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Abstract 

Background: Oscillatory behavior is critical to many life sustaining processes such 
as cell cycles, circadian rhythms, and notch signaling. Important biological functions 
depend on the characteristics of these oscillations (hereafter, oscillation characteristics 
or OCs): frequency (e.g., event timings), amplitude (e.g., signal strength), and phase 
(e.g., event sequencing). Numerous oscillating reaction networks have been docu-
mented or proposed. Some investigators claim that oscillations in reaction networks 
require nonlinear dynamics in that at least one rate law is a nonlinear function of spe-
cies concentrations. No one has shown that oscillations can be produced for a reac-
tion network with linear dynamics. Further, no one has obtained closed form solutions 
for the frequency, amplitude and phase of any oscillating reaction network. Finally, 
no one has published an algorithm for constructing oscillating reaction networks 
with desired OCs.

Results: This is a theoretical study that analyzes reaction networks in terms of their 
representation as systems of ordinary differential equations. Our contributions are: (a) 
construction of an oscillating, two species reaction network [two species harmonic 
oscillator (2SHO)] that has no nonlinearity; (b) obtaining closed form formulas that cal-
culate frequency, amplitude, and phase in terms of the parameters of the 2SHO reac-
tion network, something that has not been done for any published oscillating reaction 
network; and (c) development of an algorithm that parameterizes the 2SHO to achieve 
desired oscillation, a capability that has not been produced for any published oscillat-
ing reaction network.

Conclusions: Our 2SHO demonstrates the feasibility of creating an oscillating reaction 
network whose dynamics are described by a system of linear differential equations. 
Because it is a linear system, we can derive closed form expressions for the frequency, 
amplitude, and phase of oscillations, something that has not been done for other 
published reaction networks. With these formulas, we can design 2SHO reaction net-
works to have desired oscillation characteristics. Finally, our sensitivity analysis suggests 
an approach to constructing a 2SHO for a biochemical system.
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Background
Oscillatory behavior is critical to many life sustaining processes. Examples include: cell 
cycles [1], circadian rhythms [2], notch signaling in the development of the nervous sys-
tem [3], tissue development [4], gene transcription [5], and efficient signaling [6]. Biolog-
ical oscillators are also important elements in building applications in synthetic biology 
[7–9].

The characteristics of biological oscillations often have critical biological functions. 
Frequency is used to control the times at which events are initiated, such as circadian 
cycles and chromatin modifications [10]. Amplitude controls the strength of signaling 
[11]. Phase plays a role in the sequencing of processes within the cell cycle [12]. Since 
biological oscillators typically cause changes in the concentration of chemical species, 
these oscillators must have a DC offset so that values are non-negative. Collectively, 
we refer to frequency, amplitude, phase, and DC offset as oscillation characteristics 
(OCs).

One way to understand the relationship between an oscillating reaction network and 
its OCs is to construct a closed-form, time-domain solution of the network’s behavior 
in terms of parameters such as kinetic constants and initial concentrations of chemi-
cal species. From these mathematical expressions, we obtain insights such as: (a) if one 
or more reactions are unnecessary to achieve oscillations; (b) relationships between the 
kinetic constants of reactions; and (c) how to assign values to network parameters so as 
to achieve desired OCs.

Many researchers have investigated structural aspects of oscillating reaction networks. 
These structures include: positive feedback, negative feedback, balancing reaction rates, 
and ultrasensitivity [13–17]. Others have built biological oscillators [7, 8, 12, 18–21]. But 
neither kind of investigation addresses our interest in a closed-form, time-domain solu-
tion that relates parameters of a reaction network to its OCs.

More relevant to our work are quantitative models of biological oscillators. For the 
most part, existing models are systems of nonlinear ordinary differential equations 
[22–27]. Typically, these nonlinearities arise because one or more rate law is a nonlinear 
function of species concentrations (e.g., Michaelis–Menten kinetics). The complexity of 
these models prohibits the construction of a closed-form, time-domain solution.

We are aware of two approaches that circumvent the limitations of nonlinear ODEs. 
The first uses an empirical approach, system identification, to construct a linear model 
that approximates the nonlinear system (e.g., [28]). Models constructed in this way 
provide accurate predictions near the operating point at which system identification is 
done. The second approach constructs a linear approximation to a nonlinear ODE (e.g., 
[29]). Typical approximations make assumptions about relative reaction rates and/or 
magnitudes of species concentrations. In both cases, the construction of a linear models 
greatly reduces the complexity of the mathematical expressions, and this in turn makes 
it possible to obtain a closed-form, time-domain solution. However, the approximations 
limit the extent to which the resulting mathematical expressions provide useful interpre-
tations of how the parameters of the reaction network affect OCs.

The present work is a theoretical study in that we do not build a biological oscilla-
tor. Instead, we consider reaction networks as modelled by systems of ordinary dif-
ferential equations. Gonze and Ruoff [30] claim that oscillations in reaction networks 
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require that “the kinetic rate laws of the reaction mechanism must be sufficiently 
‘nonlinear’ to destabilize the steady state.” This claim is echoed by [31] as well. We 
note that the context for these claims may be for biological implementations of oscil-
lators. Our work is a theoretical exploration of the construction of an oscillator for 
a reaction network whose dynamics can be described by a system of linear ordinary 
differential equations.

It turns out that such a construction is possible. Indeed, we are able to construct a 
harmonic oscillator for a two species reaction network. We refer to this network as a 
two species harmonic oscillator (2SHO). Because the 2SHO has linear system dynam-
ics, its behavior depends on initial conditions (e.g., [32]).

At first glance, this may seem to be a modest undertaking since it is well known 
that harmonic oscillators can be constructed from a system of linear differential equa-
tions. Specifically, harmonic oscillations result when the Jacobian matrix of the linear 
system has pure imaginary eigenvalues (e.g, [33]). So, why not just populate the Jaco-
bian such that the reaction network has imaginary eigenvalues?

Such an approach is difficult to apply to reaction networks because of constraints on 
the system of linear differential equations. Foremost, reaction networks must produce 
concentrations of chemical species that are non-negative (since negative concentra-
tions are impossible). This turns out to be a non-trivial constraint to satisfy.

A second challenge is that we cannot instantiate a reaction network from an arbitrary 
Jacobian matrix since the nature of reaction networks imposes constraints on the Jaco-
bian matrix. In particular, a single reaction may affect multiple entries in the matrix. For 
example, consider a two species reaction network that has a 2× 2 Jacobian, A = {aij} . 
Suppose there is a reaction S1 → S2 with the mass action rate law kS1 . This one reaction 
affects both a11 and a12 ; it subtracts kS1 from a11 , and it adds the same amount to a21.

A final challenge is that the choice of rate laws must be biologically plausible. That 
is, we cannot simply invent a rate law that results in a Jacobian with pure imaginary 
eigenvalues. In our work, a rate law is biologically plausible if it is used in a published 
model such as BioModels [34].

The contributions of this paper are: 

1. construction of a harmonic oscillator from a two species reaction network (two spe-
cies harmonic oscillator (2SHO)), a result that demonstrates that an oscillator can be 
implemented in a reaction network with no nonlinearity;

2. obtaining closed form formulas that calculate the frequency, amplitude, and phase of 
the 2SHO in terms of its parameters, something that has not been done for any pub-
lished oscillating reaction network; and

3. development of the parameterizeOscillator algorithm that parameterizes 
the 2SHO to achieve desired oscillation, a capability that has not been produced for 
any oscillating reaction network.

We use these results to analyze the sensitivity of 2SHO to variations in values of the 
kinetic constants; typical varaiabilities are between 1 and 20% (e.g., [35, 36]). Our 
analysis suggests that with 4 to 6 attempts, there is a 90% probability of constructing a 
2SHO for a suitable biochemical system.
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Methods
Our method is to propose a two species reaction network whose kinetics can be 
described by a system of linear differential equations. We solve this system (an initial 
value problem) to obtain a harmonic oscillator with closed form formulas that relate 
OCs to parameters of the reaction network. Finally, we develop an algorithm for param-
eterizing the two species harmonic oscillator to achieve desired OCs.

Two species reaction network with linear dynamics

This section develops a biologically feasible reaction network whose kinetics can be 
described by a system of linear ODEs. Our approach constructs a harmonic oscillator, 
a model that has been used elsewhere to explain binding and activation between insu-
lin and insulin growth factor receptors [37]. Indeed, harmonic oscillator behaviors are 
apparent in parameterizations of the Lotka-Volterra and Susceptible Infectious Recov-
ered (SIR) models [38], both of which are widely used in biology.

Figure  1 displays our two species harmonic oscillator (2SHO). The construction of 
2SHO is driven by the fundamentals of harmonic oscillators in linear systems, as we now 
describe. The matrix representation of our linear system is:

where x(t) = {xn(t)} is an N dimension vector of time varying of species concentrations; 
ẋ(t) is the time derivative of x(t) ; A = {aij} is an N × N  Jacobian matrix of constants; 
and u is an N dimensional vector of constants that are forced inputs. We want to con-
struct a reaction network that has a sustained oscillation. Since this is a linear system, 
the oscillations will be sinusoids (e.g., [32]).

From the foregoing, we have the following constraints:

• C1: Rate laws in the reaction network are a linear function of the concentrations of xn
(t).

• C2: xn(t) ≥ 0 so that the reaction network is biologically feasible.

We simplify the problem by having N = 2 since this is sufficient to obtain oscillations. 
This means that the eigenvalues of A must be pure imaginary numbers (e.g., [39]). Let 

(1)ẋ(t) = Ax(t)+ u,

Fig. 1 Two species harmonic oscillator (2SHO). Reaction network that creates oscillations in the chemical 
species S1, S2 . The reaction network is designed so that its time domain solution is a system of linear 
differential equations. The text describes constraints on the kinetic constants ( ki ) and initial conditions of the 
chemical species to create an oscillator such that species concentrations are non-negative, a requirement for 
biological feasibility
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τ = a11 + a22 be the trace of A , and � = a11a22 − a12a21 be the determinant of A . The 
eigenvalues are complex conjugates �1, �2 such that

Clearly, we obtain pure imaginary eigenvalues only if τ = 0 and � > 0 . Thus, we add the 
constraints

• C3: τ = 0 , where τ is the trace of A.
• C4: � > 0 , where � is the determinant of A.

With these constraints, �n = ±θ i, where θ =
√
�.

We use ki ≥ 0 to specify kinetics constants, where i indexes the reaction in the net-
work. Let Sn be a chemical species whose time varying concentration is the state vari-
able xn(t) for n = {1, 2}. We start by having two-way interactions between the species. 
Rate laws are specified above the reaction arrow.

• R1 : S1
k1S1−−→ S2

• R2 : S2
k2S2−−→ S1

The foregoing reactions have mass action kinetics, which is widely used in models of 
chemical systems. With just these reactions, A is

Clearly, C3 does not hold unless we eliminate R1,R2 by having k1 = 0 = k2 so that τ = 0. 
Instead, we make a11 positive by adding an autocatalysis reaction, a kind of reaction that 
arises in many biological oscillators [40].

• R3 : S1
k3S1−−→ 2S1

and so A becomes

which is positive with appropriate choices of the ki.
Since R3 synthesizes S1 , we need a reaction that degrades S1 in order for the sys-

tem to be stable. If we use mass action kinetics for this reaction, kS1 , it changes a11 
to k1 − k2 − k , which makes it more difficult to satisfy C3. An alternative is a fixed 
degradation rate of k4 > 0 , where k4 = u1 is the first element of the vector u in Eq. (1).

• R4 : S1
k4−→ ∅

Examples of fixed rate degradation reactions in BioModels are: reaction reac-
tion_0 in BIOMD0000000112, reaction ATP_Jerp in BIOMD0000000059, and 
reaction inhibition_parameter2 in BIOMD0000000224.

�n = τ

2
±

√
τ 2 − 4�

2

−k1 k2
k1 − k2

(

k3 − k1 k2
k1 − k2

)
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We must still address constraint C4, that the determinant is positive. This requires that 
a12a21 < 0, which mean that one of a12, a21 is positive and the other is negative. We make 
a21 < 0 by degrading S2 at a rate controlled by S1 . That is,

• R5 : S2
k5S1−−→ ∅

Having the degradation of one chemical species controlled by another chemical spe-
cies is common in BioModels. Some examples are: the fast reaction in model 
BIOMD0000000108, reaction r10 in BIOMD0000000145, and reaction RuBisCO_5_
EOP in BIOMD0000000392. With the addition of reaction R5 , A becomes

The final reaction in our network compensates for degrading S2 by synthesizing this spe-
cies at a fixed rate. That is,

• R6 : ∅
k6−→ S2

(We do not explicitly cite examples of similar synthesis reactions since they are widely used 
in BioModels.) From this, we observe that

C3 and C4 constrain the values of the kinetic constants. From C3, we know that

From C4, we know that (k3 − k1)(−k2)− k2(k1 − k5) > 0, or k3 < k5. We define kd > 0 
such that

And so, k5 = k1 + k2 + kd . This gives us

And from this we calculate the determinant of A:

And hence, the frequency θ is

Further, k2, kd > 0 implies that

Since k3, k5 are calculated from other parameters, we refer to them as dependent param-
eters. k1, k2, k4, k6, kd , x1(0), x2(0) are the independent parameters.

(

k3 − k1 k2
k1 − k5 − k2

)

.

(2)u =
(

−k4
k6

)

.

(3)k3 = k1 + k2

(4)k5 = k3 + kd

(5)A =
(

k2 k2
−k2 − kd − k2

)

.

(6)� = k2kd .

(7)θ =
√

k2kd .

(8)
� > 0.
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A brief technical note on Eq. (7). There are actually two solutions for θ , ±
√

k2kd  . These 
solutions result in oscillations at the same frequency but with different phases. Our 
approach is to treat phase as a separate oscillation characteristic, and so we just use θ for the 
frequency.

We can now satisfy 3 of our 4 constraints. C1 is satisfied since all rate laws are linear in 
xn(t) , the time varying concentrations of Sn . C3 is satisfied since τ = k2 + (−k2) = 0. And, 
C4 is satisfied by Eq. (8). To address C2, that xn(t) ≥ 0 , we must find the time domain solu-
tion of the reaction network.

Time domain solution for two species harmonic oscillator

Solving Eq. (1) is an initial value problem, where the initial values of S1 , S2 are x1(0), x2(0) . 
We proceed as follows: (a) solve the homogeneous equation ẋH = Ax

H (t) ; (b) find a par-
ticular solution such that ẋP(t) = Ax

P(t)+ u ; and (c) properly structure the complete 

solution x(t) =
(

x1(t)
x2(t)

)

= x
H (t)+ x

P(t) so that we isolate terms for amplitude, fre-

quency, phase, and DC offset. The derivation is a bit long, and so full details are reported in 
the Additional file 1.

The solutions for xn(t) have the form

where αn is the amplitude of oscillation for xn(t) , θ is the frequency in radians, φn is the 
phase in radians, and ωn is the DC offset. αn, θ ,φn,ωn are functions of the ki and xn(0) . 
Table  1 displays the formulas for the OCs. Because of technical details related to the 
inverse tangent function, φn depends on the term πn . (See the Additional file 1 for more 
on these technical details.) These terms are:

Similarly,

With the symbolic solution in hand, we return to constraint C2 , xn(t) ≥ 0. This is equiva-
lent to ωn ≥ αn. Unfortunately, the complexity of the OC formulas makes it difficult to 
solve these formulas to find constraints on parameters that ensure C2 . Indeed, it is frus-
tratingly difficult to find special cases in which C2 is satisfied. For example, consider the 
situation in which k2 is large. This results in the following:

(9)xn(t) = αncos(tθ + φn)+ ωn,

cond1 =
k22x1(0)

k2θ + kdθ
+ k22x2(0)

k2θ + kdθ
+ k2k4θ

k2θ2 + kdθ2
− 2k2k4

k2θ + kdθ
− k2k6θ

k2θ2 + kdθ2

+ k2k6

k2θ + kdθ
+ k2kdx1(0)

k2θ + kdθ
+ k4kdθ

k2θ2 + kdθ2
− 2k4kd

k2θ + kdθ
+ θx2(0)

k2 + kd

π1 =π if cond1 < 0

=0 otherwise

cond2 =
k2x1(0)

θ
+ k2x2(0)

θ
− k6

θ
+ kdx1(0)

θ

π2 =π if cond2 > 0

=0 otherwise

(10)limk2→∞(ω1 − α1) = sign(−k4 + k6 − T )∞
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where T =
√

k24 − 2k4k6 + k26 + θ2(x1(0))2 + 2θ2x1(0)x2(0)+ θ2(x2(0))2. We can sat-

isfy Eq. (10) (i.e., x1(t) ≥ 0 ) by making k6 large and k4 small. However, to satisfy Eq. (11) 
(i.e., x2(t) ≥ 0 ), we must do the opposite: make k6 small and make k4 large.

Parameterizing the two species harmonic oscillator

Since it is difficult to construct a symbolic expression for the constraint xn(t) ≥ 0 , we 
proceed numerically by developing an algorithm that finds values of the independent 
parameters that achieve desired OCs for the 2SHO. Desired OCs are indicated by the 
superscript ⋆ : θ⋆,α⋆,φ⋆,ω⋆.

We proceed by formulating an optimization problem. The objective is to find values of 
independent parameters that result in the best match with x⋆(t) = α⋆sin(θ⋆t + φ⋆)+ ω⋆ . 
This is done by searching the space of possible values of independent parameters. We 
denote elements of the search space by P , where P is a vector that specifies the value of 
each independent parameter. We want to find P̂ in this space such that xn(t; P̂) is close 
to x⋆(t) for one of n ∈ {1, 2}.

Given candidate parameters P , we can apply the formulas in Table  1 to calculate 
xn(t;P). The quality of this candidate is assessed using the loss function

This gives us the solutions

To simplify our notation in the sequel, x̂n(t) = xn(t; P̂n).

Our algorithm constructs a single sinusoid. Does it matter whether we use S1 or S2 ? 
We refer to the chosen species as the chosen oscillating species. It turns out that depend-
ing on the desired OCs, sometimes it is better to choose S1 ; other times S2 works bet-
ter. The algorithm selects the chosen oscillating species based on which loss function is 
smaller, L1(P̂1) or L2(P̂2) . We denote the chosen oscillating species by x̂(t).

We observe that the optimization can be simplified in a couple of ways. First, the only 
constraint on k1 is k1 ≥ 0. So, we set k1 = 1 . Second, we can calculate kd from the desired 
frequency θ⋆ using Eq.  (7), and so kd = (θ⋆)2

k2
 . The combination of these simplifications 

reduces the dimension of the search space from 7 to 5.
Figure 2 displays parameterizeOscillator, our algorithm for designing an oscil-

lator for the reaction network in Fig. 1. The python implementation of the algorithm is in 
the module designer.py in the github repository for this project. The implementa-
tion uses the python package lmfit to find P̂n(θ

⋆) using gradient descent.
There are some important details in the implementation of parameterize-

Oscillator. First, the quality of the optimization is greatly improved by doing 
multiple calls to lmfit using randomly chosen initial values for the independent 
parameters to more effectively scan the search space. Second, in calculating the loss 

(11)limk2→∞(ω2 − α2) = sign(k4 − k6 − T )∞

(12)Ln(P) =
∑

t

(

x⋆n(t)− xn(t;P)
)2

P̂n =argminPLn(P)

such that x1(t; P̂n), x2(t; P̂n) ≥ 0
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functions, it is critical to adjust the density of time values (t) to the value of θ⋆ so 
that the algorithm sees at least two complete sinusoids at 10 or so different phases. 
Last, properly handling of the hard constraint xn(t) ≥ 0 is required so that gradi-
ent decent works effectively. We use relaxation [41], a technique that treats the hard 
constraints as soft constraints with large weights. This means that instead of using 
Ln((P) in Eq. (12) as the loss function, we use L+n (P):

where 1x is 1 if x < 0 and is 0 otherwise, and w is a large number. L+n (P) has large gra-
dients when x1(t) < 0 or x2(t) < 0 so that gradient descent moves away from regions of 
the search space in which C2 is violated.

Observe that parameterizeOscillator could be implemented using simula-
tion instead of the formulas in Table 1. However, doing so would require consider-
ably more computational resources. First, simulating the reaction network is several 
orders of magnitude slower than evaluating the formulas in Table  1. Second, the 
simulation approach does not exploit the relationships between parameters that 
reduce the size of the search space (e.g., calculating kd from k2, θ⋆ ). Thus, a simu-
lation-based algorithm would have a search space consisting of seven parameters 
in contrast to the 5 parameters used with the formulas based approach. This larger 
search space requires considerably more computational resources.

Results
This Section analyzes the characteristics of the 2SHO and related analysis developed 
in the previous section.

(13)L+n (P) =
∑

t

(

x⋆n(t)− x̂n(t)
)2 +

(

1x̂1(t)wx̂1(t)
)2 +

(

1x̂2(t)wx̂2(t)
)2

Fig. 2 Algorithm for finding values of parameters for the two species harmonic oscillator that achieve 
desired oscillation characteristics. The function parameterizeOscillator takes as inputs the 
desired oscillator characteristics and returns the independent parameters P(θ) for the reaction network: 
k2, k4, k6, x1(0), x2(0) . In essence, parameterizeOscillator inverts xn(t) by finding the P that 
minimizes the squared error difference between the desired oscillations and xn(t) for either n = 1 or n = 2 . In 
step 2, “relaxation” (via δ(t) ) is used to address the hard constraints that xn(t) ≥ 0
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Accuracy of predictions of oscillation characteristics

We begin by investigating the accuracy of predictions of 2SHO oscillation character-
istics that are obtained from the formulas in Table  1. Figure  3 displays simulations 
of the 2SHO network detailed in Fig.  1 for four different values of the independent 
parameters. (Dependent parameters are calculated as described above.) Lines in the 
plots are simulation results, and the markers are model predictions using the formu-
las in Table 1. We see that in all cases, model predictions coincide with simulations 
results. We have done thousands of such simulations. In all cases, model predic-
tions are identical with simulation results (within a tolerance of 10−13 to account 
for numerical errors). Although this does not prove the correctness of the model, it 
is strong confirmation. The ultimate proof is the correctness of our derivations as 
detailed in the Additional file 1.

Next, we investigate our algorithm for parameterizing the 2SHO as detailed in 
Fig.  2. Recall that the inputs to the algorithm are desired oscillation characteristics 
θ⋆,α⋆,φ⋆,ω⋆ that generate the sinusoidal concentrations x⋆(t) = α⋆sin(θ⋆t + φ⋆)+ ω⋆ . 
The algorithm finds independent parameters P̂(θ⋆) that generate the concentrations 
x̂(t) for one of S1, S2 with the constraint that there are no negative concentrations.

We use the term design error to refer to deviations between x⋆(t) and x̂(t) . We con-
sider several kinds of design errors. A feasibility design errors occurs if x̂n(t) < 0 for 
some n,  t. An amplitude design error is a deviation from α⋆ . Let α̂ be the amplitude 
achieved by x̂(t). The amplitude design error is calculated as α̂−α⋆

α⋆
 . Similarly, phase 

design error is the deviation from φ⋆ of the phase (as a fraction of a cycle) achieved 
by P̂(θ) . The phase design error is φ̂−φ⋆

2π
 . Note that we do not consider errors in the 

frequency that result from the parameters returned by the design algorithm. This is 
because the algorithm uses Eqs.  (7),  (3), and  (4) to ensure that there are oscillating 
concentrations at the desired frequency θ⋆.

Fig. 3 Evaluations of model accuracy. Plots of simulation results (solid lines) and model predictions (markers) 
using the formulas in Table 1 for four sets of parameter values of the reaction network in Fig. 1. In all cases, 
predictions coincide with the simulation results. The four cases have different values for the the independent 
parameters; dependent parameters are calculated as described in the text. The initial value of Sn is xn(0)
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We simplify our studies by setting the desired DC offset ω⋆ to the desired oscillation 
amplitude α⋆ . Our studies are conducted over 3 decimal orders of magnitude for both 
frequency (radians/sec) and amplitude: θ⋆,α⋆ ∈ [0.1, 100] in 8 increments. We con-
sider four values of phase that are likely the most problematic because of challenges 
with calculating the inverse of the tangent function: φ⋆ ∈ {0, π

2
,π , 2π

3
}. Throughout, 

we set the maximum value of the kinetic constants ( ki ) to 1000 to make the results 
more credible, but doing so can increase design errors.

We begin with feasibility design errors. parameterizeOscillator is very 
robust to feasibility design errors. We have conducted several thousand simulations, 
and only a couple of them returned values of independent parameters that had nega-
tive values for the concentrations of S1, S2.

To analyze amplitude design errors, we first consider a variant of the algorithm in 
Fig. 2 in which the algorithm always returns P̂1(θ) , the parameter estimates obtained 
if S1 is the chosen oscillating species. Figure  4 displays the results of these studies. 
There are four plots, one for each value of phase. Each plot is a heatmap with desired 
frequency ( θ⋆ ) as the horizontal axis and desired amplitude ( α⋆ ) as the vertical axis. 
Cells are colored by the magnitude of the design error, and they are annotated with 
the value of the design error followed by a letter. The letter “a” means that S1 is the 

Fig. 4 Amplitude design errors when parameterizeOscillator in Fig. 2 is modified so that S1 is 
always the chosen oscillating species. The heatmaps display amplitude design errors for four phases ( φ⋆ ). In 
each heatmap, the horizontal axis is desired frequency ( θ⋆ ), and the vertical axis is desired amplitude ( α⋆ ). Cell 
colors indicate the magnitude of the amplitude design error, and cells are annotated with the actual value. 
The letter “a” indicates that species S1 is the chosen oscillating species
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chosen oscillating species; “b” indicates that S2 is the chosen oscillating species. Only 
the letter “a” appears in these plots since S1 is always the chosen oscillating species.

Amplitude design error is in the range [−1,∞] . A 0 means that there is no design 
error; a -1 means that the chosen oscillating species always has a concentration of zero 
(and so there is no oscillation). Amplitude design error is mostly 0 in the plots, except 
when both amplitude and frequency are large. The reason is that in our studies, the max-
imum value of kinetic constants is 1000. When both θ⋆ and α⋆ are large, much larger 
values of k4, k6 are required. Figure 5 plots the results of studies in which either S1 or S2 
may be the chosen oscillating species, as is done in parameterizeOscillator. We 
see that there is a significant reduction in amplitude design error.

Figure 6 displays the results for phase design error (in units of the fraction of an oscil-
lation cycle). We see that phase design errors are mostly 0, although occasionally there is 
an error of 0.1 or − 0.1.

Figure 7 studies the distribution of parameter values for the foregoing studies. Note 
that k1 = 1 by design since from Table 1, we know that k1 does not influence the behav-
ior of the reaction network. Also, by design, the maximum value of a kinetic constant is 
1000.

The parameters k2 , k3 , and k5 are mass action kinetic constants for reactions with a 
single reactant. We see that they mostly have small values, although there are some 
instances in which these constants exceed 500. On the other hand, the zeroth order 

Fig. 5 Amplitude design errors are reduced when parameterizeOscillator is used as-is. By so doing, 
either S1 or S2 can be the chosen oscillating species. The heatmaps are structured as in Fig. 4. The letter “a” 
indicates that species S1 is the chosen oscillating species, and “b” indicates that S2 is the chosen oscillating 
species
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Fig. 6 Phase design errors. These heatmaps are organized in the same way as Fig. 4, but cell values are phase 
design errors, the fraction of a cycle that the phase of the designed network differs from the phase of the 
desired oscillations. parameterizeOscillator almost always produces a phase design error of 0

Fig. 7 Histograms of values of parameter estimates in the numerical studies. The algorithm limits parameter 
values to the range [0, 1000]. Only the parameters associated with the boundary reactions R4 ( k4 ) and R6 ( k6 ) 
have values close to the upper bound of this range. These larger values are needed to construct oscillators 
that produce large amplitudes and high frequencies
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kinetic constants k4 and k6 tend to be much larger. Because our studies restrict param-
eterizeOscillator to choose k4, k6 with values less than 1000, there are larger 
amplitude design errors for studies in which both the frequency and amplitude are large.

Parameter sensitivity and plausibility of biochemical implementation

Here we explore the sensitivity of the oscillation characteristics of 2SHO to variation in 
parameter values, especially with the thought of a biochemical implementation of the 
harmonic oscillator.

We start by analyzing the relative sensitivity of frequency, θ , to variation in values of a 
parameter k. This relative sensitivity is denote by Sθk . As defined in [42]:

Note that this is a unitless quantity. From Eq.  (7), we know that 
θ =

√

k2kd =
√
k2(k5 − k3) , and so:

Sθk = 0 for k /∈ {k2, k3, k5} . To put this in perspective, we likely want k5 >> k3 to ensure 
that we get oscillations. So, for k ∈ {k2, k3, k5} , |Sθk | ≈

1
2
 . That is, there is a 0.5% change in 

θ for a 1% change in k.
The remaining OCs are complicated functions of the 2SHO parameters, and so are 

difficult to analyze analytically. Instead, we conduct numerical studies in which values of 
the 2SHO parameters are chosen randomly. The primary objective of these studies is to 
determine the feasibility of constructing a 2SHO for a biochemical system. The details 
of the biochemistry are beyond the scope of this paper. However, we do address vari-
ous considerations for selection of the species and reactions since 2SHO imposes some 
constraints.

The first constraint comes from Eq.  (3), that k3 + k1 + k2 . This constraint is difficult 
to achieved by a priori design because of the variability of values of kinetic constants. 
We propose addressing this constraint by having reaction R3 be controlled enzymatically 
and operate in a region of low enzyme concentrations so that mass action kinetics are a 
good approximation. By titrating the enzyme, it should be possible to be fairly close to 
the Eq. (3) constraint. We refer to this as the titration approach.

A second constraint imposed by 2SHO is that k3 < k5 . This constraint 
is easily realized by our choice of 2SHO parameters. Specifically, we use: 

k1 = 1.00, k2 = 3.91, k3 = 4.91, k4 = 4.77, k5 = 15.00, k6 = 92.2, x1(0) =
5.00, x2(0) = 10.49  . 

Sθk = ∂θ

∂k

k

θ

(14)Sθk2 =
1

2

(15)Sθk3 =
−k3

2(k5 − k3)

(16)Sθk5 =
k5

2(k5 − k3)
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This produces the OCs  θ = 6.28, α1 = 3.00, α2 = 5.67, φ1 = 0.00,φ2 = 2.12, ω1 = 5.00,

ω2 = 5.67 . Clearly, k5 ≫ k3.
The third constraint is that concentrations must be non-negative; that is, ωn ≥ αn . 

Since this is a non-trivial constraint to assess, we analyze it numerically. We consider 
the values of the 2SHO parameters to be random variables whose distributions are cen-
tered on the parameters in the previous paragraph. Many have explored the experimen-
tal error associated with estimating kinetic constants (e.g., [35, 36]). From this literature, 
it seems that the standard deviations of these errors are in the range of 1–20% of the 
value of the kinetic constant. Thus, our studies use a normalized standard deviation 
(also known as the coefficient of variation), which is the measured standard deviation 
divided by the sample mean.

Fig. 8 Sensitivity analysis of 2SHO. These plots show the effect of variability in the values of the parameters 
k1, k2, k4, k5, k6, x1(0), x2(0) on the ability to implement a 2SHO in a biochemical system. ( k3 = k1 + k2 by 
the design of the biochemical system.) Parameter values are drawn from a truncated normal distribution 
(no negative values) with n = 400 and whose mean is the desired value of the parameter and whose 
(normalized) standard deviation (coefficient of variation) is representative of empirical estimates of kinetic 
constants. Three kinds of metrics are displayed. Feasibility, chart (a), is the probability that a feasible oscillator 
results (e.g., no negative concentrations). Errors in expected values of OCs are relative to the desired value 
in charts (b, d, e, f, h). Discrepancies in phase, charts (c, g), are in units of radians. Error bars indicate ± two 
standard deviations
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Figure 8a displays our results for feasibility, those situations when the randomly cho-
sen parameters satisfy the constraints that k5 ≥ k3 and ωn > αn . (Vertical bars are ± two 
standard deviations.) Feasibility is about 0.57 when normalized standard deviation is 
0.01, and it declines to about 0.33 when normalized standard deviation is 0.2. Put differ-
ently, the probability p(m, f) of making a 2SHO in m tries with a feasibility of f for each 
try is p(m, f ) = 1− (1− f )m . Note that p(4; 0.57) ≈ 0.9 ≈ p(6; 0.37) . That is, based on 
the variability of estimates of kinetic constants, there is a 90% chance of making a 2SHO 
in 4 to 6 attempts.

Figure 8b–h display measures of the deviation of the oscillation characteristics of situ-
ations in which a feasible oscillator is obtained. For αn,ωn , we use the absolute value 
fractional deviation, |ẑ − z|/z , where ẑ is the randomly chosen value that is centered at z. 
This doesn’t work for φ , since φ1 = 0 . So, for φ , we do not divide by the desired value. As 
with feasibility, we see that the deviation from desired OCs increases with normalized 
standard deviation. Of the OCs, frequency θ seems to be affected the least.

Discussion
This section explores the 2SHO in more detail using the formulas in Table 1.

We begin by examining the parameters of the reaction network. Consider k1 , the 
kinetic constant for reaction R1 . k1 does not appear in Table 1. Indeed, the only refer-
ence to k1 is in Eq. (3) to calculate k3 . So, k1 can be any non-negative number. If k1 = 0 , 
we have effectively eliminated reaction R1 . We have done many thousands of simula-
tions in which k1 = 0 with various values of the independent parameters and calculating 
the dependent parameters as described above. In all cases, we obtain the oscillating net-
works predicted by Table 1. From this we conclude, that R1 is not required.

Table 1 Formulas for oscillator characteristics (OCs)

OCs are expressed in terms of the kinetic constants ki of the reaction network in Fig. 1 and the initial concentrations of 
the chemical species, xn(0) for species Sn . The formulas are obtained by solving the system of equations for the reaction 
network. The oscillator characteristics (OCs) are: amplitude ( αn ), frequency ( θ ), phase ( φn ), and DC offset ( ωn ). The terms 
π1,π2 are defined in the text, and reflect technical details related to the inverting the tangent function
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Next, consider k2 , the kinetic constant that controls the rate at which S2 is converted 
to S1 . That is, because of reaction R2 , if S2 is larger at time t, then S1 will be larger at a 
future time, say t + td for td > 0 . In essence, k2 controls the phase shift from S2 to S1 . We 
can see this using the results in Table 1. If k2 is large, then the two species have the same 
phases: limk2→∞φ1 = k4−k6

x1(0)+x2(0)
= limk2→∞φ2 . This phase shift in turn determines the 

frequency, since θ =
√

k2kd . So, a large rate at which there is a change in phase in turn 

results in higher frequency oscillations.
Now consider k3, k5 , the kinetic constants for reactions R3 and R5 . R3 is an autocataly-

sis reaction in which S1 produces two copies of itself. This is a kind of positive feedback 
at the rate k3S1 . R5 is degradation reaction in which S2 is eliminated at the rate k5S1 . This 
is a kind of negative feedback in that a larger concentration of S1 reduces the concentra-
tion of S2 , which in turn reduces the concentration of S1 (because of R2 ). From Eq. (4), 
we know that k5 > k3 . Indeed, when k5 = k3 , then the only eigenvalue of the system is 0. 
So, negative feedback must be larger than positive feedback in our 2SHO.

Reactions R4,R6 have zeroth order kinetics. These are essentially external tuning knobs 
that adjust oscillation characteristics in complex ways. An extreme case is in the DC off-
sets ωn : if k4 = 0 = k6 , then ω1 = 0 = ω2 . Note that k4, k6 appear in every formula for 
the OCs in Table 1 except frequency θ.

Finally, we address the initial concentrations of S1, S2 , which are denoted by xn(0) . We 
see that initial concentrations affect amplitude, as is expected for a harmonic oscillator. 
We see that initial conditions also affect phase. However, initial concentrations do not 
impact frequency or DC offset.

Next we comment on related work in light of our methods and results. We start with 
claims related to nonlinearity. Gonze and Ruoff [30] claims that “the kinetic rate laws of 
the reaction mechanism must be sufficiently ‘nonlinear’ to destabilize the steady state.” 
This claim is echoed by [31] as well. Our 2SHO is a counter example to these claims in 
that its kinetics are described by a system of linear differential equations.

We construct 2SHO from two species because this simplifies the analysis for ensuring 
that the largest eigenvalue is a pure imaginary number. It is an open question if such a 
construction can be done for three or more species, and if so, can we obtain closed form 
solutions for the oscillation characteristics.

Another remark worthy of comment is that oscillations can result from a combination 
of positive and negative feedback [31]. Indeed, Fig. 1 has both positive and negative feed-
back. Reaction R3 provides positive feedback at a rate k3S1 through autocatalysis, and 
reaction R5 provides negative feedback at the rate k5S1 by degrading S2 . We add to these 
remarks the observation that the rate of negative feedback must be larger than the rate 
of positive feedback, at least in our reaction network, since by Eq. (4), k5 > k3.

Our final remark is a bit more speculative. Disciplines such as electrical and mechani-
cal engineering make extensive use of system identification and control theory in their 
designs and analyses. A key element of these techniques is the use of frequency analy-
sis such as Bode plots. Frequency analysis requires the ability to generate sinusoids 
with specific oscillation characteristics, especially frequency, amplitude, and phase. 
While others have demonstrated the construction of biological clocks (e.g., [43, 44]), 
there is no technique for generating sinusoids with arbitrary oscillation characteristics. 
Our parameterizeOscillator algorithm provides a way to choose values of the 
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parameters of the reaction network in Fig. 1 to achieve desired The implementation of 
a biological signal generator is beyond the scope of this paper. However, such an imple-
mentation likely requires enzyme engineering techniques such as those discussed in 
[40].

Conclusions
Oscillatory behavior is critical to many life sustaining processes, such as cell cycles, 
circadian rhythms, and notch signaling. We use the term oscillation characteristics 
(OCs) to refer to the frequency, amplitude, phase, and DC offset of oscillations. OCs 
affect many biological functions. Examples include: the timing of event initiations can 
be controlled by oscillation frequency; the strength of signaling can be regulated by the 
amplitude of oscillations; and the sequence of events can be determined by the phase of 
oscillations.

This paper is a theoretical study that shows that sustained oscillations are possible in 
a reaction network with linear dynamics. By linear dynamics is meant that the rate laws 
are linear in species concentrations. It has not been obvious to many that such networks 
can produce oscillations. Gonze and Ruoff [30] claim that oscillations in reaction net-
works require that “the kinetic rate laws of the reaction mechanism must be sufficiently 
‘nonlinear’ to destabilize the steady state. ” This claim is echoed by [31] as well. We note 
that the context for these claims may be for biological implementations of oscillators. 
Even so, the question remains, can oscillations be generated by a reaction network with 
linear dynamics?

Although it is fairly staright-forward to create a system of linear ODEs that oscil-
lates, it is non-trivial to create an oscillating reaction network with linear dynamics. The 
challenges are: (a) species concentrations must be non-negative; (b) the semantics of 
reactions imposes constraints on the Jacobian matrix (e.g., a single reaction can affect 
multiple entries in the matrix); and (c) reaction rate laws must be biologically plausible.

Our first contribution is the construction of a reaction network that implements a two 
species harmonic oscillator (2SHO). This is shown in Fig. 1. We are unaware of others 
who have implemented a harmonic oscillator in a reaction network. The dynamics of 
2SHO are described by a system of linear differential equations. We note that [30, 31] 
claim that oscillating reaction networks require nonlinearities. This may be true for bio-
logical implementations, but it certainly is not true in theory for a reaction network.

Our second contribution is obtaining closed form formulas that calculate the oscilla-
tion characteristics (OCs) frequency, amplitude, and phase of the 2SHO in terms of its 
parameters. The formulas are displayed in Table 1. We know of no other oscillating reac-
tion network for which such formulas have been obtained.

Our third contribution is the development of an algorithm that finds values of param-
eters that result in a reaction network with desired OCs. The algorithm is detailed in 
Fig. 2. The algorithm makes use of the OC formulas. We show that the algorithm per-
forms well over a wide range of OCs.

We further analyze the sensitivity of 2SHO to variations in values of the kinetic con-
stants; typical varaiabilities are between 1 and 20%. Our analysis suggests that with 4 to 
6 attempts, there is a 90% probability of constructing a 2SHO for a suitable biochemical 
system.
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The OC formulas also allow us to comment on and/or extend other studies of oscil-
latory reaction networks. One theme in the literature is that nonlinear dynamics are 
required to create oscillations in reaction networks. Our 2SHO is a counter example to 
these claims in that its kinetics are described by a system of linear differential equations. 
Another observation in the literature is that an oscillating network can be constructed 
by combining positive and negative feedback, an approach used in 2SHO as well. Our 
formulas extend this insight by showing that for 2SHO, the rate of negative feedback 
must exceed the rate of positive.

We are very interested in exploring how our results for designing an oscillating 
linear network might be applied to designing an oscillating nonlinear network. One 
direction here is using 2SHO to construct a linear approximation to the nonlinear 
network. If we can develop an appropriate mapping between the two networks, we 
can tune the linear network in a desired way, and then map these adjustments back to 
the nonlinear network.
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2SHO  Two species harmonic oscillator
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(
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