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Abstract 

Background: Clustering analysis is widely used to interpret biomedical data 
and uncover new knowledge and patterns. However, conventional clustering methods 
are not effective when dealing with sparse biomedical data. To overcome this limita-
tion, we propose a hierarchical clustering method called polynomial weight-adjusted 
sparse clustering (PWSC).

Results: The PWSC algorithm adjusts feature weights using a polynomial function, 
redefines the distances between samples, and performs hierarchical clustering analysis 
based on these adjusted distances. Additionally, we incorporate a consensus clustering 
approach to determine the optimal number of classifications. This consensus approach 
utilizes relative change in the cumulative distribution function to identify the best 
number of clusters, resulting in more stable clustering results. Leveraging the PWSC 
algorithm, we successfully classified a cohort of gastric cancer patients, enabling 
categorization of patients carrying different types of altered genes. Further evaluation 
using Entropy showed a significant improvement (p = 2.905e−05), while using the Cal-
inski–Harabasz index demonstrates a remarkable 100% improvement in the quality 
of the best classification compared to conventional algorithms. Similarly, significantly 
increased entropy (p = 0.0336) and comparable CHI, were observed when classify-
ing another colorectal cancer cohort with microbial abundance. The above attempts 
in cancer subtyping demonstrate that PWSC is highly applicable to different types 
of biomedical data. To facilitate its application, we have developed a user-friendly tool 
that implements the PWSC algorithm, which canbe accessed at http:// pwsc. aiyim ed. 
com/.

Conclusions: PWSC addresses the limitations of conventional approaches when clus-
tering sparse biomedical data. By adjusting feature weights and employing consensus 
clustering, we achieve improved clustering results compared to conventional methods. 
The PWSC algorithm provides a valuable tool for researchers in the field, enabling more 
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accurate and stable clustering analysis. Its application can enhance our understanding 
of complex biological systems and contribute to advancements in various biomedical 
disciplines.

Keywords: Hierarchical clustering, Polynomial weight, Consensus clustering, Sparse 
biomedical data

Introduction
In biomedical data processing, cluster analysis is an essential tool that can be utilized 
to classify and predict various types of biological molecule data [1].By grouping simi-
lar data points together, cluster analysis forms clusters with distinct features that can 
differentiate different biological entities, including gene sequences, proteins, and more 
[2–5]. Through the use of cluster analysis, vast amounts of biological data can be organ-
ized and analyzed in a meaningful way, leading to more precise biomedical informa-
tion [6]. Additionally, cluster analysis can also be employed to analyze the structure and 
function of biological systems, providing new approaches and perspectives for biomed-
ical research [7].

Commonly used methods in cluster analysis include K-means clustering and 
hierarchical clustering [8, 9]. The former involves dividing data points into K 
groups, with the center of each group being the average value of all data points 
within it [10, 11]. The latter method involves gradually grouping data points 
based on their similarities, forming a tree-like structure [12, 13]. Additionally, 
there have been some clustering methods specifically designed for certain prob-
lems. For example, Kath Nicholls et  al. proposed the Biclustering algorithm to 
address the issue that genes cluster differently in heterogeneous samples and 
cannot achieve effective clustering [14]. Juan Wang et  al. improved the cluster-
ing quality of multi-cancer samples based on gene expression data by applying 
the graph regularized low-rank representation under symmetric and sparse con-
straints (sgLRR) method [15].

However, the data in the biomedical domain is often high-dimensional and sparse, 
primarily due to the complexity of multiple biomolecules, tissues, and organs in liv-
ing organisms [16]. The high dimensionality and sparsity of biomedical data result in 
samples being sparsely distributed in a high-dimensional clustering space, making it 
challenging for conventional clustering methods to effectively capture similarities and 
affinities between samples [17, 18]. This can lead to issues such as overfitting or underfit-
ting [19].

To address the problem that conventional clustering methods are difficult to handle 
due to the sparsity of biomedical data, we propose a new clustering algorithm. This 
algorithm recalculates the distances between samples by adjusting the weights of fea-
tures, and performs clustering analysis based on this. At the same time, we use a con-
sensus clustering method to select the optimal number of classifications, thus obtaining 



Page 3 of 17Zhang et al. BMC Bioinformatics          (2023) 24:490  

the most stable clustering results. With this integrated approach, we have success-
fully achieved effective clustering of biomedical data with good classification results, 
avoiding the overfitting or oversimplification problems that can occur in conventional 
methods.

Methods
Polynomial weight‑adjusted sparse clustering

We redefined the distances between samples based on the hierarchical clustering 
method [12, 13].

By reading the data, we can obtain the following sparse matrix, the rows of which rep-
resent the performance values of one of its features in the sample and the columns rep-
resent the performance values of different features of one of the samples.

We process this sparse matrix and count the frequency of its features in each row in 
the sample to obtain {η1, η2 . . . ηm} , and next, we build the polynomial:

With the help of that established polynomial, we re-establish the weights 
{

η1, η2 . . . ηm
}

:

We adjust the weights of the sparse matrix to obtain a correction matrix D , expressed 
as follows:

After that, we perform hierarchical clustering on the corrected sparse matrix using the 
method of sum of squares of differences, with the algorithm shown as follows:
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Algorithm 1 PWSC (Polynomial Weight‑adjusted Sparse Clustering) 

Consensus clustering

The Monti consensus clustering algorithm is a well-known method for determining 
the number of clusters, K, in a dataset of N points [20, 21]. This algorithm involves 
resampling and clustering the data for each K, resulting in an N × N consensus matrix 
that indicates how often pairs of samples were clustered together. A perfectly sta-
ble matrix would contain only zeros and ones, indicating that all sample pairs either 
always clustered together or never did. By comparing the stability of the consensus 
matrices for different K values, the optimal K can be determined.

To be more precise, let D =
{

e1, e2, . . . , eN
}

 be the set of points to cluster, and let 
D1,D2, . . . ,DH be the H perturbed datasets resulting from resampling the original 
data. Let Mh be the N × N connectivity matrix obtained by clustering Dh , with entries 
defined as follows:
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Let Uh be the N × N indicator matrix with 
(

i, j
)

 entry equal to 1 if points i and j are 
in the same perturbed dataset Dh , and 0 otherwise. This matrix is used to keep track 
of which samples were selected during each resampling iteration for the normalization 
step. Thconsensus matrix C for a given K is defined as the normalized sum of all connec-
tivity matrices of all the perturbed datasets:

In other words, the entry 
(

i, j
)

 in the consensus matrix is the number of times points 
i and j were clustered together, divided by the total number of times they were selected 
together. The consensus matrix is symmetric, and each element falls in the range [0,1]. 
A consensus matrix is calculated for each K value to be tested, and the stability of each 
matrix is assessed to determine the optimal K. One way to measure the stability of the 
Kth consensus matrix is by examining its cumulative distribution function (CDF) curve.

Determination of optimal classification

Şenbabaoğlu et al. discovered that the original delta K metric used in the Monti algo-
rithm performed poorly when deciding on the optimal number of clusters, and proposed 
a superior metric for measuring the stability of consensus matrices using their CDF 
curves [21]. In the CDF curve of a consensus matrix, the lower left portion represents 
sample pairs that are rarely clustered together, while the upper right portion represents 
those that are almost always clustered together. The middle segment represents those 
with ambiguous assignments in different clustering runs. The proportion of ambiguous 
clustering (PAC) score measures the fraction of sample pairs with consensus indices fall-
ing in the interval (u1,u2) ∈ [0, 1] , where u1 is a value close to 0 and u2 is a value close 
to 1. A low value of PAC indicates a flat middle segment and a low rate of discordant 
assignments across permuted clustering runs. The optimal number of clusters can be 
inferred by selecting the K value that has the lowest PAC.

Acquisition of two testing datasets

Gene mutation data for gastric cancer

We obtained somatic gene mutation data of 437 gastric cancer patients through the 
Xena Browser (https:// xenab rowser. net/ datap ages/) for The Cancer Genome Atlas 
(TCGA), which is a landmark cancer genomics program that molecularly character-
ized over 11,000 cases of primary cancer samples. Based on the work of Dechao Bu et al. 
[22], we removed 35 samples missing survival information and 71 samples with high 
tumor mutation burden (TMB) and screened out 69 genes that were actionable. Finally, 
we have constructed a matrix with dimensions of 69 rows and 331 columns. Each row 
represents a gene, and each column represents a patient. The non-zero elements in this 
matrix account for approximately 1.63%, clearly indicating that it is a sparse matrix.

(6)Mh
(

i, j
)

=

{

1, if points i and j belong to the same cluster,
0, otherwise.

(7)C
(

i, j
)

=

∑H
h=1M

h
(

i, j
)

∑H
h=1U

h
(

i, j
)

https://xenabrowser.net/datapages/
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Gut microbial data for colon cancer

Gut microbiota abundance and composition affect the occurrence and progression of 
colorectal cancer, which can be used for subtyping of colorectal cancer patients. We 
obtained the gut microbial data of 195 colon cancer patients through the The Can-
cer Microbiome Atlas (TCMA, https:// tcma. pratt. duke. edu/), which is a collection 
of curated, decontaminated microbial compositions for multiple types of cancers. 
Finally, we have constructed a matrix with dimensions of 221 rows and 195 columns, 
where each row represents a gene, and each column represents a patient. The non-
zero elements in this matrix account for approximately 3.96%, fully demonstrating its 
sparsity.

Assessing coefficients

Entropy

In cluster analysis, the concept of entropy is used to assess the stability and relia-
bility of the clustering results [23–26]. When entropy is small, it means that most 
of the samples are clustered in one large cluster, while the others are grouped into a 
few small clusters [23]. In this case, the clustering results are less stable, as any point 
of perturbation or missing data may cause the samples that have been grouped into 
small clusters to be reallocated to the large clusters, resulting in large changes in the 
clustering results [27, 28]. In addition, the smaller number of samples in the small 
clusters results in the extracted features possibly lacking sufficient representation, 
reducing the reliability of the classification. Conversely, when the entropy value is 
large, it indicates that the number of samples included in each classification is rela-
tively large, and therefore the classification results are more stable and more reliable. 
Therefore, entropy is widely used in cluster analysis to assess the quality and stability 
of clustering results [29].

We can calculate the entropy of the classification results for dataset D in this way 
[26]:

where pk is the probability of the sample being classified into the Kth cluster.

Calinski–Harabasz index

The Calinski–Harabasz index (CHI) is an internal evaluation metric for cluster analy-
sis, designed to measure the tightness and separation of clustering results [30–33]. It 
is calculated based on the intra-class and inter-class variance of the clusters, allowing 
assessment of the quality and effectiveness of the clustering. In calculating the intra-
class variance, the metric takes into account the sum of the squares of the distances 
from each sample point to the center of the class to which it belongs, i.e., the intra-
class sum of squares, with smaller values indicating tighter data points within the 
class. When calculating the between-class variance, the metric takes into account the 
sum of the squares of the distances from the centroid of each cluster to the center of 
the entire data set, i.e., the between-class sum of squares, with larger values indicating 

(8)Ent(D) =
∑

k

pk log(pk)

https://tcma.pratt.duke.edu/
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greater distances between different clusters, i.e., better separation between clusters 
[34]. Therefore, the Calinski–Harabasz index is a metric for evaluating the quality of 
clustering based on the ratio of the intra-class sum of squares to the inter-class sum of 
squares, where a higher index value indicates better quality of clustering results.

We can calculate the Calinski–Harabasz index in this way [34]:

where nE is the number of training samples, k is the number of categories, Bk is the 
between-category covariance matrix, Wk is the within-category data covariance matrix, 
and tr(·) is the trace of the matrix.

Implementation

PWSC is available as a open source software package for the R programming framework. 
It relied on the R packages cluster, clusterSim, pheatmap, ConsensusClusterPlus, fpc, 
clv, clvalid. To facilitate its application, we have developed a user-friendly web tool that 
implements the PWSC algorithm, which is constructed using the Python Flask frame-
work. It takes Nginx as a reverse proxy server to handle a large number of concurrent 
requests. AJAX dynamic data, REACT frontend framework, and Ant-design component 
library are used to create user-friendly layout and visualizations. The PWSC web server 
is now hosted on an elastic cloud server from the Aliyun Cloud running an Centos Linux 
system (7.9.2009 with 16 CPU and 32 GB memory. It can be accessed at http:// pwsc. 
aiyim ed. com/ from any platform by using modern Web browsers (recommended but not 
limited to the latest version of Safari, Chrome and Firefox).

Result
Framework of PWSC

The Fig.  1 shows the procedure of PWSC. Data pre-processing is first performed to 
obtain a sparse matrix, which is used as input to the clustering algorithm. Then, a poly-
nomial Pi

n(ηi) is defined to calculate a correction matrix D, which is used to more accu-
rately represent the degree of affinity between different samples. The correction matrix 
is clustered using the hierarchical clustering algorithm and the quality of the clustering 
results is assessed by means of CDF plots and consensus matrix heatmaps to select the 
best number of clusters. Finally, the clustering heatmap was redrawn and the occurrence 
of different genes in each cluster was counted to identify the most valuable genes in each 
cluster, while the clustering results were assessed using assessing coefficients such as 
Calinski–Harabasz index, entropy, etc.

(9)s =
tr(Bk)
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Subtyping application on tumor mutational data

Clustering results and assessing coefficients

We applied the PWSC algorithm to perform cancer subtyping on a cohort of 331 gastric 
cancer patients. The orginal input sparse matrix contains the specific gene mutations 
carried by each patient. We set the weight function Pi

n(ηi) = η4i , ηi =
η4i

∑m
k=1 η

4
k

 brought 

into Algorithm  1 for clustering calculation. The clustering results obtained are shown 
below. By looking at the clustering heatmap (Fig. 2a), we found that some of the genes 
would be concentrated in a certain region in the clustering heatmap, which indicates 
that these genes have an important role in determining the clustering results, and they 
are likely to be an important basis for dominating our clustering.

In addition, we observed the entropy values and the results showed that the PWSC 
algorithm also had a more significant increase in entropy values compared to the 

Fig. 1 Frame work of PWSC



Page 9 of 17Zhang et al. BMC Bioinformatics          (2023) 24:490  

conventional algorithm of utilizing euclidean distance (Mann–Whitney U-test, W = 186, 
p value = 2.905e−05, Fig. 2b), which indicates that the clustering results of PWSC are 
more complex, stable and have better clustering results [35, 36].

Next, we calculated the Calinski–Harabasz index when the number of classifications 
k took on a range of values from 2 to 15. This is shown in Fig. 2c below. The analysis 
shows that the Calinski–Harabasz index values for the same number of classifications 
are significantly higher when using the PWSC algorithm for clustering compared to the 
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Fig. 2 Clustering results and assessing coefficients. a The clustering heatmap of biomedical data. b The 
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conventional algorithm (Mann–Whitney U test, W = 192.5, p = 0.0004871), which indi-
cates that the PWSC algorithm can perform better clustering analysis and improve the 
accuracy and reliability of clustering analysis [35, 36].

Best clustering results

We combined the consensus clustering approach with the above methods to calculate 
the consensus CDF curve (Fig. 3a) and the consensus matrix (Fig. 3b). Upon analyzing 
the curve, we found that it peaked at k = 4, 8, and 13. Considering the cost of clustering, 
a larger number of classifications can lead to a less stable clustering result [37]. There-
fore, we selected the 4-cluster classification as the optimal number of classifications 
based on the Calinski–Harabasz index, which reached its maximum value at k = 4 and 
was significantly higher than at k = 8 and k = 13.

Furthermore, the consensus matrix heatmap was very clear at k = 4, indicating that the 
probability of each sample being misclassified during the consensus clustering test was 
low, demonstrating the high stability of the clustering at this point [21]. Thus, selecting 
k = 4 as the optimal number of clusters is appropriate. A remarkable 100% improvement 
in the quality of the best classification were observed compared to conventional algo-
rithms (Fig. 2c).

We divided the clustering results based on the distance between the individual clus-
ters, dividing the samples into four groups and presenting the results as a clustering 
heatmap shown in Fig.  3c. We found that this result further validated our findings in 
the previous section: genes with a concentrated distribution were present in some of the 
groups and these genes played an important role in determining the grouping.

Finally, to investigate the practical implications of this classification, we counted the 
number of occurrences of genes in each group and identified those genes that were 
significantly different from other genes as most valuable genes. The analysis of Fig. 3d 
shows that ERBB2, KRAS, CDKN2B and CDKN2A are the most valuable genes in 
Group1, Group3 and Group4, respectively, which are all the hot oncogenes in gastric 
cancer. They have a significant difference in occurrence compared to other genes; while 
Group2 shows a mixed distribution of multiple genes, with multiple genes playing a role 
in the patient’s disease [38–40]. In contrast, Group2 showed a mixed distribution of 
genes, with multiple genes playing a role in the disease.

Through the analysis of the most valuable genes, we can see that, on the one hand, 
PWSC can extract the genes that are dominant in the clustering, and through the extrac-
tion of these genes, we can have a deeper understanding of the disease, and also achieve 
more precise treatment according to the different gene expression of the patients [41–
45]. The PWSC can help identify the most valuable biomarkers. These biomarkers are 
not only essential factors for classifying different groups, but also cover a wide scope of 
instances.

Subtyping application on tumor microbial data

The gut microbiome is a key player in the immunomodulatory and protumorigenic 
microenvironment during colorectal cancer (CRC), as different gut-derived microbes 
can induce tumor growth. Thus, it has been used for subtyping of colorectal cancer 
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patients. We applied the PWSC algorithm on the original input sparse matrix, which 
contain the 221 microbial abundance for 195 patients, with 3.96% of non-zero elements.

Considering the relative change in area under CDF curve (Fig.  4a) and visiualiza-
tion of consensus matrix (Fig. 4b) for each K, we selected the 5-cluster classification 
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as the optimal number of classifications. Under this classification, G1 contains 48, G2 
contains 66, G3 contains 54, G4 contains 21, and G5 contains 6 samples (Fig. 4c). We 
have tallied the occurrence of microorganisms in each group and found that different 
groups are dominated by quite different bacteria. Bacteroides is a genus of bacteria 
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that naturally exists in the microbiota of the human gut. They are highly present 
in G1–G4, but not in G5. Fusobacteriums are highly present in G1, G2, but not in 
G3, G4, G5. Parabacteroides are highly present in G1, G3, while not in G2, G4, G5 
(Fig. 4d).

Next, we calculated the entropy values and Calinski–Harabasz index when the num-
ber of classifications k took on a range of values from 2 to 15. A significantly increased 
Entropy (p = 0.0336) (Fig. 4e), as well as comparable CHI (Fig. 4f ), were observed com-
pared with the conventional algorithm. The above attempts in cancer subtyping demon-
strate that PWSC is highly applicable to different types of biomedical data.

Online web service

To make it easier for users to utilize our accomplishments, we have created an online 
web service (Fig. 5). Users are required to input the data that needs to be clustered and 
choose the desired assessing coefficients. We will then generate the corresponding con-
sensus clustering results and assessing coefficients. Based on these results, users should 
enter the number of classifications that fulfill their specific requirements. Lastly, we will 
produce the clustering result heatmap and the corresponding most valuable biomarkers 
for each group.

The PWSC website utilizes the NGINX service as its power source. The methods have 
been refactored into RESTful APIs, and AJAX is used to dynamically refresh data on the 
web page. To enhance accessibility, we have adopted the REACT frontend framework, 
along with the Ant-design component library to create user-friendly layouts and display 
data tables. In addition, Echarts is utilized for interactive chart display.

You can upload the biomedical data that needs to be clustered with the assistance of 
PWSC. Then, select the desired test coefficients and input the number of categories to 

Fig. 5 Online web service interface presentation
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be tested. Finally, click on ’Run’ to obtain the clustering results. Alternatively, you can 
click on ’Load the example’ to view an example. The data in the example is the experi-
mental data of this article, and all experimental results can be downloaded after run-
ning the example. Additionally, for your convenience in further research and study, you 
can click on ’Load the code’ to access the program’s code. This website can be accessed 
through http:// pwsc. aiyim ed. com/.

Discussion
When clustering sparse matrices, we observed that the sparsity of the data matrix leads 
to a less compact distribution of sample points in the high-dimensional space character-
ized by the data. It becomes challenging to find a consensus on an effective partition 
criterion to assign some samples to a specific category. In hierarchical clustering, the 
principle of clustering is to assign samples with close “relatedness” to the same category 
and those with distant “relatedness” to different categories, thus studying the relation-
ship between samples. However, when samples exhibit sparse distribution in space, it 
means that the "relatedness" between samples is distant, making it difficult to find a 
closure to partition samples with certain features from the original samples [46]. This 
results in conventional clustering methods being unable to classify samples in biomedi-
cal research when the data matrix is sparse, making it impossible to conduct targeted 
studies on samples.

The article is based on this point and proposes the use of PWSC to solve this problem. 
The advantage of PWSC lies in its ability to better separate data by modifying the data 
matrix through the establishment of polynomial weights. Compared with conventional 
algorithms and methods that directly use gene occurrence frequency as weights, PWSC 
can make samples of the same class more compact and those of different classes more 
dispersed, thus more accurately reflecting the “relatedness” between data. This data 
modification method can improve the accuracy and stability of clustering results.

On the one hand, PWSC uses polynomial functions for weight modification, avoid-
ing the potential problem of numerical overflow when using the Soft-max function as 
weights. By manually adjusting the polynomial function, the function value and adjusted 
weight value can always be kept within a suitable range, avoiding numerical overflow 
and underflow and ensuring the stability and reliability of the algorithm [47, 48]. On 
the other hand, compared with the exponential function (Soft-max function), the poly-
nomial function has a slower growth rate. This means that when using the polynomial 
function to process weights, the differences between data points will not be overly mag-
nified, effectively avoiding the problem of data points being overly stretched and result-
ing in poor clustering results. This weight modification method can more reasonably 
and controllably handle differences between data points, thereby improving the effec-
tiveness and stability of clustering.

At the same time, we used the method of consensus clustering to determine the 
optimal number of clusters. On the one hand, this can help us avoid the influence of 
subjectivity and subjective bias on the selection of the number of clusters, thus deter-
mining the number of clusters more objectively and accurately. On the other hand, 
it can better reflect the stability and consistency of clustering results under different 
numbers of clusters. By considering the results of consensus clustering, interference 

http://pwsc.aiyimed.com/
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caused by fluctuations in clustering results due to noise or randomness can be avoided 
in the selection of the number of clusters.

From the classification results, we can see that the classification results of the PWSC 
algorithm can help researchers identify prominent genes in different groups, known as 
“most valuable biomarkers”. By statistically analyzing the occurrence of genes, significant 
differences between genes in different groups can be determined, thus studying the role 
of different genes in the process of causing disease in humans and helping us to better 
understand the mechanism of disease occurrence [49]. This can help doctors make more 
accurate treatment decisions based on the patient’s gene expression. Additionally, the 
PWSC algorithm can assist doctors in distinguishing between disease caused by gene 
mixing and disease caused by a single gene. By comparing with other groups, PWSC can 
help doctors better understand the role of different genes in the patient’s disease pro-
cess, thus more accurately classifying and diagnosing patients.

In summary, the PWSC algorithm has the advantages of improving the accuracy, 
stability, and reliability of clustering analysis through the polynomial weighting cor-
rection method. Additionally, the PWSC algorithm can help researchers gain a deeper 
understanding of the mechanism of disease occurrence and assist doctors in making 
diagnoses.

Conclusions
PWSC algorithm provides an effective solution for handling sparse biomedical data. 
By utilizing the PWSC algorithm, researchers can accurately classify genes and iden-
tify "star genes" that play a significant role in disease mechanisms. This helps us gain 
a deeper understanding of the underlying causes of disease and provides valuable 
insights for medical professionals to make more precise treatment decisions based on 
a patient’s gene expression patterns. With the ability to handle sparse biomedical data 
and identify important genes, the PWSC algorithm holds great potential in advancing 
our understanding of disease and improving patient outcomes.
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