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Abstract 

Background: Automatic and accurate extraction of diverse biomedical relations 
from literature is a crucial component of bio-medical text mining. Currently, stacking 
various classification networks on pre-trained language models to perform fine-tuning 
is a common framework to end-to-end solve the biomedical relation extraction (BioRE) 
problem. However, the sequence-based pre-trained language models underutilize 
the graphical topology of language to some extent. In addition, sequence-oriented 
deep neural networks have limitations in processing graphical features.

Results: In this paper, we propose a novel method for sentence-level BioRE task, 
BioEGRE (BioELECTRA and Graph pointer neural net-work for Relation Extraction), 
aimed at leveraging the linguistic topological features. First, the biomedical litera-
ture is preprocessed to retain sentences involving pre-defined entity pairs. Secondly, 
SciSpaCy is employed to conduct dependency parsing; sentences are modeled 
as graphs based on the parsing results; BioELECTRA is utilized to generate token-level 
representations, which are modeled as attributes of nodes in the sentence graphs; 
a graph pointer neural network layer is employed to select the most relevant multi-
hop neighbors to optimize representations; a fully-connected neural network layer 
is employed to generate the sentence-level representation. Finally, the Softmax func-
tion is employed to calculate the probabilities. Our proposed method is evaluated 
on three BioRE tasks: a multi-class (CHEMPROT) and two binary tasks (GAD and EU-
ADR). The results show that our method achieves F1-scores of 79.97% (CHEMPROT), 
83.31% (GAD), and 83.51% (EU-ADR), surpassing the performance of existing state-of-
the-art models.

Conclusion: The experimental results on 3 biomedical benchmark datasets demon-
strate the effectiveness and generalization of BioEGRE, which indicates that linguistic 
topology and a graph pointer neural network layer explicitly improve performance 
for BioRE tasks.
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Background
Biomedical relation extraction (BioRE) [1, 2] is a subtask of relation extraction (RE) [3, 
4], which is to determine whether a pre-fetched entity pair in a sentence has a biomedi-
cal relationship. BioRE tasks can be categorized into binary and multi-class RE tasks. 
Compared to a binary task, a multi-class task is more challenging and rewarding, which 
requires not only deducing whether a relation exists between the entities but also ana-
lyzing the specific relation type. Automatic and accurate extraction of relations in bio-
medical literature is a crucial step in transforming unstructured biomedical knowledge 
into structured forms, which has the potential to assist researchers in tracking and sum-
marizing biomedical knowledge contained in an extensive range of scientific literature 
[5].

Recently, propelled by advancements in deep learning [6], models based on deep neu-
ral networks (DNNs) have emerged as trustworthy tools for addressing natural language 
processing (NLP) tasks. DNN-based methods allow for end-to-end extraction of rela-
tions in biomedical literature, thus decreasing labor costs and enhancing performance 
[7]. To tackle the problem of insufficient high-quality and large-scale annotated data, 
pre-trained language models (LMs), such as Word2Vec [8], ELMo [9], BERT [10], and 
ELECTRA [11], acquire distributed representations of tokens from large unannotated 
corpora using a self-supervised learning strategy and perform fine-tuning for a specific 
downstream task. The pre-training strategy has also been applied in the biomedical field, 
leading to the development of biomedical pre-trained LMs such as BioWord2Vec [12], 
BioELMo [13], BioBERT [14], and BioELECTRA [15], which have been successively pro-
posed and applied to the BioRE task, achieving state-of-the-art (SOTA) performance.

However, the aforementioned methods primarily focus on semantic information at the 
sequence level, overlooking the potential of linguistic topology features and geometrical 
topological features derived from dependency parsing results. A sentence not only con-
tains a subject, a predicate, and objects, reflecting the main semantics, but also includes 
modifiers, such as attributes, adverbials, complements [16, 17]. As depicted in Fig.  1, 
the presence of modifiers causes key components to be separated, thereby highlighting 
the limitations of modeling sentences through sequences. Given that previous studies 
on biomedical named entity recognition have successfully employed graphical sentence 
models, leveraging pre-trained LMs and graph neural networks, and resulting in state-
of-the-art (SOTA) performance [18–20], it is reasonable to consider applying a similar 
framework to the BioRE and other BioNLP tasks.

In this paper, drawing inspiration from the prior knowledge of linguistic topology, 
we adopt a graph-based approach to model sentences and propose a novel method for 
sentence-level BioRE, BioEGRE (BioELECTRA and Graph pointer neural network for 
Relation Extraction). First, the biomedical literature is preprocessed to retain sentences 
involving pre-defined entity pairs. Secondly, SciSpaCy is employed to conduct depend-
ency parsing; sentences are modeled as graphs based on the parsing results; BioELEC-
TRA is utilized to generate token-level representations, which are modeled as attributes 
of nodes in the sentence graphs; a graph pointer neural network layer is employed to 
select the most relevant multi-hop neighbors to optimize representations; a fully-con-
nected neural network layer is employed to generate the sentence-level representa-
tion. Finally, the Softmax function is employed to calculate the probabilities obtain the 
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results. BioEGRE is first evaluated on the CHEMPROT, which is a high-quality corpus 
specifically designed for the extraction of chemical-protein interactions (CPI) in the field 
of biomedicine, representing a multi-class BioRE task. In addition, we evaluate the per-
formance of BioEGRE on binary BioRE tasks focused on gene-disease (using the GAD 
corpus) and disease-target (using the EU-ADR corpus) extraction. The experimen-
tal results demonstrate that BioEGRE achieves an F1-score of 79.97% (CHEMPROT), 
83.31% (GAD), and 83.51% (EU-ADR) in the aforementioned BioRE tasks, surpassing 
current SOTA models and highlighting both the high performance and generalizability 
of BioEGRE.

Our contributions are summarized as follows:

1. A novel method for BioRE tasks, which models a sentence as a graph, obtains con-
textual features via BioELECTRA and fuses linguistic topological features through a 
graph pointer neural network (GPNN) layer.

2. Extensive experiments demonstrate that the proposed method consistently outper-
forms current SOTA methods, highlighting the significant improvement achieved 
by incorporating linguistic topological features and a GPNN layer for various BioRE 
tasks. The remainder of this paper is organized as follows. In chapter II, related work 
is covered. In chapter III, the proposed model is introduced in details. And in chapter 
IV, the designed experiments, corresponding results, and discussions are presented. 
Finally, the paper is concluded in chapter V.

Related work
In this chapter, we first introduce the pre-trained LM based methods for BioRE. Then, 
we describe the preliminary knowledge of our method, including topological features of 
the language and the graph neural network.

Fig. 1 An example of sequential and graphical modeling of a sentence. In the sequential model, the distance 
of a target entity pair (cAMP and TPO) is 9, while in the graphical model, the distance is shortened to 3. In 
comparison, modeling the topology of a sentence through a graph can better define the distance between 
words, which benefits the implementation of NLP downstream tasks to some extent
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Pre‑trained LM based methods for BioRE

Pre-trained LMs, including CoVe [21], ELMo [9], GPT [22] and BERT [10], have the abil-
ity to adapt distributed representations based on contextual information. There are also 
many derivatives of BERT, including BioBERT [14], SciBERT [23], PubMedBERT [24], 
and ClinicalBERT [25]. Using BERT-based pre-trained LMs has become the paradigm of 
BioRE in recent years. As for the problem of CPI extraction, [26] utilizes Gaussian prob-
ability distribution to introduce biomedical prior knowledge based on BERT. Sun et al. 
[5] adopts a capsule network and leverages the attention mechanism based on BERT. 
Zuo and Zhang [27] employs a span-based BERT along with a multi-task learning strat-
egy to jointly extract biomedical entities and relationships. Moreover, [28] and [14] per-
forms pre-training on extra biomedical data based on the initialized weights of BERT 
respectively, which can be applied to various BioRE tasks.

ELECTRA [11], which is based on the generative adversarial strategy, represents 
another type of pre-trained language model, which is comprised of a transformer-based 
generator and discriminator, and achieves SOTA results with minimal computation. 
As a derivative of ELECTRA, BioELECTRA [15] has achieved SOTA results on various 
BioRE tasks.

Recently, GPT-based models such as ChatGPT and GPT-4 have revolutionized the 
approach to general NLP. GPT, a Transformer-based pre-trained language model 
designed for general domains. The powerful generative ability of GPT-based LMs 
enhances their generalization and intelligence. Apart from BERT-based pre-trained 
LMs, GPT-based LMs have also been applied to BioRE tasks. BioGPT [29], which is pre-
trained with biomedical data based on GPT-2 architecture, tackles BioRE by generat-
ing relational triplets based on well-defined prompts. BioGPT demonstrates the ability 
to conduct BioRE, whether the relationship is pre-defined or not, thereby introducing 
new possibilities for this task. While GPT-based models exhibit strong performance in 
certain generation NLP tasks such as translation, writing, and question-answering, they 
currently do not match the performance of BERT-based LMs in biomedical RE tasks due 
to the absence of well-defined, domain-specific prompts.

Topology of language

The part of grammar that presents a speaker’s knowledge of sentences and their struc-
tures is called syntax [30], which is the pattern of language. Syntax is one of the essential 
objects and the crucial characteristics of downstream tasks in the NLP field [31]. The 
syntax of a sentence determines its topology, which can be represented as a graph (or 
a tree) [18]. In comparison to sequences, graphs offer a more comprehensive represen-
tation of the semantic relationships between words. So far, the topological features of 
language have been utilized in RE tasks. Miwa and Bansal [32] constructs a Bi-TreeL-
STM layer for sentence dependencies to improve performance. In addition, [33] intro-
duces the shortest dependency path (SDP) between the target entity pair by leveraging 
dependency relationships, which incorporates a Bi-LSTM layer to identify adverse drug 
reaction (ADR) knowledge in texts.

Sentence parsing is a technique used to extract topological features from text. Cur-
rently, there are several open-source NLP tools available for performing automatic and 
accurate parsing, including NLTK [34], StandfordNLP [35], and SpaCy [36]. Among 
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them, SpaCy is a fast, powerful, lightweight NLP tool that can handle multiple lan-
guages, of which the functions include tokenizer, parser, and tagger. SciSpaCy [37] is an 
extension of SpaCy that inherits its diverse range of functionalities. Moreover, SciSpaCy 
is specifically trained on biomedical literature, rendering it more tailored to the unique 
characteristics of the biomedical field. SciSpaCy achieves F1-score of 98.86% on parsing 
tasks, demonstrating that it is a reliable biomedical NLP tool.

Graph neural networks (GNNs)

Recently, the advancement of data analysis has led to the modeling of non-Euclidean 
data in more complex structures such as trees and graphs, as opposed to simple linear 
models. Consequently, there has been an increasing focus on leveraging deep learning 
techniques for analyzing graph-based data, giving rise to the emergence of graph neural 
networks (GNNs) [38].

Graph convolutional networks (GCNs) [39], graph attention networks (GATs) [40], 
and graph pointer neural networks (GPNNs) [41] are outstanding representatives of 
GNNs. Among them, GCN [39] uses a kernel to associate nodes and their neighbors, 
which obtains only local features. Different from the fixed kernel of GCN, GAT [40] 
employs a masked self-attention mechanism that dynamically computes weights based 
on the topology of the graph to obtain a more accurate distributed representation for 
a node. However, in a heterogeneous graph, the distance between related nodes can 
be considerable, which implies that the aforementioned GNNs fail to capture features 
entirely and introduce noises to some extent. To solve the above problems, Yang et al. 
propose the GPNN [41], which comprises a multi-hop node sequence sampler and a 
graph pointer generator, which generates an ordered neighbor node sequence according 
to the degree of correlation to a central node, and an optimized representation for the 
node according to features from the ranked neighbors. The distributed representation 
can be used for downstream tasks such as node classification.

Methodology
Problem definition

In the field of machine learning, BioRE can be considered as a classification problem, 
which can be formulated as follows: Given a collection of sentences that include a pre-
defined entity pair, the task is to predict the relation types by calculating the conditional 
probability of sentences belonging to the respective pre-defined labels.

BioRE is mainly divided into binary RE and multi-class RE. Binary RE aims to identify 
whether a pre-fetched entity pair has a semantic relationship in a sentence ignoring the 
semantic type, which can be implemented relative easily. Multi-class RE tasks require 
determining both the presence of a relationship in a sentence and classifying it into a 
specific semantic type, which is a more challenging and valuable research objective. 
Therefore, we choose the CPI extraction, which is a multi-class RE task, as an applica-
tion case to validate the effectiveness of the proposed method.

The objective of CPI extraction is to identify whether a candidate sentence contains 
a relationship between a chemical-protein pair. If such a relationship exists, a specific 
chemical-protein relation (CPR) type also need to be classified. The CHEMPROT [42] 
corpus is a manually labeled corpus for CPI extraction, involving 5 pre-defined CPR 
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types for evaluation, including CPR:3, CPR:4, CPR:5, CPR:6 and CPR:9. Therefore, we 
formulate CPI extraction task as a six-classification task, including the above five types 
of pre-defined positive CPRs, while CPR:1, CPR:2, CPR:7, CPR:8, CPR:10, and False to 
represent negative samples. Table  1 describes definitions of the pre-defined CPRs in 
CHEMPROT.

The formal definition of the above six-classification task is as follows. Given 
a set of candidate sentences S = {s1, s2, . . . , sn} , each si ∈ S contains a chemi-
cal-protein pair, and n is the number of sentences. The goal is to infer the rela-
tion type of si by calculating the conditional probability P(rj|si) of si falling into 
rj ∈ {CPR : 3,CPR : 4,CPR : 5,CPR : 6,CPR : 9, False} label.

Overall architecture

BioEGRE consists of three components: an input, a representation, and an output mod-
ule. The overall architecture of BioEGRE is illustrated in Fig. 2.

First, in the input module, an NLP tool SciSpaCy is used to separate sentences and 
words; entities in sentences are located according to the original corpus; sentences con-
taining a pre-labeled entity pair (eg. chemical-protein) are screened out as follow-up 
subjects; entities are marked with a ‘@’ at the beginning and a ‘#’ at the end to help to 
get the location of entities in sentences. If a sentence contains multiple pre-labeled entity 
pairs, it is mapped to several instances, each of which contains only one pair of pre-
fetched entities. As shown in Fig. 3, a sentence with 1 chemical mention and 2 protein 
mentions is acquired. The input module generates 2 instances based on the sentence. 
One is oriented to Glucose and tuberin, labeled as CPR:4, and the other is oriented to 
Glucose and mTOR, labeled as CPR:3.

Second, in the representation module, BioELECTRA is used to obtain the distributed 
representation of contextual features for tokens in a sentence; SciSpaCy is utilized to get 
topological features to construct the sentence graph; a GPNN layer is employed to opti-
mize representations of nodes in the sentence graph; and a full-connected neural net-
work layer is used to generate the overall sentence-level representation.

Finally, in the output module, considering it is a multi-classification task, the Softmax 
function is implemented to compute the probability distribution for each label. Based on 
the optimized sentence-level representation, the CPR type is determined.

Table 1 Predefined CPRs in CHEMPROT

Group Evaluation CHEMPROT relations belonging to this group

CPR:1 N PART_OF

CPR:2 N REGULATOR|DIRECT_REGULATOR|INDIRECT_REGULATOR

CPR:3 Y UPREGULATOR|ACTIVATOR|INDIRECT_UPREGULATOR

CPR:4 Y DOWNREGULATOR|INHIBITOR|INDIRECT_DOWNREGULATOR

CPR:5 Y AGONIST|AGONIST-ACTIVATOR|AGONIST-INHIBITOR

CPR:6 Y ANTAGONIST

CPR:7 N MODULATOR|MODULATOR-ACTIVATOR|MODULATOR-INHIBITOR

CPR:8 N COFACTOR

CPR:9 Y SUBSTRATE|PRODUCT_OF|SUBSTRATE_PRODUCT_OF

CPR:10 N NOT
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Construction of sentence graph

A graph is a data structure of computer science to instantiate the undirected and 
directed graph in graph theory of mathematics [43], which consists of nodes and 
edges. Let G = (V ,E) be a graph, of which a node set is V  and an edge set is E . Con-
sidering dependency and topological features of language, a sentence can be modeled 
as an undirected graph.

Fig. 2 The overall architecture of BioEGRE

Fig. 3 Processing procedure of the input module
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Algorithm 1: Generation of a sentence graph 

BioELECTRA is used to tokenize and encode sentences and obtain the token-level 
contextual features, and SciSpacy is used to parse sentences to get the dependencies. 
Note that BioELECTRA splits obscure words into word-pieces while tokenization to 
avoid the OOV problem (for example, ’tacrine’ is split into [’tac’,’ ##rine’] by the tokenizer 
of BioELECTRA). For a sentence si ∈ S , we get a cluster of tokens, si = (ti1, t

i
2, . . . , t

i
m) , 

along with its distributed representation Xi = (xi1, x
i
2, . . . , x

i
m) , where m represents the 

number of tokens. The detailed procedure for constructing a sentence graph is illus-
trated in Algorithm  1. In the graph, each token is modaled as a node, and edges are 
defined based on the following rules: if there is a dependency between two words, the 
corresponding nodes of the 2 words are connected by an edge. Especially, if a word is 
divided into word-pieces by the tokenizer of BioELECTRA, the first piece of the word 
is linked to the other word which has a dependency with it, and the pieces of the word 
are also linked in order. The token-level representation is modeled as the attribute of the 
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corresponding node. In this way, a graph Gi = (Vi,Ai,Xi) for the sentence si is generated, 
in which Vi,Ai,Xi are respectively a node set, an adjacency matrix, and an attribute set 
to describe the sentence graph. Adjacency matrix Ai is a symmetric matrix of m ∗m , and 
the element is defined as the following formula.

Generation of sentence representation

In this section, we provide a detailed explanation of the process for generating the sen-
tence-level distributed representation using a GPNN layer and a fully-connected neural 
network layer.

Algorithm 2: Node sequence sampling based on multi‑hop strategy 

The GPNN consists of a multi-hop node sequence sampler and a graph pointer genera-
tor. For a graph Gi , a neighbor sequence for each node is generated by using a multi-hop 
node sequence sampling strategy. The process of generating the neighbor sequence for a 
node is described in Algorithm 2. For each node in Gi , neighbors are sampled from 1-hop 
to k-hop with the Breath-First-Search (BFS) strategy. Nodes in the neighbor sequence are 
sorted according to the hops, and neighbors in the same hops are in random order. In the-
ory, the sampling depth k can be set to sample all the nodes in a graph, which guarantees 

(1)aip,q ∈ Ai =
1 if tp and tqare neighbors
0 else

0 ≤ p, q ≤ m
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the sampler to capture long-distance features. Considering that some nodes have too many 
neighbors, we also set a number of sampled nodes of GPNN L to stop sampling. Hyperpa-
rameters k and L can be adjusted flexibly to meet the requirements of different applications.

First, in the graph pointer generator module, a GCN layer is applied to Gi to obtain local 
features.

where Xi is the original distributed representation of the node, X̂i fuses local features in 
the graph, m is the number of nodes, d1 is the dimension of original representation, and 
GCN  is graph convolution calculation.

A vanilla GCN layer [39] (as shown in formula 3) is utilized to implement the above cal-
culation, and the input features are embedded into a vector space with the dimension of d2.

where σ(•) is an activate function, W  is a trainable matrix, N1(p) is the cluster of 
1-hop neighbors for p , t is the hidden layer propagation step, d̂p is the degree of p , and 
1/

√
d̂pd̂q  represents the weight between p and q.

Second, an LSTM-based sequence-to-sequence framework is used to screen out related 
nodes to the central node from the neighbor sequence and sort them by correlation. Spe-
cifically, two separate LSTM layers are applied, one as the encoder and the other as the 
decoder. For each node in the graph, the sampled neighbors {n1, n2, . . . , nL} and its repre-
sentation {x̂n1 , x̂n2 , . . . , x̂nL} are input into the encoder. And on the tth input, the representa-
tion of hidden layer representation is calculated as follows.

where e0 is initialized as 0, tanh(•) is an activate function, W  is a trainable matrix, 
and L the number of sampled nodes of GPNN. After the above steps, we obtain 
E = {e1, e2, . . . , eL} , which reflects the overall feature of nodes in the neighbor sequence.

Then, in the decoder, the representation of hidden layer representation is calculated as 
formula 5.

where ct−1 is the index of the selected node at the time t − 1 , c0 is the predefined label 
[start], and M is the number of screened out nodes of GPNN.

Third, using the hidden representation of the encoder and decoder, the conditional prob-
ability is calculated to rank nodes.

where 0 ≤ q ≤ L, 0 ≤ p ≤ M , softmax(•) is a normalized function, v,W1,W2 are train-
able weights, and T  is a transpose operation. After that, the output sequence is acquired.

(2)X̂i = GCN (Xi)Xi ∈ Rm∗d1 , X̂i ∈ Rm∗d2

(3)xi,tp = σ

(
W

∑
q∈N1(p)

1√
d̂pd̂q

xi,t−1
q

)

(4)et = tanh
(
W

[
et−1, x̂nt

])
0 ≤ t ≤ L

(5)dt = tanh
(
W

[
dt−1, x̂ct−1

])
0 ≤ t ≤ M

(6)P
(
cp|c1, c2, . . . , cp−1, x̂n1 , x̂n2 , . . . , x̂nL

)
= softmax

(
vT tanh

(
W1eq +W2dp

))

(7)output =
{
x̂c1 , x̂c2 , . . . , x̂cm

}
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Fourth, based on the selection and ranking of the neighbors, a 1D GCN layer is 
employed to extract and integrate topological features, generating the optimized repre-
sentation of global features for the central node.

where Aggregation(•) is an aggregation operation, and ConV (•) denotes the 1D convolu-
tion operation.

Fifth, during generating the final token-level representation, considering that the 
emphasis of X , X̂ and Z is different but may have couplings, a full-connected neural net-
work layer is used to fuse the above three features to enhance the signal-to-noise ratio.

where concat(•) denotes the contact operation, and Full_Connected(•) represents the 
calculation of a full-connected neural network layer.

Finally, after getting the representations of all nodes, we stack them in the token 
dimension and apply a full-connected neural network layer to compact the features.

where Stack(•) represents the stack operation, and Full_Connected(•) denotes the cal-
culation of a full-connected neural network layer. This representation can be then used 
for reasoning and classification.

Results and discussion
Dataset and experimental settings for CPI extraction

We implemented our project in the PyTorch environment and performed evaluation 
using the CHEMPROT corpus. CHEMPROT [42] is a manually annotated corpus for 
CPI extraction, which is divided into training, development, and test sets. To concen-
trate on crucial CPRs, we selected 5 CPRs labeled as "Y" for evaluating our model. To 
ensure a fair comparison with baseline methods, the dataset used in this paper is pre-
processed and provided by Peng et al. [28], and the statistics are shown in Tables 2 and 3.

We trained our model using the training set and optimized hyperparameters using the 
development set. The model was then trained using the optimal hyperparameters, and 
its performance was evaluated on the test set. The hyperparameters utilized by the pro-
posed model are presented in Table 4.

In addition, considering that most CPI extraction methods use micro-averaged preci-
sion, recall, and F1-score (hereinafter referred to as Precision, Recall and F1-Score) to 
evaluate their models, we use the same metrics, which are defined as follows.

(8)Z = Aggregation(ConV (ouptut))

(9)xoutput = Full_Connected
(
concat

(
X , X̂ ,Z

))

(10)Sentence_Repi = Full_Connected
(
Stack

(
xioutput1, x

i
output2, . . . , x

i
output m

))

(11)Precisionmicro =
∑

TPi∑
(TPi+FPi)

(12)Recallmicro =
∑

TPi∑
(TPi+FNi)
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where TPi donates true positive,FPi donates false positive, and FNi donates false negative 
for relation type i . Specifically, during the inferring process, it is regarded as a positive of 
our method that a sentence is correctly classified as its corresponding relation type.

Performance comparison versus baseline models on the CHEMPROT corpus

In this section, we introduce the baseline models used to compare with the proposed 
model, and Table 5 shows the experimental results on the CHEMPROT corpus. Con-
sidering that using pre-trained LMs has become a new paradigm in NLP field, we 
choose pre-trained LM based methods including [5, 14, 15, 24–26, 28] as baseline 
models, and obtain the results from their original publications except BioELECTRA 
[15], PubMedBERT [24], and ClinicalBERT [25]. Because [15] misses the precision 
and recall. Furthermore, it is worth mentioning that the test data employed in [15, 24, 
25] is reprocessed, which makes it distinct from the test data used in other baseline 

(13)F1_scoremicro =
2∗Precisionmicro∗Recallmicro
Precisionmicro+Recallmicro

Table 2 The statistics of CHEMPROT

Abstracts Annotated 
chemicals

Annotated proteins Annotated CPIs

Training set 1020 13,017 12,735 4155

Development Set 612 8004 7563 2418

Test set 800 10,810 10,018 3469

Total 2432 31,813 30,316 10,042

Table 3 The statistics of Preprocessed CHEMPROT

False CPR:3 CPR:4 CPR:5 CPR:6 CPR:9

Training Set 15,306 768 2251 173 235 727

Development Set 9404 550 1094 116 199 457

Test Set 13,485 665 1661 195 293 644

Total 38,195 1983 5006 484 727 1828

Table 4 The hyper-parameters of BioEGRE

Parameters Tuned range Optimal

Max sequence length 128 128

Training batch size [16, 32, 64] 64

Development batch size 8 8

Test batch size 8 8

Training epochs 50 50

Warmup proportion 0.1 0.1

Classifier dropout rate [0.0, 0.05, 0.1] 0.0

GPNN layers [1, 2] 1

GPNN input neighbors [16, 20, 24, 28, 32] 32

GPNN output neighbors [4, 8, 16] 4
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models and is not publicly available. Therefore, we conducted extra experiments to 
assess the performance of BioELECTRA, PubMedBERT, and ClinicalBERT using the 
same test set as [28] to ensure a fair comparison.

As shown in Table 5, compared with baseline models, BioEGRE gets better precision, 
recall, and F1-score on CHEMPROT and increases at least 0.19% (BERT + Capsule 
network [5]), 1.76% (BioELECTRA [15]) and 1.19% (BioELECTRA [15]) respectively 
for the above metrics. Compared with BioELECTRA, BioEGRE gets a promotion of 
0.66%, 1.76%, and 1.19% on precision, recall, and F1-score respectively on account 
of introducing topology information and using a GPNN layer. Furthermore, we con-
ducted a case study to further explore the reasons behind the performance improve-
ment. As depicted in Table 6, BioEGRE exhibits the ability to classify longer sentences 
into the correct relation types to a certain degree. This finding suggests that BioEGRE 
successfully captures topological features of the language, and the GPNN layer is 
instrumental in effectively merging local and non-local features from tokens in a sen-
tence graph. Additionally, while BioEGRE demonstrates a slight enhancement in preci-
sion, it exhibits a noteworthy advancement in recall through the inclusion of a GPNN 
layer. This observation suggests that incorporating a GPNN layer effectively improves 
the model’s capacity to capture patterns and structural features of language throughout 
the training process, as well as facilitates the accurate classification of sentences with 

Table 5 Comparison of BioEGRE and baseline models on CHEMPROT

The bold indicates list the results of the models represents the best among the results

Methods Precision (%) Recall (%) F1‑score (%)

BERT + Guassian [26] 77.08 76.06 76.56

BERT + Capsule network [5] 77.78 71.86 74.70

NCBI-BERT [28] 74.5 70.6 72.5

PubMedBERT [24] 70.12 72.51 71.29

ClinicalBERT [25] 72.78 74.01 73.39

BioBERT [14] 77.02 75.90 76.46

BioELECTRA [15] 77.31 80.31 78.78

Proposed 77.97 82.07 79.97

Table 6 Case Study for the comparison of BioEGRE and BioELECTRA 

The bold represents the correct answer from the model according to gold standard

No Sentence Gold standard Result 
from 
BioEGRE

Result from 
BioELECTRA 

1 This study confirms the feasibility of using continuous meas-
urement of AChE activity in CSF over prolonged periods, that 
@rivastigmine# markedly inhibits CSF AChE after a single oral 
dose of 3 mg, and that the inhibition of central AChE is sub-
stantially greater than that of peripheral AChE or @BuChE#

CPR:4 CPR:4 False

2 These data indicate that a @[3H]dofetilide# binding assay 
using @HERG# membranes may help identify compounds 
that prolong the QT interval

False False CPR:5

3 The @GRIP1# reduction was inhibited by @MK‑801#, an 
N-methyl-d-aspartate (NMDA) receptor antagonist, but not 
by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), an AMPA 
receptor antagonist

CPR:4 CPR:4 CPR:6
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the corresponding features during the testing process. Consequently, the proposed 
model aims to maximize the recognition of positives, thereby significantly improving 
recall. Nonetheless, given a constant training set, BioEGRE may struggle to acquire 
additional patterns and structures. Therefore, while BioEGRE successfully identifies 
more true positives during the inference process, it may also extract more false posi-
tives to some extent, resulting in a slight improvement in precision.

We also conduct a comparative analysis of two representative biomedical pre-trained 
language model, BioELECTRA and BioBERT. As shown in Table  5, BioELECTRA 
achieves 2.28% higher than BioBERT on F1-score. Different from BioBERT, BioELEC-
TRA performs replaced token detection (RTD) as a pre-training task on its discrimina-
tor, making the model sensitive to both the token itself and its semantics. Given that 
RE tasks necessitate a high level of sensitivity towards keywords, BioELECTRA exhibits 
superior performance compared to BioBERT. Accordingly, we have selected BioELEC-
TRA as the encoder for contextual features.

In summary, the proposed model outperforms existing models in terms of precision, 
recall, and F1-score. The results clearly indicate that integrating topological features of 
the language through a GPNN layer significantly enhances the performance of the model.

The effect of different language models on performance on CHEMPROT

In this section, we perform experiments to clarify the effect of different pre-trained 
LMs on performance. To be specific, we utilized four alternative LMs that have dem-
onstrated remarkable efficacy in the biomedical domain: BioBERT [14], SciBERT [23], 
PubMedBERT [24], and ClinicalBERT [25] as replacements for BioELECTRA to serve as 
encoders for contextual features. The experiments were conducted on the CHEMPROT 
corpus.

Table 7 depicts the performance comparison among different LMs. The experimental 
results indicate that LMs based on the BERT architecture exhibit a slightly lower perfor-
mance compared to BioELECTRA. The above result also confirms that pre-trained LMs 
leveraging the generative adversarial strategy not only reduce computational costs dur-
ing the pre-training phase, but also demonstrate superior performance in downstream 
NLP tasks that require high sensitivity to tokens/words.

As shown in Tables 5 and 7, an additional GPNN layer also improves the performance 
of BioBERT-based model, increases 2.13% and 0.78% respectively on recall and F1-score 
compared with BioBERT (77.08%, 76.06%, 76.56%), and the improvement of recall is 
noticeable. The above result demonstrates that incorporating a GPNN layer enables 

Table 7 Performance comparison with different LMs as encoder in our method

The bold indicates list the results of the models represents the best among the results

Language model Precision (%) Recall (%) F1‑score (%)

BioBERT + GPNN 76.47 78.03 77.24

SciBERT + GPNN 71.86 77.78 74.70

PubMedBERT + GPNN 70.6 74.5 72.5

ClinicalBERT + GPNN 75.90 77.02 76.46

Proposed (BioELECTRA + GPNN) 77.97 82.07 79.97
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models to access linguistic topological features across different language models. And 
the prior knowledge, linguistic topology, does help models to understand the structures 
of language, which promotes the recall significantly.

The effect of different parameters of GPNN layers on performance on CHEMPROT

In this section, we explore the effect of different hyper-parameters of GPNN on perfor-
mance of BioEGRE, including the number of sampled nodes of GPNN L , the number of 
GPNN layers, and the number of screened out nodes of GPNN m . To monitor and con-
trol the variables, other parameters including training and test data are consistent with 
that of the reported result in Table 5.

First, the effect of L is analyzed. Specifically, we fix m as 4, and perform experiments 
in the case of GPNN layers as 1 or 2, respectively. We prepare 5 optional parameters, 16, 
20, 24, 28, and 32, to explore the effect of different L on performance. Figure 4 illustrates 
the performance comparison of various L of BioEGRE.

Experimental result shows that BioEGRE achieves the best performance when L is set 
to 32, regardless of whether a single GPNN layer or two GPNN layers are used. Since 
L directly affects the extent to which the neighbors of each token are sampled, we con-
duct a statistical analysis on tokens with fully sampled 2-hop neighbors under different 
L values. The corresponding results are depicted in Fig. 5. When L is set as 32, 2-hop 
neighbors of tokens can almost be sampled thoroughly, and the model achieves the best 
performance. Reducing L may result in inadequate sampling of neighbors, leading to the 
omission of crucial features and consequently poor performance. Hence, it is advisable 
to increase the value of L appropriately to ensure sufficient sampling of neighbors.

Next, we fix L as 32, and change m and the number of GPNN layers to explore the 
effect of the above two hyper-parameters on model performance. Specifically, we pre-
pare 3 optional parameters 4, 8, 16 for m , and 2 optional parameters for GPNN layers 1 
and 2. Table 8 shows the performance comparison for various m and GPNN layers. This 
experimental result shows that with the same L , increasing the depth of GPNN layers is 
harmful for the performance. This may be attributed to the excessive number of parame-
ters in a deep GPNN, which hampers effective feature extraction, subsequently resulting 
in a lower signal-to-noise ratio (SNR) and diminished model performance.

Fig. 4 Comparison with different number of sampled nodes of GPNN
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In addition, for the determination of m , it can be noticed that the model achieves the 
best performance while m = 4 and the worst performance while m = 8 . Moreover, when 
m is set as 16, the performance rises again. It may be because when m is small ( m = 4 ), 
the model screens out the neighbors that carry the most important information for dif-
ferent tasks, which brings about the enhancement of SNR to generate a better-optimized 
distributed representation. When m is large ( m = 16 ), the GPNN module extracts 
almost all the neighbors, containing all the features and some noise, and the model also 
works well. However, when m = 8 , the GPNN module introduces the noise and misses 
features to some extent, which results in the worst performance. In conclusion, the 
selection of m should be reduced appropriately to efficiently screen out essential features 
and avoid noise.

Cross validation analysis on CHEMPROT

In this section, to obtain a more robust evaluation of BioEGRE’s stability, we conduct 
a tenfold cross-validation on the CHEMPROT dataset. To be specific, we combine the 
training and development sets to create a new set, and for each fold, 90% of the data 
in the set is utilized to train BioEGRE, while the remaining 10% is used as the develop-
ment/validation set to optimize hyper-parameters. Finally, under the optimal settings, 
BioEGRE is evaluated on the original test set to report precision, recall, and F1-score for 
each fold. The performance of each fold is presented in Table 9. The experimental results 
demonstrate that the proposed method consistently achieves stable performance across 
multiple random splits of the dataset, thereby verifying the stability of BioEGRE.

Fig. 5 The proportion of tokens sampled completely from two-hop neighbors of nodes under different 
number of sampled nodes of GPNN

Table 8 Comparison of model effects under different GPNN parameters

GPNN Layers = 1 GPNN Layers = 2

Precision (%) Recall (%) F1‑Score (%) Precision (%) Recall (%) F1‑Score (%)

m = 4 77.97 82.07 79.97 76.77 78.72 77.73

m = 8 77.04 77.99 77.53 70.75 74.45 72.19

m = 16 78.25 78.72 78.49 75.76 77.69 76.71



Page 17 of 22Zheng et al. BMC Bioinformatics          (2023) 24:486  

Breakdown performance analysis on CHEMPROT

To elucidate the cause of errors in BioEGRE on CHEMPROT, an analysis of the mod-
el’s performance on each positive CPR type is presented in this section. Table 10 offers 
a breakdown of the performance on the CHEMPROT test set. Among the five CPR 
types, BioEGRE demonstrates exceptional performance on CPR:3, CPR:4, CPR:5, and 
CPR:6, while slightly underperforming on CPR:9, which aligns with the findings from 
BERT + Capsule network [5]. According to the investigation of Sun et  al. [5], CPR:3, 
CPR:4, CPR:5, and CPR:6 exhibit discernible relation indicators, such as predicate verbs/
phrases that reveal the specific relationship in sentences, while CPR:9 lacks apparent 
indicators. When a sentence contains explicit relation indicators, these features are more 
likely to be captured by the GPNN module at the linguistic topological level, contribut-
ing to more accurate predictions. However, without an apparent indicator, the GPNN 
module plays a less obvious role, resulting in poor performance on such CPR type.

Table 11 shows the confusion matrix on the CHEMPROT test set. The rows denote 
the predictions of BioEGRE, and the columns represent the gold-standard annotations. 
From Table 11, it can be inferred that BioEGRE basically distinguishes positive CPRs, 
and that the model confuses sentences marked as positive CPRs with those marked as 
False. To our knowledge, Peng et al. [28] marks not only sentences with non-evaluated 
CPR types, but also manually constructed negative samples without any association with 
CPRs, as False during preprocessing. Moreover, a significant portion of False samples 
comprises the latter category. During the inferring process, BioEGRE may mistakenly 

Table 9 The result of tenfold cross-validation on the CHEMPROT dataset

Fold Precision (%) Recall (%) F1‑Score (%)

1 77.38 82.08 79.66

2 77.97 81.67 79.78

3 76.04 82.50 79.14

4 78.63 81.34 79.96

5 77.56 83.01 80.19

6 77.44 81.45 79.39

7 78.69 81.06 79.86

8 76.37 82.31 79.23

9 77.44 81.58 79.46

10 78.32 81.61 79.93

Ove 77.58 ± 0.83 81.86 ± 0.57 79.66 ± 0.33

Table 10 Breakdown performance on CHEMPROT corpus

CPR type Precision (%) Recall (%) F1‑Score (%)

BERT + Capsule 
network [5]

BioEGRE BERT + Capsule 
network [5]

BioEGRE BERT + Capsule 
network [5]

BioEGRE

CPR:3 78.61 76.76 67.97 81.95 72.90 79.27

CPR:4 78.03 80.31 79.11 90.13 78.57 84.94

CPR:5 77.78 74.65 68.21 81.54 72.68 77.94

CPR:6 81.41 77.13 74.74 86.35 77.94 81.48

CPR:9 73.99 73.14 56.99 59.63 64.39 65.70
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classify some sentences with non-evaluated CPR types as positive, leading to incorrect 
predictions. Therefore, we can deduce that the primary challenge in the CPI extraction 
task lies in distinguishing between non-evaluated and evaluated CPR types, as well as 
extracting common features from sentences with non-evaluated relation types and man-
ually constructed negative samples.

Experimental results on the GAD and EU‑ADR corpus

To evaluate the generalizability of BioEGRE, we conducted experiments on other bio-
medical RE tasks. Specifically, BioEGRE is trained and tested on the Gene Association 
Database (GAD) [44], which is labeled with gene-disease relations, and EU-ADR [45], 
which is labeled with disease-target relations.

The GAD corpus is oriented to the correlation between genes and diseases in genetic 
association studies, containing 10,697 genes, 12,774 diseases, and 74,928 gene-disease 
relations (labeled as positive). In addition, the EU-ADR corpus focuses on the correla-
tion between diseases and targets in scientific literature abstracts, which contains 7,011 
annotated entities and 2,436 relations.

The above two biomedical RE tasks can be formulated into binary classification prob-
lems, and the datasets on which BioEGRE is trained and tested are preprocessed by Lee 
et al. [14]. Meanwhile, we use BioBERT [14] and BioELECTRA [15] as baseline meth-
ods. We replicated the baselines and utilized precision, recall, and F1-score as evaluation 
metrics. The performance comparison between BioEGRE and the baseline methods is 
presented in Table  12. Additionally, to assess the stability of our proposed model, we 
conducted a tenfold cross-validation on the GAD and EU-ADR datasets. The results 
are summarized in Table 13, where p, r, and f represent precision, recall, and F1-score 
respectively, and Ove. denotes the overall performance (mean ± std).

Table 11 The confusion matrix on the CHEMPROT test set

Prediction Gold‑standard

False CPR:3 CPR:4 CPR:5 CPR:6 CPR:9

False 12,720 101 146 34 39 253

CPR:3 133 545 9 2 0 1

CPR:4 247 14 1497 0 1 5

CPR:5 50 3 0 159 0 1

CPR:6 72 0 3 0 253 0

CPR:9 253 2 6 0 0 384

Table 12 Performance comparison with baseline models on GAD and EU-ADR

The bold indicates list the results of the models represents the best among the results

Models GAD EU‑ADR

p (%) r (%) f (%) p (%) r (%) f (%)

BioBERT [14] 77.32 82.68 79.83 77.86 83.55 79.74

BioELECTRA [15] 78.15 84.29 81.10 73.33 81.48 77.19

Proposed 79.77 87.20 83.31 81.73 85.37 83.51
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As shown in Table 12, BioEGRE gets the best performance in the above biomedical 
RE tasks compared with baseline methods, which demonstrates the generalization of 
BioEGRE. Additionally, as shown in Table 13, BioEGRE also has a strong stability. How-
ever, the result in the ninth fold in EU-ADR corpus is prominent. We delved into the 
data of the ninth fold and discovered that it contains a higher proportion of positive 
instances compared to other folds. This disparity may explain the exceptional perfor-
mance observed. In conclusion, the experimental results affirm the generalization and 
stability of the proposed method.

Discussion and limitation

The model achieves better performance mainly for the following reasons. (1) A graph 
instead of a sequence is used to model the topology of a sentence, which can help to 
incorporate the topological knowledge. (2) BioELECTRA is used to encode the contex-
tual features and a GPNN layer is utilized to optimize the distributed representation, 
which not only captures contextual features effectively but also captures both local and 
non-local features within the sentence graph, enabling the generation of a more accurate 
sentence-level distributed representation.

As for the generalization, the proposed method is able to be extended to general 
domains and other RE tasks rather than limited to the biomedical field. First, BioRE 
task is more complicated, which is because biomedical texts contain more obscure 
words, and appear in the form of long and difficult sentences. Secondly, BioEGRE not 
only exhibits excellent performance in multi-class relation extraction tasks, such as CPI 
extraction, but also demonstrates effective results in binary relation extraction tasks 
focused on GAD and EU-ADR, which indicates the potential for BioEGRE to be theo-
retically generalized and applied to diverse relation extraction tasks across various fields.

When it comes to the processing time of BioEGRE, we have conducted experiments 
to test the speed of our model in the training process and inferring process. The experi-
mental environment is a server with a 24-core, Inter® Xeon® Gold 6248R CPU, 3.0 GHz-
frequency, a single A100 PCIE 40 GB GPU and 512 GB-memory. The operating system is 
64-bit Ubuntu 16.04.4 LTS (GNU / Linux 4.13.0–36 -generic x86_64). Furthermore, we 

Table 13 Cross-validation performance of BioEGRE on GAD and EU-ADR

Fold GAD EU‑ADR

p (%) r (%) f (%) p (%) r (%) f (%)

1 79.55 87.19 83.19 81.48 84.62 83.02

2 79.21 86.71 82.79 81.84 83.33 82.58

3 79.33 87.30 83.12 80.67 85.11 82.83

4 78.97 86.67 82.64 81.48 84.52 82.97

5 79.75 87.21 83.31 81.75 85.34 83.51

6 79.33 87.67 83.29 81.98 84.76 83.35

7 78.82 88.11 83.21 80.45 84.36 82.36

8 79.01 87.42 83.00 80.10 84.57 82.27

9 80.01 86.33 83.05 81.33 90.15 85.51

10 78.21 86.52 82.16 80.36 83.02 81.67

Ove 79.21 ± 0.51 87.11 ± 0.55 82.98 ± 0.36 81.14 ± 0.68 84.98 ± 1.95 83.00 ± 1.03
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have performed the test on the CHEMPROT dataset, with epochs as 50, max sequence 
length as 128, batch size as 64, the number of sampled nodes as 32, the number of 
GPNN layers as 1, and the number of screened out nodes as 4. As for the training pro-
cess, the model cost about 180 min (BioELECTRA cost about 120 min with the same 
hyper-parameters), where it took 15 min to preprocess the data, and 165 min to train 
the neural network parameters of the model, including fine-tuning BioELECTRA and 
training parameters of GPNN and full-connected neural network. Despite the additional 
time required (an additional 60 min for 50 epochs compared to BioELECTRA) and com-
putational cost associated with the parsing process and GPNN module, the substantial 
improvement in performance, resulting from the inclusion of topological features, justi-
fies this tolerable overhead.

It is also important to acknowledge the limitations of the proposed model. Firstly, 
while SciSpaCy is considered one of the top tools for parsing biomedical texts, it is not 
infallible and may occasionally produce inaccurate parsing results. Consequently, the 
use of SciSpaCy in our model may introduce some noise and potentially lead to errors in 
our predictions. To mitigate this issue, we suggest exploring a multi-task learning strat-
egy that combines dependency parsing and RE simultaneously, which could potentially 
enhance the overall performance of our model. Second, BioEGRE is essentially a pipeline 
model for RE tasks, which is only oriented to manually tagged sentences. However, pipe-
line models may only account for sentence-level information and fail to fully utilize the 
entity-level features of a sentence. Consequently, we suggest that exploring a multi-task 
learning strategy that jointly involves NER and RE tasks could be highly beneficial in 
improving the performance of BioEGRE. Third, there exists some versions of pre-pro-
cessed data of CHEMPROT, bringing about the incomparability of the results of meth-
ods based on different pre-processed data. For instance, SciBERT [23] and BioM-BERT 
[46] achieve F1-score of over 80% on a pre-processed CHEMPROT dataset different 
from that provided by Peng et al. [28], while [15] reports that SciBERT achieves 75.24% 
of F1-score on the same dataset to evaluate BioEGRE. This inconsistency highlights the 
need for a unified and standardized pre-processed dataset for CHEMPROT to enable 
unbiased evaluations of BioRE methods.

Conclusion
Automatic and accurate extraction of relations from biomedical literature plays a sig-
nificant role in biomedical natural language processing (NLP). In this paper, we propose 
a novel approach, BioEGRE, for sentence-level BioRE. Different from existing methods, 
BioEGRE incorporates linguistic topological features and leverages a GPNN layer to 
effectively merge local and non-local features of tokens. The experimental results dem-
onstrate that BioEGRE outperforms the baseline methods on the CHEMPROT, ADE, 
and GAD corpora, indicating the effectiveness and generalizability of the proposed 
method. In the future, our research direction involves integrating a multi-task learning 
strategy that combines dependency parsing and NER with the RE task. Moreover, we 
plan to incorporate GPT-based generative models to further enhance the performance 
of our approach.
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