.978 0.948 0.961

DTIOG-MLP 0.995 0.998 0.993 0.983 0.987

DTIOG-KNeighbors 0.961 0.984 0.959 0.905 0.930

DTIOG-BaggingClassifier 0.635 0.500 0.729 0.000 0.000

DTIOG-GradientBoosting 0.894 0.973 0.936 0.842 0.885

DTIOG-GaussianNB 0.597 0.772 0.752 0.436 0.604

DTIOG-SGD 0.594 0.805 0.784 0.437 0.572

DTIOG-ETC 0.957 0.982 0.974 0.940 0.955

Manhattan distance

DTIOG-RF 0.950 0.979 0.970 0.930 0.948

DTIOG-DT 0.959 0.983 0.976 0.943 0.958

DTIOG-MLP 0.994 0.998 0.993 0.983 0.987

DTIOG-KNeighbors 0.959 0.983 0.953 0.894 0.921

DTIOG-BaggingClassifier 0.635 0.500 0.683 0.000 0.042

DTIOG-GradientBoosting 0.872 0.966 0.931 0.828 0.875

DTIOG-GaussianNB 0.586 0.775 0.755 0.436 0.602

DTIOG-SGD 0.591 0.803 0.781 0.426 0.568

DTIOG-ETC 0.960 0.983 0.976 0.944 0.958

Jaccard similarity

DTIOG-RF 0.938 0.974 0.962 0.912 0.934

DTIOG-DT 0.958 0.983 0.975 0.941 0.956

DTIOG-MLP 0.984 0.996 0.989 0.974 0.981

DTIO-KNeighbors 0.968 0.987 0.965 0.918 0.939

DTIOGBaggingClassifier 0.635 0.500 0.729 0.000 0.000

DTIO-GradientBoosting 0.880 0.969 0.923 0.808 0.861

DTIO-GaussianNB 0.473 0.660 0.471 0.138 0.448

DTIO-SGD 0.560 0.780 0.775 0.400 0.536

DTIOG-ETC 0.954 0.981 0.972 0.934 0.951

Pearson correlation coefficient

DTIOG-RF 0.940 0.975 0.963 0.915 0.937

DTIOG-DT 0.956 0.982 0.974 0.938 0.954

DTIOG-MLP 0.987 0.996 0.990 0.975 0.981

DTIOG-KNeighbors 0.972 0.989 0.961 0.910 0.933

DTIOG-BaggingClassifier 0.635 0.500 0.729 0.000 0.000

DTIOG-GradientBoosting 0.898 0.975 0.934 0.838 0.882

DTIOG-GaussianNB 0.497 0.676 0.527 0.189 0.468

DTIOG-SGD 0.587 0.797 0.780 0.419 0.554

DTIOG-ETC 0.958 0.983 0.975 0.940 0.956
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A new interaction has been found between the drug magnesium sulfate (DB00653) 
and the target protein voltage-dependent L-type calcium channel subunit alpha-
1D (Q01668) (cf. Table  13). There are several ways that magnesium sulfate protects 
organs and tissues from damage. These include reducing inflammation, fighting free 
radicals, and keeping the immune system in check [73, 74]. Q01668 is a protein intri-
cately involved in the regulation of calcium ion flow across cell membranes. In addi-
tion, an interaction has been observed between Propofol (DB00818) and the target 
Glycine receptor subunit alpha-3 (O75311) (cf. Table 13). Propofol is a potent intra-
venous anesthetic commonly used for the induction and maintenance of general 
anesthesia. Hypertriglyceridemia frequently occurs in COVID-19 patients receiving 
propofol, but it does not lead to acute pancreatitis. On the other hand, O75311 is a 
component of the glycine receptor, a ligand-gated ion channel widely distributed in 
the central nervous system. It plays a crucial role in mediating inhibitory neurotrans-
mission, particularly in the spinal cord and brainstem.

Therefore, DTIOG proves to be a valuable tool for uncovering new drug–target inter-
actions, particularly in cases where drugs are associated with COVID-19. This guess 
comes from adding to the KG a list of genes (e.g., CCL2, TNF, and IL6), drugs (e.g., 
Ruxolitinib, Choline, Chloroquine, and Baricitinib), and gene ontology terms (e.g., cell 
proliferation and response to oxidative stress) that are linked to COVID-19 from the 
CTD database [61]. Additionally, we compute all interactions between SARS-CoV-2 and 
Homo sapiens proteins. Moreover, we annotate each SARS-CoV-2 protein with its gene 
ontology terms.

Discussion

The approach employed in our study utilizes the interconnected network of drug–target 
relationships within the KG to generate precise predictions pertaining to potential DTIs. 
The graph facilitates the analysis of direct interactions and the investigation of indirect 
associations. For example, pharmaceutical substances have the ability to selectively bind 
to proteins that are part of the same biological pathway or possess similar molecular 
structures. This characteristic enhances the probability of interaction between the drugs 
and their target proteins. Due to the extensive network of connections within the KG, 
our approach is capable of leveraging the comprehensive knowledge repository to accu-
rately forecast potential interactions between a drug and a target.

Various types of information have been extracted from the knowledge graph, encom-
passing drug and target embedding vectors as well as two similarity matrices: drug–drug 
and target–target. Our methodology involves addressing these constituent elements 
separately, thereby facilitating a more focused examination of the distinct attributes and 
interconnections of each entity. By examining the embeddings of drugs and targets, as 
well as their respective similarity matrices, it becomes more feasible to identify under-
lying associations and potential interactions. Furthermore, our methodology employs 
various representations and similarity matrices to effectively capture the inherent prop-
erties and specific associations between drugs and targets. This facilitates the compre-
hension of the predictions. The utilization of this dual approach allows researchers to 
gain a comprehensive understanding of the various factors that influence DTIs.
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Table 10 Comparison of DTIOG variants versus other DTI competitor prediction methods

Classifiers AUPR AUC ACC MCC F1

GPCR

DTIOG-DT-PRTB-COS 0.948 0.978 0.968 0.926 0.945

DTIOG-DT-PRTB-ED 0.963 0.985 0.978 0.948 0.961

DTIOG-DT-PRTB-MD 0.959 0.983 0.976 0.943 0.958

DTIOG-DT-PRTB-JCC 0.958 0.983 0.975 0.941 0.956

DTIOG-DT-PRTB-PCC 0.956 0.982 0.974 0.938 0.954

DTIOG-DT-KGE-COS 0.968 0.987 0.981 0.955 0.967
DTIOG-DT-KGE-ED 0.967 0.987 0.981 0.954 0.966

DTIOG-DT-KGE-MD 0.966 0.986 0.980 0.952 0.965

DTIOG-DT-KGE-JCC 0.966 0.986 0.980 0.953 0.965

DTIOG-DT-KGE-PCC 0.965 0.986 0.980 0.951 0.964

DTIOG-DT-FP-COS 0.953 0.980 0.971 0.933 0.950

DTIOG-DT-FP-ED 0.951 0.980 0.971 0.931 0.949

DTIOG-DT-FP-MD 0.953 0.981 0.972 0.934 0.951

DTIOG-DT-FP-JCC 0.954 0.981 0.972 0.933 0.951

DTIOG-DT-FP-PCC 0.957 0.982 0.974 0.940 0.955

iGRLDTI 0.954 0.979 0.944 0.850 0.885

DTI-HeNE 0.948 0.945 0.972 0.923 0.939

ALADIN 0.516 0.795 0.970 0.381 0.298

BLM-NII 0.476 0.834 0.970 0.297 0.189

IC

DTIOG-DT-PRTB-COS 0.965 0.983 0.976 0.948 0.963

DTIOG-DT-PRTB-ED 0.972 0.986 0.981 0.959 0.971

DTIOG-DT-PRTB-MD 0.973 0.987 0.982 0.961 0.972

DTIOG-DT-PRTB-JCC 0.969 0.985 0.979 0.954 0.968

DTIOG-DT-PRTB-PCC 0.968 0.985 0.979 0.953 0.967

DTIOG-DT-KGE-COS 0.972 0.987 0.982 0.959 0.971

DTIOG-DT-KGE-ED 0.977 0.989 0.985 0.967 0.977
DTIOG-DT-KGE-MD 0.976 0.988 0.984 0.965 0.975

DTIOG-DT-KGE-JCC 0.973 0.987 0.982 0.961 0.973

DTIOG-DT-KGE-PCC 0.972 0.986 0.982 0.959 0.971

DTIOG-DT-FP-COS 0.959 0.980 0.973 0.940 0.958

DTIOG-DT-FP-ED 0.962 0.981 0.974 0.944 0.960

DTIOG-DT-FP-MD 0.961 0.981 0.973 0.942 0.959

DTIOG-DT-FP-JCC 0.960 0.981 0.973 0.941 0.959

DTIOG-DT-FP-PCC 0.962 0.982 0.975 0.944 0.961

iGRLDTI 0.973 0.980 0.931 0.861 0.921

DTI-HeNE 0.981 0.978 0.986 0.964 0.973

ALADIN 0.803 0.913 0.965 0.757 0.751

BLM-NII 0.786 0.930 0.965 0.763 0.762

ENZ

DTIOG-DT-PRTB-COS 0.963 0.994 0.990 0.957 0.961

DTIOG-DT-PRTB-ED 0.971 0.996 0.993 0.967 0.970

DTIOG-DT-PRTB-MD 0.973 0.996 0.993 0.969 0.972

DTIOG-DT-PRTB-JCC 0.962 0.994 0.990 0.956 0.961

DTIOG-DT-PRTB-PCC 0.962 0.994 0.990 0.956 0.961

DTIOG-DT-KGE-COS 0.976 0.996 0.994 0.972 0.975

DTIOG-DT-KGE-ED 0.976 0.996 0.994 0.973 0.976
DTIOG-DT-KGE-MD 0.976 0.996 0.994 0.972 0.975
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Utilizing drug and target embeddings in conjunction with drug–drug and target–
target similarity matrices constitutes a viable approach for predicting the interaction 
between a drug and its target. These methodologies offer a more intricate comprehen-
sion of drugs and their intended targets, facilitate the detection of hidden associations, 
and augment the comprehensibility of predictions. Consequently, they contribute to 
the progression of our understanding in the realm of pharmaceutical exploration and 
advancement. The primary strength of our methodology resides in its capacity to inte-
grate pre-existing high-order proximity data regarding drugs and targets, resulting in 
representations of drug–target pairs. Additionally, our approach offers the flexibility to 
modify the length of these representations in order to fulfill specific task demands. The 
utilization of an integration-based algorithm as the core method for processing the het-
erogeneous DTIs network leads to these advantages.

Using much more information about similar things, the principle mentioned earlier 
can help predict unknown DTIs more purposefully and directly, reducing the likelihood 

The best results are indicated in bold concerning each row

Table 10 (continued)

Classifiers AUPR AUC ACC MCC F1

DTIOG-DT-KGE-JCC 0.975 0.996 0.993 0.971 0.974

DTIOG-DT-KGE-PCC 0.975 0.996 0.994 0.971 0.974

DTIOG-DT-FP-COS 0.954 0.993 0.988 0.947 0.952

DTIOG-DT-FP-ED 0.951 0.992 0.987 0.943 0.948

DTIOG-DT-FP-MD 0.956 0.993 0.989 0.949 0.954

DTIOG-DT-FP-JCC 0.955 0.993 0.988 0.948 0.953

DTIOG-DT-FP-PCC 0.955 0.993 0.988 0.948 0.953

iGRLDTI 0.949 0.940 0.885 0.760 0.906

DTI-HeNE 0.963 0.962 0.992 0.954 0.957

ALADIN 0.757 0.896 0.990 0.665 0.620

BLM-NII 0.769 0.925 0.990 0.702 0.666

Table 11 Top 10 predicted novel interactions in the ENZ dataset performed by DTIOG-
BaggingClassifier, with supporting evidence from external databases

Rank Drugbank ID Drug name Uniprot ID Target name Evidence

1 DB00586 Diclofenac P05164 Myeloperoxidase CTD

2 DB00312 Pentobarbital P12931 Proto-oncogene tyrosine-protein 
kinase Src

KEGG

3 DB00201 Caffeine P20853 Cytochrome P450 2A7 None

4 DB00312 Pentobarbital P06276 Cholinesterase None

5 DB00201 Caffeine P14060 3 beta-hydroxysteroid dehydroge-
nase/Delta 5–>4-isomerase type 1

CTD

6 DB00201 Caffeine Q13946 High affinity cAMP-specific 3’,5’-cyclic 
phosphodiesterase 7A

DrugBank

7 DB00564 Carbamazepine Q92813 Type II iodothyronine deiodinase None

8 DB01907 NADH O94788 Retinal dehydrogenase 2 None

9 DB00432 Trifluridine Q92813 Type II iodothyronine deiodinase None

10 DB01115 Nifedipine P11712 Cytochrome P450 2C9 DrugBank, ChEMBL
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of making mistakes. Nevertheless, this approach has the disadvantage of narrowing 
down the search space for novel DTIs. Suppose the similarity between the nodes of a 
particular drug–target pair and other nodes in the dataset is relatively low. In that case, 
the probability of predicting a potential interaction between them is reduced, even if 
such an association exists.

To overcome this limitation, we intend to investigate how to extend our method 
functionally and assign greater attention to certain drugs with lower similarity to other 
drugs that still warrant further analysis. This course of action is expected to broaden 
the range of potential DTIs that our method can uncover. Furthermore, our proposed 

Table 12 Top 10 predicted novel interactions in the GPCR dataset performed by DTIOG-
BaggingClassifier, with supporting evidence from external databases

Rank Drugbank ID Drug name Uniprot ID Target name Evidence

1 DB00810 Biperiden P20309 Muscarinic acetylcholine 
receptor M3

KEGG

2 DB00726 Trimipramine P08912 Muscarinic acetylcholine 
receptor M5

DrugBank

3 DB00850 Perphenazine P21918 D(1B) dopamine receptor KEGG

4 DB00568 Cinnarizine P08173 Muscarinic acetylcholine 
receptor M4

DrugBank, KEGG

5 DB00726 Trimipramine P28223 5-hydroxytryptamine recep-
tor 2A

DrugBank, KEGG

6 DB00568 Cinnarizine P20309 Muscarinic acetylcholine 
receptor M3

DrugBank, KEGG

7 DB00462 Methscopolamine bromide P20309 Muscarinic acetylcholine 
receptor M3

DrugBank, KEGG

8 DB01239 Chlorprothixene P20309 Muscarinic acetylcholine 
receptor M3

DrugBank, KEGG

9 DB00933 Mesoridazine P20309 Muscarinic acetylcholine 
receptor M3

KEGG

10 DB00454 Meperidine Q9H3N8 Histamine H4 receptor KEGG

Table 13 Top 10 predicted novel interactions in the IC dataset performed by DTIOG-
BaggingClassifier, with supporting evidence from external databases

Rank Drugbank ID Drug name Uniprot ID Target name Evidence

1 DB00653 Magnesium sulfate Q01668 Voltage-dependent L-type calcium 
channel subunit alpha-1D

DrugBank

2 DB00349 Clobazam P47870 Gamma-aminobutyric acid receptor 
subunit beta-2

DrugBank, KEGG

3 DB00818 Propofol O75311 Glycine receptor subunit alpha-3 KEGG

4 DB01122 Ambenonium P46098 5-hydroxytryptamine receptor 3A None

5 DB01239 Chlorprothixene Q92952 Small conductance calcium-acti-
vated potassium channel protein 1

None

6 DB00312 Pentobarbital Q15878 Voltage-dependent R-type calcium 
channel subunit alpha-1E

None

7 DB00829 Diazepam O75311 Glycine receptor subunit alpha-3 KEGG

8 DB00653 Magnesium sulfate Q00975 Voltage-dependent N-type calcium 
channel subunit alpha-1B

None

9 DB00740 Riluzole Q13002 Glutamate receptor ionotropic, 
kainate 2

KEGG

10 DB00949 Felbamate O75311 Glycine receptor subunit alpha-3 KEGG
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methodology employs a sequential transductive learning framework for the prediction 
of DTIs. This approach enhances comprehensibility as each step within the workflow 
possesses a distinct and unambiguous interpretation. Nevertheless, the current trans-
ductive-style operation employed by our method results in increased computational 
expenses in comparison to inductive learning methods.

Inductive learning techniques exhibit no specific constraints regarding the dataset 
about fixed drugs and targets. On the other hand, transductive learning methods can 
enhance predictive accuracy by utilizing additional information from unknown sam-
ples in datasets with sparsely known interactions. However, any new nodes or samples 
added to the dataset necessitate the re-running of the model, which is a trade-off for the 
improved predictive accuracy provided by the transductive learning approach.

Our goal is to expand our approach to focus on drugs that have lower similarity to 
other drugs but still have potential for further investigation. In addition, our approach 
offers improved clarity by using a step-by-step transductive learning process. However, 
it does require more computational resources compared to inductive learning methods.

It is crucial to emphasize that integrating several similarity matrices from other 
approaches, such as the Node2vec approach, into our case is not recommended. The 
reason is that Node2vec relies solely on a single type of relationship, which is a con-
nected relationship. However, our knowledge graph construction requires an embedding 
approach based on the triplets formed between various entity pairs. We have computed 
diverse types of similarities between drugs, primarily based on their chemical struc-
ture, including the SDF, MOL, or SMILES formats. Additionally, we can utilize different 
drug similarity measures based on side effects, such as Kuhn’s method, AERS-freq, and 
AERS-bit.

We have devised an approach to infer novel drugs from the KGE, employing diverse 
features and decomposition data with multiple classifiers. This approach can be extended 
to explore HP-PPI between SARS-CoV-2 and human proteins. To enrich our knowledge 
graph, we integrate information about the Mus-musculus species. Mouse models are 
widely used to assess COVID-19 disease risks and evaluate potential COVID-19 vac-
cines. Additionally, mouse models have proven valuable for drug development and stud-
ying various immune responses. Our strategy aims to establish an alignment between 
the PPI networks of Homo sapiens, Mus musculus, and the coronavirus species to iden-
tify potential viral interactions relevant to COVID-19. Moreover, we can utilize this 
alignment to investigate virus-host PPI networks between Homo sapiens, SARS-CoV-2, 
and SARS-CoV-1 proteins, thereby discovering more conserved edges or common viral 
interactions.

In the forthcoming network paradigm, our objective is to investigate both topologi-
cal and biological hypotheses that arise from the interactions among biological enti-
ties. This exploration involves the application of representation learning techniques and 
clustering algorithms [39, 75]. Our future focus lies in leveraging the concept of multi-
objective particle swarm optimization [75] to enhance the precision of DTI prediction 
models. More specifically, our approach involves the utilization of KGE techniques to 
generate drug embeddings and ProtBERT to obtain protein embeddings. In order to 
accomplish this objective, we suggest the incorporation of clustering algorithms such 
as FCAN-MOPSO [75] to facilitate the extraction of meaningful patterns in the data. 
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FCAN-MOPSO is an enhanced graph clustering algorithm for complex networks using 
fuzzy logic and multi-objective particle swarm optimization. This approach can be 
applied to group similar drugs or proteins together. Once the clustering is performed, 
we can analyze the resulting clusters to gain insights into the biological relevance of the 
identified groups. For example, we can use enrichment analysis to find biological path-
ways or gene-ontology terms that are linked to proteins in each cluster. This step helps 
in understanding the functional context of the clustered proteins and their relationships 
to specific drugs. This approach enables a systematic exploration of DTIs in biological 
networks, providing valuable information for drug discovery and repurposing efforts. 
Meanwhile, the clustering analyses permit handling the cold-start problem, e.g., in the 
case of SARS-CoV-2 and its variants, when the approach needs to make predictions or 
recommendations for new or previously unseen drugs or targets for which there is lim-
ited or no existing data or associations available.

Conclusion
The performance of DTIOG in predicting DTIs outperforms that of other existing 
approaches. The utilization of drug and target embeddings, along with similarity matri-
ces, enhances the efficacy of the approach by facilitating interpretable predictions and 
fostering a thorough understanding of drug–target associations. The utilization of 
DTIOG holds substantial promise in enhancing endeavors related to drug discovery and 
development, and it may offer valuable insights in the exploration of HP-PPI for infec-
tious diseases such as COVID-19. Our research not only highlights the effectiveness 
of our proposed approach but also emphasizes the crucial importance of graph-based 
methods and advanced contextual embeddings. This indicates a promising avenue for 
future research in the field of computational prediction of drug–target interactions.
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