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Background
Genetic variations are defined as any changes in the DNA sequence of individuals within 
or between species [1]. Next-generation sequencing (NGS) technologies (i.e., second 
and third generation) have revolutionized the field of genomics by allowing researchers 
to decode the whole genome of many organisms and genotype very large numbers of 
genetic variations such as single nucleotide variants (SNVs) and short insertions/dele-
tions (INDELs) [2]. To detect genetic variations, many computational tools, known as 
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variant calling tools or variant callers [3], have also been developed to efficiently iden-
tify thousands to millions of variants from sequencing reads aligned against a refer-
ence genome. This has been proven to be indispensable in the various areas of genomic 
research, from agriculture to environment to human health [4–6].

In the last two decades, short reads mainly derived from Illumina sequencing tech-
nologies have been the predominant data type used in various variant calling studies [7, 
8]. Even though short reads provide a high base-level accuracy score, they usually fail to 
align unambiguously in repetitive regions [9]. While long reads can overcome the chal-
lenges posed by repetitive regions, they were not considered suitable for variant calling 
because of their higher rate of sequencing errors. However, in 2019, Pacific Biosciences 
(PacBio) introduced a single-molecule real-time (SMRT) sequencing platform that can 
generate high-fidelity (HiFi) long reads with an average length of 13.5 kilobases (kb) 
using a Circular Consensus Sequence (CCS) approach. In this approach, a single DNA 
molecule is circularized, and this template is sequenced multiple times. The resulting 
consensus provides a sequence with high base-level accuracy (~ 99.9%) [10]. Accord-
ingly, HiFi data were used for the detection of genetic variants [10]. In the PrecisionFDA 
challenge (Truth Challenge V2: Calling Variants from Short and Long Reads in Difficult-
to-Map Regions) in 2020, HiFi technology surpassed other sequencing technologies in 
detecting variants in terms of both precision and recall [11].

Meanwhile, Oxford Nanopore Technologies (ONT) has changed the sequencing para-
digm by introducing sequencers that are portable with real-time data delivery and are 
able to generate ultra-long reads [12]. This technology may look promising for variant 
calling due to its ability to sequence difficult-to-map regions and read-based phasing, 
but it has been problematic to achieve a highly accurate analysis because of the error 
profiles generated by the unique pore-based signal [13]. Nonetheless, recent advances 
in the development of variant calling tools based on artificial intelligence (AI) (e.g., PEP-
PER-Margin-DeepVariant) [14] demonstrate that highly accurate variant calling can be 
achieved from ONT data [14]. Yet, this does not necessarily mean that other variant call-
ing approaches have the ability to detect variants using ONT data.

Over the past few years, besides the advancement of sequencing techniques, many 
variant calling tools have been developed and used in various genomic projects. For 
example, the Genome Analysis Toolkit (GATK) [8], developed by the Broad Institute, 
had been used to detect variants from 180 K samples in “The Trans-Omics for Preci-
sion Medicine” (TOPMed) program [15]. However, DeepVariant (an AI-based variant 
caller [16] developed by Google) was selected to detect variants among more than 500 K 
samples by the UK Biobank WES consortium [17], and DRAGEN-GATK [18] was used 
to genotype more than 1  million samples from the National Institutes of Health’s All 
of Us Research Program [19]. Despite rapid advances in sequencing technologies and 
bioinformatics, accurately calling genetic variants from billions of short or error-prone 
long sequence reads remains challenging. State-of-the-art variant callers use a variety of 
statistical techniques to distinguish real genetic variants from errors in the reads. How-
ever, generalizing these tools to different data types derived from different sequencing 
technologies has proven difficult. Hence, to date, different variant callers have been used 
in different NGS-based studies in various species and thus far, it is still challenging to 
determine which variant calling tool is the best to use. Over the years, various studies 
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have been conducted to compare and evaluate the performance of different variant call-
ers [20–24]. However, all these studies used only short-read sequencing data in their 
analyses.

In this work, we are addressing the question of whether there is an advantage of a spe-
cific variant calling tool over others using a different type of sequencing data (e.g., short 
vs. long reads). Most of the conventional variant calling tools have been developed and 
widely used for short-read analysis. However, now with the progress in generating high-
quality long reads and the emergence of AI-based variant calling tools, there has been 
an intriguing question about their potential to supersede conventional ones for calling 
SNVs and INDELs using both long and short reads. Here, we used three different data 
types (PacBio HiFi, Illumina, and ONT) for the same set of samples from the Genome 
In A Bottle (GIAB) Consortium to test five variant callers, two of which are AI-based, in 
terms of accuracy and computational cost.

Results
Illumina variant calling performance

SNV performance

As can be seen in Fig. 1A, DNAscope achieved the highest recall performance (an aver-
age of 95.35%). This was ~ 2% more than its closest competitor (DeepVariant) and ~ 11% 
more than Platypus, which had the lowest recall performance (84.95%). In terms of pre-
cision, DeepVariant (98.95%), Platypus (98.49%), and BCFTools (98.83%) were almost 
indistinguishable, while DNAscope showed the lowest performance (94.48%). Finally, 
DeepVariant showed the highest F1-score (96.07%), with a very close performance of 
BCFTools (95.67%), while Platypus achieved the lowest performance (91.19%).

INDEL performance

DNAscope achieved the highest recall performance (83.60%) with a difference of ~ 6% 
to its closest competitor (DeepVariant) and ~ 22% better than Platypus, which displayed 
the lowest recall performance (61.17%; Fig. 1B). As for precision, Platypus achieved the 
highest performance (93.53%), while DNAscope had the poorest performance (44.78%), 
showing a significant difference. The F1-score performance was almost the same for 
DeepVariant (81.41%) and BCFTools (81.21%), while DNAscope showed the poorest 
performance (57.53%).

Fig. 1 Average accuracy metrics of variants (SNVs (A) and INDELs (B)) called from Illumina data using five 
different variant callers
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PacBio HiFi variant calling performance

SNV performance

As shown in Fig.  2A, DeepVariant and DNAscope demonstrated impressive close-to-
perfect performances in all accuracy metrics (> 99.9%), although all variant calling tools 
achieved very high performances (> 99%) in all cases. The differences among tools were 
almost indistinguishable as the differences were less than 1% in precision, recall, or 
F1-score.

INDEL performance

Similarly, DeepVariant and DNAscope achieved the highest performances (> 99.5%) in 
all accuracy metrics. For recall, they were ~ 9% more than the closest tool (GATK4) and 
~ 10% more than BCFTools. In contrast, both BCFTools and GATK4 had a significantly 
lower precision (< 81%). Again, BCFTools and GATK4 saw a significant drop in F1-score, 
both scoring below 85% (Fig. 2B).

ONT data variant calling performance

To date, BCFTools and DeepVariant (PEPPER-Margin-DeepVariant pipeline) are the 
only variant callers (out of the five variant callers used in this study) that can handle 
ONT data. The majority of the SNVs (97.07%) were detected by both DeepVariant and 
BCFTools. On the other hand, BCFTools failed to detect any INDELs, while DeepVari-
ant had 80.40% in common with the truth sets. Both tools showed a high number of 
private variants (variants that do not exist in the truth sets) that may be attributed to the 
quality of ONT sequencing data, resulting in lowering the accuracy metrics even though 
there is a high number of common variants. In calling SNVs and INDELs, DeepVari-
ant showed a clear advantage over BCFTools in terms of recall, precision, and F1-score 
(Fig. 3).

Computational cost of variant calling

As shown in Fig. 4, Platypus, DNAscope, and BCFTools proved to be the fastest running 
tools among the different variant callers (0.34  h, 11.66  h, and 7.98  h, respectively) for 
Illumina, PacBio HiFi, and ONT, respectively, whereas GATK4 proved to be the slowest 
for Illumina and PacBio HiFi requiring 44.19 h, and 102.83 h, respectively, and Deep-
Variant was the slowest for ONT data as it required 105.22 h.

Fig. 2 Average accuracy metrics of variants (SNVs (A) and INDELs (B)) called from PacBio HiFi data using four 
different variant callers
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In terms of memory required, here also, very large differences were observed. 
BCFTools proved to be the most memory-efficient tool, requiring 0.49, 9.03, and 2.12 
GigaBytes (Gb) to carry out the analyses using Illumina, PacBio HiFi, and ONT data, 
respectively. GATK4 showed the highest memory usage to process both Illumina and 
PacBio HiFi data, while DeepVariant was the slowest to process ONT data. However, 
PacBio and ONT consume much more memory, especially when using DeepVariant, 
where it reached 50.89 Gb and 33.85 Gb for PacBio and ONT data, respectively.

Fig. 3 Accuracy metrics of variants (SNVs (A) and INDELs (B)) called from ONT data using BCFTools and 
DeepVariant with the sample HG003.

Fig. 4 Average computational cost (time (A) and memory (B)) for variant calling using three different data 
types: Illumina, PacBio HiFi, and ONT. ND: not determined
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Discussion
Variant calling performance

For years, Illumina has been the benchmark sequencing technology for variant calling 
despite its difficulty in detecting variants from genomic regions that are considered dif-
ficult-to-map by short-read sequencing [25]. However, now with the emergence of long-
read sequencing technologies (i.e., PacBio HiFi and ONT), there is a crucial inquiry of 
whether the conventional variant calling methods will function comparably. Further-
more, there has been a recent emergence of AI-powered variant callers, and research-
ers are now keen to investigate whether these tools will surpass conventional ones. This 
study focuses on these concerns by examining various variant callers by utilizing GIAB 
benchmark data obtained from diverse sequencing technologies [26].

In the context of variant caller comparisons, numerous studies have sought to assess 
various tools, occasionally including comparisons with AI-based tools [2, 27–32]. 
However, in this study, unlike previous studies that exclusively relied on Illumina data 
[2, 27–32], we adopted a more extensive perspective by incorporating a wide range 
of sequencing technologies, encompassing both short-read (Illumina) and long-read 
(PacBio HiFi and ONT). This comprehensive approach offers insights into the perfor-
mance of variant calling tools across diverse sequencing platforms. Additionally, our 
study focuses on evaluating both AI-based and conventional variant calling tools allow-
ing us to thoroughly investigate the advantages and limitations of AI-driven methods 
when compared to established techniques, resulting in a comprehensive assessment of 
variant calling strategies.

In this study, in alignment with previous comparative studies [2, 27–30], a high vari-
ant calling accuracy was observed using conventional tools with Illumina data. These 
studies have proven that conventional variant calling tools generate similar results with 
a variant concordance of 80–90% on average, where most differences correlate to vari-
ants of low coverage or low confidence. As for the AI-based tools, DNAscope proved 
the most powerful in correctly calling known variants found in the truth sets, but it did 
have the greatest tendency to call false INDELs using Illumina data resulting in a high-
recall-low-precision output. The reason for this could be the insufficient coverage of 
the Illumina sequencing data. However, on the other hand, DeepVariant provided the 
most balanced calls combining the best scores for all three metrics considered, as well 
as the highest F1-score on both SNVs and INDELs. These results are consistent with the 
original publication of DeepVariant that evaluated DeepVariant’s methodology against 
multiple conventional tools including GATK and SAMtools and mentioned that Deep-
Variant demonstrates > 50% fewer errors per genome [16]. This superior performance 
was achieved without entailing a much higher computational cost. Moreover, Olson 
et al. [11] documented that, with higher coverage (35X), better accuracy metrics can be 
achieved with DNAscope and DeepVariant, in which the harmonic mean of the F1-score 
for combined INDELs and SNVs can reach 0.999. Thus, the increasing popularity and 
use of low-coverage sequencing can pose a challenge for these tools.

PacBio HiFi has been the preferred sequencing technology by many sequencing ini-
tiative projects such as the Earth BioGenome Project [33, 34], the Vertebrate Genome 
Project [35], the i5K Initiative [36], and the Ag100Pest Initiative [37]. These projects, 
among others, have opted for PacBio HiFi technology to produce high-quality reads, 
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making PacBio HiFi the gold standard for generating high-confidence long-reads [38–
40]. Although conventional variant callers have been competitive with AI-based tools 
in identifying variants using Illumina short reads, our study revealed that the AI-based 
tools exhibited a clear advantage in calling INDELs using PacBio HiFi data, leading to 
a high-recall-high-precision output. Although there were no significant differences 
between the tools in calling SNVs using PacBio HiFi data, the AI-based tools showed 
slightly better performance. Additionally, the AI-based tools outperformed the conven-
tional ones in terms of time and memory efficiency, with DNAscope demonstrating the 
highest efficiency. Our findings align with the results of the “PrecisionFDA Truth Chal-
lenge V2”, where the AI-based tools were the top performers in calling variants in all 
benchmark regions and difficult-to-map regions from PacBio HiFi data [11]. Previous 
studies have also shown that using PacBio HiFi data alone could yield equal or better 
performance to short-read sequencing in all benchmarking regions when calling vari-
ants using a single sequencing technology [10, 11]. It should be noted that the study uti-
lized a high sequencing coverage (~ 40X), therefore it would be valuable to assess the 
effectiveness and precision of these tools when working with low-coverage data, which is 
becoming increasingly prevalent.

As for ONT data, previous studies [7, 14, 41, 42] have demonstrated its ability to call 
genomic variants. In our study, the AI-based variant caller, DeepVariant, showed bet-
ter results than BCFTools in terms of SNV and INDEL performances using ONT data. 
However, BCFTools would be a better option in terms of time and memory efficiency 
when working with ONT data. As documented, it is capable of running on a low to 
medium-power computer. The results obtained from the variant calling with DeepVari-
ant in this study for SNVs are consistent with the results of recent benchmark studies 
for ONT data [14, 41, 42]. However, on the contrary, the INDELs results of this study 
disagree with the original publication of DeepVariant where the authors have reported 
higher accuracy. This is probably due to the preprocessing step, in which they used raw 
ONT reads, carried out the alignment with minimap2 [43], and performed phasing and 
haplottaging [16]. However, here, we performed the standard procedures by running the 
default code on the acquired BAM files from GIAB directly for generalization between 
tools, and the possibility of data unavailability in some variant calling projects. A recent 
AI-based variant caller specifically designed for ONT data, CLAIR3 [44], has shown that 
it can achieve similar results to DeepVariant in calling variants. However, the “Precision-
FDA Truth Challenge V2” has mentioned DeepVariant as a top performer in calling vari-
ants from ONT data, especially from difficult-to-map regions [11]. Moreover, another 
study has claimed that highly accurate variants (94.25% F1-score) can be called with 
lower coverage in ONT data [41]. This suggests that ONT data can be used for reliable 
variant calling, but there is still room for improvement in the accuracy and efficiency of 
the tools used for this purpose.

Overall, PacBio HiFi and ONT data (long reads) have the ability to compete with Illu-
mina (short reads) in calling genomic variations. Furthermore, utilizing AI-based vari-
ant calling tools with both short and long reads can achieve very high accuracy metrics 
for calling both SNVs and INDELs. Namely, DeepVariant has overall better perfor-
mance with all data types even with comparatively lower coverage as in the Illumina 
case. Recent studies have shed light on the fact that combining sequencing technologies 
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produce better accuracy than any separate sequencing technology [42]. This encourages 
the production of more AI-based tools that can call variants from multiple technologies 
at the same time to achieve better results.

User experience

Although it was very smooth to set up all the tools, running them did not give the same 
experience. For the AI-based tools, the documentation was extremely clear and helpful. 
Especially when utilizing DNAscope with PacBio HiFi data, all the steps are compacted 
in a single command line. As a commercial tool, the DNAscope support team was very 
accessible and easy to reach. As for DeepVariant, it is always a singularity command that 
can perform all the processes of variant calling no matter the data type. Moreover, both 
tools do not require filtering variants or setting thresholds manually to refine the results.

On the other hand, conventional tools led to a different experience. Both BCFTools 
and Platypus are very easy to handle with very clear documentation. However, Platypus 
is still a Python 2-dependent tool, only works on short reads, and has not been updated 
since 2014. In contrast, BCFTools has been improved and updated regularly over the 
years. Platypus includes default values to filter variants, while for BCFTools and GATK4 
all the filters need to be set manually. Running GATK requires an in-depth understand-
ing of all the steps and parameters to set manually. Although this gives the user more 
control over the filtering process, setting thresholds for the filters might be an exhaust-
ing and time-consuming process.

The AI-based variant calling tools have an advantage in user time performance due to 
their automatic filtration feature which makes them less time-consuming overall. The 
time performance was only calculated for the variant calling step without taking into 
consideration setting thresholds, filtering, or any other pre-/processing steps.

Limitations

It is essential to clarify that during the timeframe of our research, higher coverage Illu-
mina datasets were not accessible for the GIAB samples. In light of this limitation, we 
opted to work with the available suboptimal coverage data, which were 10.5X, 13.6X, 
and 12.6X. Our rationale for this choice was to evaluate the performance of these tools 
under realistic and potentially challenging scenarios that researchers may encounter 
when dealing with lower-coverage datasets. Despite the limited coverage in the sequenc-
ing data, many of the tools were able to achieve highly accurate variant calling. None-
theless, prior studies have provided ample evidence that performing whole genome 
sequencing with greater coverage typically results in more accurate variant calling [45].

It is also important to take into consideration the GPU compatibility across different 
variant calling tools. Within tested tools, DeepVariant was the only GPU-compatible 
variant caller. We found that the incorporation of GPU with DeepVariant significantly 
decreases processing time by more than 50% when using one Tesla P100 GPU, which 
aligns with previous study [46]. This also indicates the potential advantages of using 
GPU for GPU-compatible tools and for those who have access to such resources.

Although PacBio HiFi data achieved the best results, the high coverage (~ 40X) might 
be the reason behind this advantage over Illumina data (~ 12X). According to [14], PEP-
PER-Margin-DeepVariant can achieve better results in calling INDELs when following 
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specific procedures that include performing phasing and haplotagging. Moreover, we 
compared the capability of each tool in its default form to mimic the conditions of regu-
lar users.

Finally, even with using a truth set that excluded challenging-to-map regions, we 
noticed variation in the number of called variants (see Additional file 2: Figures S1, S2, 
and S3) and their accuracy. It was challenging to investigate the causes of these errone-
ous calls, as there was no discernible pattern among them, and each tool produced a 
significant number of unique and erroneous calls. We suggest that this may be related to 
the specific models and algorithms implemented by each tool.

Conclusion
Currently, the long-read data show the potential to become the new standard for vari-
ant calling and genotyping. PacBio HiFi introduces low error rates with high base calling 
quality while having an edge in detecting repetitive regions that are difficult to handle 
with short-read technologies. Utilizing PacBio HiFi data is now leading to near-optimal 
SNV and INDEL performance competing with short-read technologies. The long reads 
are also the optimal technique to detect structural variants allowing now to identify all 
types of genetic variations with a single sequencing experiment. The only drawback of 
long-read technologies, which is making it behind short-read technologies, is the cost 
where Illumina still has the edge of being the cheapest in the market.

Combining with long reads, AI-based tools have demonstrated a clear advantage over 
conventional tools in calling variants, which paves the road and makes it a starting point 
for a new era of AI tools in the genomics field. As noticed in this article, AI-based tools 
do not perform in the same time frame, which might be because of the engineering 
design of each tool. Being said, this concludes that there is still room for improvements 
in AI-based tools, where they can even give better performances that might reach the 
gold standards in the future, achieving less computational cost and more efficacy.

Methods
Sequencing data

The sequencing data (Illumina, PacBio HiFi, and ONT) for three samples (HG003, 
HG006, and HG007) were obtained from the Genome in a Bottle (GIAB) Consortium 
[26] from the NIST GIAB FTP site: https:// ftp- trace. ncbi. nlm. nih. gov/ giab/ ftp/ data/. 
Only these three samples (out of a total of seven GIAB samples) were used because the 
other four have been used either to evaluate or train the AI-based variant callers (Deep-
Variant or DNAscope) [14, 16, 47].

In summary, Illumina data for HG003, HG006, and HG007 were generated on an 
Illumina HiSeq2500 and resulted in a lower-than-expected sequence coverage (10.5X, 
13.6X, and 12.6X, respectively) due to a large amount of PCR duplicates. The raw 
FASTQ files were aligned using Sentieon BWA-MEM [48, 49], against the GRCh38 ref-
erence genome (GCA_000001405.15_GRCh38_no_alt_analysis_set.fna). For the PacBio 
HiFi data, we downloaded the BAM files directly from the PacBio_CCS_15kb_20kb_
chemistry2 directory, as these had been aligned against the same version of the refer-
ence genome. In this dataset, the depth of coverage of samples was 42.7X, 40.7X, and 
37.6X for HG003, HG005, and HG007, respectively. Finally, ONT data was publicly 

https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/
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available only for HG003. Similarly, we downloaded the BAM file directly as it was 
mapped against the same reference genome. The sequencing coverage of this sample was 
77.7X. In this study, we used SAMtools [50] to calculate the coverage of samples using 
the ‘-a’ option to consider all positions.

Variant calling

Three conventional variant calling tools (BCFTools [50, 51], GATK v4 [8] and Platypus 
[52]) as well as two AI-based tools (DNAscope [47] and DeepVariant [16]) were used to 
call variants from the different sets of sequencing data. Variant calling was performed in 
the same conditions in terms of computational environment. We used default options 
to filter out low-quality variants. Namely, we followed the recommended parameters 
for each data type from the BCFTools documentation page and applied only one filter 
(Quality > = 20) after variant calling. For GATK, we utilized the GATK4 pipeline [53] to 
call variants from Illumina and PacBio data. We started from the variant calling step 
using the BAM files and performed two rounds of variant calling, where we recalibrated 
the base quality scores after the first variant calling step to produce recalibrated BAM 
files for the second round of variant calling. Finally, we used the default filter parameters 
in the pipeline. For Platypus, variant calling and filtering (default parameters) were con-
ducted following the developers’ recommendations [52]. Platypus was only able to detect 
variants from Illumina data. To run DNAscope with Illumina data, we started from raw 
FASTQ files and used the recommended pipeline from Sentieon that includes alignment 
and duplicate marking. Then, we used the variant calling pipeline that consists of two 
steps, phasing and a second pass. However, for HiFi data, the whole pipeline is wrapped 
in a single one-line command (dnascope_HiFi.sh), as we used the HiFi BAM files directly. 
As for the ONT data, DNAscope does not have a pipeline for it yet. Finally, for Deep-
Variant, we followed the documentation on the DeepVariant GitHub repositories to run 
Illumina, HiFi, and ONT data using the singularity command for each data type.

Variant calling performance analysis

We identified the common variants between tools and the latest GIAB truth sets v4.2.1 
[54] with each data type using the hap.py tool [55]. In this study, we used version 4.2.1 of 
the GIAB truth sets, excluding challenging-to-map regions. This dataset choice aimed to 
eliminate errors associated with genome composition and mapping in difficult-to-map 
regions, allowing a pure assessment of tool performance without these concerns. For 
evaluation, all the tools were compared in terms of precision (P), recall (R), and F1-score 
(F1). The equation of each accuracy metric can be represented as P =

Tp

Tp+Fp
 , R =

Tp

Tp+Fn
 , 

and F1 = 2
P×R
P+R, where  Tp,  Fp, and  Fn stand for true positive, false positive, and false neg-

ative, respectively. Here, we presented an average of the performance metrics, however, 
detailed results for each sample can be found in the Additional file 1: Table S1.

Computational resources and code availability

All the analyses were performed using a Linux system on the Valeria [56] server at 
Université Laval, QC, Canada. For all variant calling tools, we allowed 16 CPUs and 
allocated up to 200 GB of RAM to monitor the maximum RAM usage of each tool. 
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The custom code used for the analysis can be accessed on GitHub at https:// github. 
com/ Omar- Abd- Elwah ab/ Varia nt_ Calle rs.

Abbreviations
NGS  Next-generation sequencing
SNVs  Single nucleotide variants
INDELs  Insertions/deletions
PacBio  Pacific Biosciences
SMRT  Single-molecule real-time
HiFi  High-fidelity
kb  Kilobases
CCS  Circular Consensus Sequence
ONT  Oxford Nanopore Technologies
AI  Artificial intelligence
GATK  Genome Analysis Toolkit
GIAB  Genome In A Bottle
Gb  GigaBytes
h  Hours
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