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Abstract 

Background:  In canonical protein translation, ribosomes initiate translation at a spe-
cific start codon, maintain a single reading frame throughout elongation, and termi-
nate at the first in-frame stop codon. However, ribosomal behavior can deviate at each 
of these steps, sometimes in a programmed manner. Certain mRNAs contain sequence 
and structural elements that cause ribosomes to begin translation at alternative start 
codons, shift reading frame, read through stop codons, or reinitiate on the same mRNA. 
These processes represent important translational control mechanisms that can allow 
an mRNA to encode multiple functional protein products or regulate protein expres-
sion. The prevalence of these events remains uncertain, due to the difficulty of system-
atic detection.

Results:  We have developed a computational model to infer non-canonical transla-
tion events from ribosome profiling data.

Conclusion:  ORFeus identifies known examples of alternative open reading frames 
and recoding events across different organisms and enables transcriptome-wide 
searches for novel events.
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Background
Deviation from the rules of canonical protein translation can lead to protein synthe-
sis from alternative ORFs (altORFs). Altered initiation may result in upstream ORFs 
(uORFs) or downstream ORFs (dORFs) [1, 2]. Elongation and termination can be 
affected by a a category of alternative translational events termed recoding events, 
where the usual rules of mRNA decoding are altered. Recoding events during elongation 
include programmed ribosomal frameshifting (PRF), where the ribosome slips forward 
or backward (usually by + 1 or − 1 nucleotide) and changes reading frame during trans-
lation [3, 4]. Recoding events during termination include stop codon readthrough (SCR) 
or incorporation of selenocysteine or pyrrolysine, which lead to extended translation 
past an in-frame stop codon [5, 6]. These non-canonical and recoding events generate 
alternate protein sequences and are an important feature of the translational landscape 
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of many organisms. Alternative translation events, especially frameshifts, are common 
in viruses [7], but alternate translation mechanisms are also observed beyond viruses, 
from bacteria to humans. It is increasingly clear that these events may be more wide-
spread than we realize, with known examples spanning all domains of life [8–17]. Non-
canonical and recoding events can act as a regulatory switch for protein synthesis or can 
enable synthesis of multiple different functional protein products from a single mRNA. 
Together, frameshifts and other non-canonical events play an important role in regulat-
ing translation and producing alternate peptides that may have gone undetected using 
standard annotation pipelines.

One method for detecting these alternate translation events is ribosome profiling 
(ribo-seq). Ribo-seq is a technique that provides nucleotide-resolution information 
about ribosome position during translation, which can be used to infer open reading 
frames (ORFs). The protocol for ribo-seq involves (i) treating ribosome-bound mRNAs 
with a nuclease—typically RNase I or micrococcal nuclease (MNase), (ii) isolating 
the ribosome-protected fragments (or ‘footprints’) (iii) generating a library for deep 
sequencing, and (iv) mapping the ribosome footprints back to the genome or transcrip-
tome [18]. The pattern of mapped reads can then be used to identify translated regions 
by manually or computationally searching for regions of high read density. In many ribo-
seq data sets (though not all), aggregate ribosome footprint density over coding genes 
shows a characteristic triplet periodicity. This periodicity suggests that ribo-seq data can 
not only be used to measure ribosome density in an ORF at course resolution, but also to 
measure the reading frame that ribosomes are in at nucleotide resolution.

However, this requires looking at the data one ORF at a time, and at the single-ORF 
level the signal is often much more sparse. While some nucleotide (nt) positions have a 
high footprint density, the majority of positions in an mRNA typically have no mapped 
footprints. This heterogeneity presents a challenge for directly inferring frame at each 
nt position of a gene. Ribo-seq data can also exhibit a high level of noise, due in part 
to nuclease sequence bias and variability in footprint length [19]. This is especially pro-
nounced in initial work in bacteria, where the wide range of footprint lengths blurs 
the signal and makes it difficult to decipher which nucleotide is in the P-site. However, 
subsequent work has demonstrated that adding the endonuclease RelE (in addition to 
MNase) during ribosome profiling in E. coli results in clear triplet periodicity of foot-
print ends (in aggregated metagenes) [20]. Additionally, computational approaches have 
been developed to determine the position of the P-site within different length ribo-seq 
fragments, which improves resolution for data sets generated with MNase, RNase I, or 
other nucleases [21].

Numerous methods exist to detect ORFs from ribo-seq data based on the distribution, 
periodicity, or read lengths of footprints in actively translated regions. Many of these 
algorithms allow for detection of novel ORFs, alternative initiation, and short uORFs or 
dORFs [22–33]. Some allow for ORFs with non-AUG start codons. However, current 
methods fall short when searching for recoding events that break the rules of canoni-
cal translation. Recoding events like programmed ribosomal frameshifts and stop codon 
readthrough violate the assumptions of current models, making detection difficult. 
Ribo-seq data has the power to reveal these recoding events [16, 34, 35], but there is 
no integrated approach available. Incorporating detection of alternative ORFs (altORFs) 
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and recoding events into a single method would allow for a more complete annotation 
process and help flag unexpected translation events for investigation.

Here we present ORFeus, a novel computational tool for inferring altORFs. ORFeus 
uses a hidden Markov model (HMM) to infer translation patterns from ribo-seq data 
that is inherently noisy and sparse. HMMs have been used for detection of translated 
ORFs from ribo-seq data previously by RiboHMM [22]. RiboHMM is an HMM-based 
ORF detector that predicts canonical ORFs from ribo-seq data, but this tool is limited 
to detection of a single canonical ORF per transcript and does not consider the possibil-
ity of frameshifts or stop codon readthrough. Separately, HMMs have also been used 
to infer frameshifts from nucleotide sequence by GeneTack [36]. Here we propose an 
HMM architecture designed to detect multiple types of recoding and alternative events 
using ribo-seq data in conjunction with nucleotide sequence. ORFeus identifies changes 
in reading frame and additional upstream or downstream reading frames. Given high 
coverage, periodic ribo-seq data, ORFeus can identify novel or extended ORFs (includ-
ing uORFs and dORFs) with either canonical or alternative start codons, as well as pro-
grammed ribosomal frameshifts and stop codon readthrough events.

Results
Data processing

ORFeus takes as input aligned ribosome profiling data, reference annotations, and a ref-
erence genome sequence. The annotations file should contain known 5’UTR, 3’UTR, and 
protein-coding ORF features (although for bacteria, UTRs are typically not annotated). 
Aligned ribo-seq reads submitted to ORFeus should be uniquely mapped to the genome 
and have their 5’ ends (or 3’ ends) offset to correspond to the P-site of the ribosome (see 
Methods for further explanation) (Fig.  1A). Mapping reads uniquely to the genome is 
advised (though not strictly required) to avoid confounding signal from multimapped 
reads that may be mistaken for alternative translation. Available tools for alignment and 
pre-processing include RiboGalaxy [37] and Shoelaces [21].

The first step performed by ORFeus is a data processing step to combine information 
from the input aligned ribosome profiling data, reference annotations, and reference 
genome sequence. During this data processing step, ORFeus associates each protein-
coding transcript (5’UTR, ORF, and 3’UTR) to its aligned ribo-seq read counts and 
nucleotide sequence using the annotations and genome sequence. For bacteria, we split 
the genome into one “transcript” per protein-coding ORF (each “transcript” corresponds 
directly to one annotated ORF plus any annotated UTRs in the upstream/downstream 
intergenic regions); i.e. we ignore operon structure and analyze one ORF at a time. To 
control for variation in both length and expression across different transcripts, ORFeus 
converts input read counts to relative ribo-seq density, which we call ρ . The relative 
ribo-seq density ρt

i  at position i of transcript t is calculated by normalizing the raw read 
counts at position i of transcript t by the mean read counts per position for transcript 
t: ρt

i = cti /c̄t . This per-transcript normalization ensures that ribo-seq density values are 
comparable across different transcripts, so the model can expect similar magnitude ρt

i  
values within each translated ORF. Note, however that transcripts with especially long 
UTRs with no coverage will have lower c̄t , and thus higher ρt

i  relative to transcripts with 
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short or no UTRs. When aggregated across all transcripts, ideal ribo-seq density values 
should be near zero in the UTRs and exhibit clear periodicity within the ORFs (Fig. 1B).

ORFeus algorithm

ORFeus is designed to detect both canonical and non-canonical ORFs from ribo-seq 
data (Fig. 2A). It uses a hidden Markov model (HMM) trained to recognize ribo-seq sig-
nal and nucleotide sequence features characteristic of translated ORFs. HMMs provide 
a probabilistic framework well-suited for handling noisy and sparse signals like ribo-seq 
data [39]. An HMM predicts the most probable path of hidden “states” that could gener-
ate the observed data. In our case, ORFeus takes as input information about the ribo-
seq reads and nucleotide sequence at each position of a transcript and returns the most 
likely path of ORF or non-ORF states for that transcript.

A simple HMM to model a canonical ORF includes eleven types of states: a 5’UTR 
state, a 3’UTR state, and states corresponding to nucleotide 1, 2, and 3 of each start 
codon, sense codon, and stop codon. The simple model (Fig. 2B) generates ribo-seq ρt

i  
values for each position in the transcript. There is additional information in the nucleo-
tide sequence of the transcript, including codon usage preferences and start/stop codon 
preferences. To accommodate this codon information in the HMM, we expand the 
model to also emit a nucleotide for each state. The resulting model includes separate 

Fig. 1  Processing ribo-seq data. A Ribo-seq involves experimentally generating reads (top), then 
computationally mapping sequenced reads to precise ribosome positions (bottom). Ideal data shows a 
clear triplet periodicity and can be offset to correspond to a position within the P-site of the ribosome by 
shifting the 5’ or 3’ end of all reads. B Realigned ribo-seq data from Wu et al [38] shows clear triplet periodicity 
in aggregate across all annotated ORFs in S. cerevisiae (top). This periodic pattern is not as obvious in 
individual ORFs (bottom). The ribo-seq signal shown here for PDA1, a housekeeping gene commonly used 
as a reference in gene expression studies, is representative of the signal observed across other genes in S. 
cerevisiae 
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trios of states for each possible start, sense, and stop codon. Only single (P-site) codon 
states are modeled, but alternate model architectures could include states for each possi-
ble pair of (A-site and P-site) codons. We chose to include only single codons in order to 
limit the number of total states and constrain model complexity. Our simple canonical 
ORF model (Fig. 2C) generates two observed sequences: the ribo-seq values ρt

i  and the 
nucleotide sequence xti  . Valid start codons are determined by default from the annota-
tions and genome sequence files, but can be altered by the user. This enables non-AUG 
start codon detection.

To model non-canonical ORFs, we add additional states and transitions (Fig. 3A). Our 
original goal was just to capture programmed ribosomal frameshifts. To model a +1 
frameshift we added an X1 state to represent the nucleotide that is skipped over during 
translation. Translation can then resume in the +1 reading frame, continuing to a sense 
codon nucleotide 1 state (Fig. 3A blue arrows). We then chose to model a − 1 frameshift 
as a + 2 frameshift, since the resulting downstream frame should be equivalent and this 
is a reasonable approximation given the resolution of ribo-seq data. To shift the read-
ing frame forward by two nucleotides (equivalent to back by one nucleotide), we added 
a second state X2 to represent the second nucleotide that is skipped over during a +2 
frameshift (Fig. 3A red arrows).

Since the HMM framework is very general, we can also add states and transitions to 
capture additional alternative translation events. We added stop codon readthrough 
by allowing movement from a stop codon directly back to a new sense codon (Fig. 3A 
purple arrow). To model short upstream and downstream ORFs, we added special start, 

Fig. 2  Inferring canonical ORFs from ribo-seq data. A ORFeus takes in mapped ribo-seq data, genome 
annotations, and genome sequences and returns predicted ORFs calculated using an HMM. B A simple HMM 
to model canonical translation includes states corresponding to the 5’UTR and 3’UTR as well as nucleotide 1 
(blue), 2 (red), and 3 (grey) of each start codon (diamonds), sense codon (circles), and stop codon (squares). 
All nonzero transition probabilities are denoted with arrows. A schematic representation of the emission 
probabilities for each state are plotted below the corresponding states. C A more complex HMM includes 
states for each individual start, stop, and sense codon sequence. Idealized ribo-seq density for a transcript 
that undergoes canonical translation of a single ORF is depicted below the model. The input relative ribo-seq 
density ρt

i
 and nucleotide sequence xt

i
 at each position inform the output state path prediction
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sense, and stop codon states that can be accessed only from within the 5’UTR or 3’UTR 
respectively (Fig. 3A yellow arrows). These uORF and dORF states are included as sepa-
rate states from the main ORF since their lengths are expected to be much shorter. Mul-
tiple long ORFs are included by allowing a transition from a 3’UTR into another main 
ORF (Fig. 3A grey arrow). The full model predicts several types of canonical and non-
canonical translation (Fig. 3B).

Parameter estimation

After the ribo-seq data has been processed, ORFeus is trained on the input data set to 
recognize the signals for ORF and non-ORF states, with data-specific parameters. There 
are two sets of probabilities that must be estimated:

•	 Transition probabilities represent the probability of moving to state k from state 
k − 1 . These are represented by arrows in Fig. 2B, C. For example, the probability of 
moving from a 5’UTR state into a start codon state is represented by the arrow from 
the 5’UTR state to the start nucleotide 1 state.

•	 Emission probabilities represent the probability of observing a specific ribo-seq 
value ρt

i  and nucleotide xti  in state k. Different states have different expected ribo-seq 
density values. These are represented by rotated histograms below the state map in 
Fig. 2C. For example, we expect mostly ρt

i = 0 for positions in the 5’UTR state (dark 
grey histogram below the 5’UTR state), while we expect to observe higher ρt

i  values 
more often for positions in start codon states (blue, red, and light grey histograms 
below the start codon). The nucleotide identity also factors into the emission prob-
abilities for the expanded model shown in Fig. 2C, since only some nucleotides are 
allowable for certain states (e.g. UAA, UAG, and UGA for stop codons). Most states 
emit their designated nucleotide xti  with probability 1.0. However, UTR states can 
emit any nucleotide with equal probability.

The input annotations are used to determine the bounds of each mRNA transcript 
associated annotated canonical ORFs. Only the annotated canonical ORFs are used 

Fig. 3  Inferring alternative ORFs from ribo-seq data. A A more complex HMM to model non-canonical 
translation includes additional states and transitions to represent upstream ORFs and downstream ORFs 
(yellow), programmed ribosomal frameshifting (blue and red), and stop codon read-through (purple). The 
probability of each type of event (denoted with a Greek letter) is set to reflect its expected frequency. B The 
full model can infer both canonical ORFs and alternative ORFs, including recoding events
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to estimate the model parameters for canonical ORF states. The probabilities for non-
canonical ORF states are derived from these canonical ORF parameters or set manu-
ally as described below. We exclude known non-canonical events from the training and 
instead test on these events to evaluate model performance.

Transition probabilities

Except for the few transitions discussed below, the transition probabilities are set to the 
observed frequency of each type of transition, based on the input transcriptome (gener-
ated from the annotations and genome sequence as described in data processing). For 
example, the probability of transitioning from the begin state into a 5’UTR is propor-
tional to the frequency of annotated transcripts with 5’UTRs in the input transcriptome. 
The probability of remaining in a 5’UTR versus transitioning to a start codon is based on 
the mean length of annotated 5’UTRs. The probability of moving from the 5’UTR into 
state 1 of a particular start codon also depends on the relative frequency of this start 
codon across all annotated transcripts. Similarly, the probability of moving from state 
3 of one sense codon to state 1 of the next sense codon is the relative usage of this next 
codon across all annotated transcripts. In this way, most of the model’s transitions are 
set to reflect features specific to the input transcriptome. All transition probabilities are 
enumerated in Additional file 1: Table S1.

There are six transition probabilities that are set to the expected frequency of non-
canonical translation events (denoted by Greek letters in Fig. 3A). These six probabil-
ities, which we call altORF event parameters, are set by hand. We have little a priori 
knowledge of the rate of multiple ORFs, stop codon readthrough, or programmed ribo-
somal frameshifting across transcriptomes, and we cannot estimate them from the 
annotations, so we set these values instead by optimizing correct identification of known 
events across our test data sets. We chose a single set of values that worked to identify 
known events across all of our test data sets. The probability of frameshifting per codon 
α = 10

−5 is the total probability of a programmed ribosomal frameshift event, either 
in the +  1 or −  1 direction. The probability of −  1 frameshift given that a frameshift 
occurs β = 0.5 represents the relative frequency of +  1 and −  1 frameshifting (thus 
we assume that both types of frameshifting are equally likely). The probability of stop 
codon readthrough per ORF γ = 10

−4 is the total probability of translation past an 
in-frame stop codon, whether by sense codon incorporation or stop codon bypassing. 
The probability of short ORFs (including uORFs and dORFs) δ = 10

−3 is the probabil-
ity of observing a short ORF at each nucleotide in the 5’UTR or 3’UTR. The probabil-
ity of multiple non-overlapping ORFs ζ = 10

−10 is the probability of initiating another 
long ORF (including longer uORFs and dORFs) at each 3’UTR position downstream 
of the main ORF. Each of these parameters can be adjusted by the user to more accu-
rately reflect the expected probabilities of alternative translation in the transcriptome of 
interest.

Emission probabilities

The emission probabilities are set to the probability of observing a particular nucleo-
tide and a particular relative ribo-seq density ρt

i  value in each state. The total emis-
sion probability is therefore the product of the nucleotide emission probability and 
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the ribo-seq emission probability. We emit both values at each state so that the model 
is informed by both ribo-seq and nucleotide sequence.

The nucleotide emission probability is one over the number of possible nucleotides 
if the nucleotide is represented by this state, and zero otherwise. For most states, only 
a single nucleotide can be emitted, so this value is 1 for that nucleotide. However, 
some states (including UTR states) can emit any nucleotide. For example, the prob-
ability of observing A, T, C, or G in a UTR state is 1/4, since any valid nucleotide may 
be represented by these states (and we chose not to incorporate information about 
UTR nucleotide composition to avoid biasing our search against finding novel ORFs 
in annotated UTRs). In contrast, the probability of observing A in an ACG1 sense 
codon state is 1, since the first nucleotide state of an ACG codon must be an A.

The ribo-seq emission probability is calculated for each state using the frequency of 
ρt
i  observed across all annotated protein-coding transcripts. For example, the prob-

ability of observing ρt
i = 0.5 in an ACG1 state is set to the frequency of ρt

i = 0.5 val-
ues across all first positions of annotated ACG sense codons. The ribo-seq emission 
histograms are binned to speed up downstream calculations, with 25 uniform bins 
spanning the range of observed ρt

i  values in the input ribo-seq data.
Since each start, sense, and stop state represents a single codon, certain differences 

in signal that are sequence-specific can be picked up by the model. For example, some 
nucleases used in ribosome profiling can exhibit nucleotide bias, preferentially cleav-
ing after certain nucleotides leading to added noise. For example, RelE usually cleaves 
after the second nucleotide of the A-site, but prefers to cleave after a C nucleotide 
(and strongly avoids cleavage before a C nucleotide) [20]. As a result, NNC codons 
are more often cleaved after the third nucleotide of the A-site instead, leading to a 
disruption in periodicity at these codons [20]. The codon-specific emissions in our 
model recognize this bias, expecting to see density at the third nucleotide in NNC 
codons and the second nucleotide in other codons. This strategy turns some types of 
nuclease bias into signal that the model can use to inform reading frame prediction. 
This is useful in all cases except for especially small transcriptomes (such as viral or 
organellar transcriptomes). When there are too few transcripts to train emissions for 
each possible codon, we suggest pooling all codons during calculation of the emis-
sions, which is an option available to the user.

The emissions for non-canonical ORF states are set after the canonical ORF emis-
sions have been calculated. The emissions for uORF and dORF states are set to be 
the same as those for a canonical ORF. The emissions for the frameshift states X1 and 
X2 are naively set to the mean of the emissions for states 1, 2, and 3, since we have 
no prior knowledge about what these distributions should look like (since known 
frameshifts are rare).

After estimating all emission probabilities, we add a pseudocount of 10−10 to each 
ribo-seq emission probability bin and then re-normalize so that the total emission 
probability for each state is still one. This ensures that there is a non-zero probability 
of observing any possible ribo-seq value in each state. The advantage of this is that 
it allows the model to consider paths that go through unlikely (but not impossible) 
states for a given sequence and lets the model predict ORFs that contain ribo-seq val-
ues that were not observed in annotated ORFs for the given data set.
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ORF prediction

After the parameters have been trained, ORFeus is ready to predict ORFs for individual 
transcripts. For a single transcript, ORFeus returns the most probable state path. This 
indicates the positions and sequences of predicted canonical and non-canonical ORFs. 
We use the Viterbi algorithm [40] to compute the most probable state path for each 
transcript.

The output path tells us whether an altORF is inferred. The predicted state path for a 
+1 frameshift event includes state X1 , which shifts the downstream frame forward by 
one nucleotide. The predicted state path for a − 1 frameshift (or + 2 frameshift) event 
includes states X1 and X2 , which shifts the downstream frame forward by two nucleo-
tides (which is is equivalent to shifting the downstream frame backward by one nucle-
otide). Similarly, the presence of uORF or dORF states indicates multiple ORFs are 
predicted and gives the exact inferred sequence of these additional ORFs. Finally, to 
indicate stop codon readthrough, the Viterbi path includes the transition from a stop 
state 3 back to sense state 1.

Model testing

Known altORFs

To test ORFeus, we ran the model on known examples of alternative translation that 
were held out from the training annotations. We used examples from multiple species 
to evaluate the method, which can be run on data from varied organisms and ribo-seq 
experimental protocols. We trained and ran the model on published data from E. coli 
[20], S. cerevisiae [38], D. melanogaster embryos [16], D. rerio embryos [31], and SARS-
CoV-2 infected C. sabaeus Vero E6 cells [41]. Known examples of altORFs in these spe-
cies were used to tune the altORF event parameters to a single α , β , γ , δ , and ζ value that 
can be used across all tested data sets.

With these altORF event parameters, ORFeus correctly identifies well-characterized 
examples of alternative translation, including: a + 1 frameshift in E. coli prfB (Fig. 4A), 
a − 1 frameshift in SARS-CoV-2 ORF1ab (Fig. 4B), stop codon readthrough in D. mela-
nogaster headcase (hdc) (Fig. 4C), uORFs upstream of S. serevisiae GCN4 (Fig. 4D), and 
a dORF downstream of D. rerio rrm1 (Fig. 4E). D. melanogaster hdc has an abundance of 
ribo-seq signal in the 5’UTR. With our chosen default parameters, ORFeus does not pre-
dict any uORFs to account for this signal, but with slightly different parameter choices it 
does. We were unable to distinguish whether this signal, which was also recognized by 
Dunn et al. [16]), represents a real translation signal or some sort of artifact.

These examples show that ORFeus is capable of detecting real altORF events. A subset 
of these events can be detected in data sets lacking exceptionally clear triplet periodicity 
(stop codon readthrough in D. melanogaster). However, the number of known cases is 
anecdotal, and it is important to note that the altORF event parameters used to detect 
these events were optimized for good prediction on these test cases themselves.

Simulated altORFs

To evaluate the performance of ORFeus across a transcriptome, we want to estimate 
sensitivity and specificity of altORF event detection. Though there are examples of 
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altORF events across many organisms, there are a limited number of known examples 
of non-canonical translation represented in any single species. As a result, it is diffi-
cult to systematically evaluate the model’s performance on all types of altORF events 
for a single ribo-seq data set. Instead, we devised a method to simulate altORFs from 
the model. Since an HMM is a generative model, we have the ability to simulate 
altORFs using the transitions and emissions. We create a state path using the transi-
tion probabilities, then select the nucleotide sequence and relative ribo-seq density ρt

i  
values using the emission probabilities for each state.

Sampling from an HMM to generate a simulated ORF is trivial. Here though, we 
specifically want to simulate altORFs, which include a transition into a specific set 
of altORF states. Since the probability of transitioning into any given altORF states 
is rare, we would have to simulate thousands of ORFs from the HMM to generate a 
single altORF by chance. So instead, we sample conditional on the state path includ-
ing a transition into an altORF event. We use a sampling method that works outward 
from the desired altORF event. The forward sampling direction follows the standard 
HMM sequence generation method, but the backward direction depends on a transi-
tion matrix inversion (Implementation).

Sequences can also be simulated to have a target mean ribo-seq coverage level c̄t . 
To do this, we first estimate the total number of reads Nt that should be assigned to 
the transcript to generate this mean coverage level: Nt = c̄t × Lt where Lt is the total 
length of the transcript in nucleotides. Reads are then assigned to each position i in 
the transcript with probability proportional to ρt

i .

Fig. 4  Model performance on known and simulated altORFs. A–E Well-characterized examples of alternative 
translation events are correctly inferred by the model. The annotated and predicted ORF are shown 
schematically above the real ρt

i
 signal for each transcript. Sensitivity (F) and specificity (G) are shown for 

sequences simulated using parameters estimated from the Wu et al. S. cerevisiae data set [38]. Each point 
represents the mean sensitivity or specificity over 100 simulated sequences with the given mean ribo-seq 
coverage. H The number of ORFs with at least the given ribo-seq coverage drops off rapidly as the coverage 
threshold increases. The data shown are for the Wu et al. S. cerevisiae data set [38]
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The sensitivity and specificity for altORF detection at different ribo-seq coverage levels 
were estimated using sequences simulated by this approach (Fig. 4G, H). The model was 
run on the simulated sequence of nucleotides and relative ribo-seq density values for 
ORFs of various coverage levels. If an altORF event was simulated and then correctly 
predicted within ±  10 nucleotides of the true simulated location, the result was con-
sidered a true positive. If no altORF event was simulated, but an altORF event was pre-
dicted, the event was considered a false positive.

The ribo-seq coverage level needed for accurate altORF detection will vary by data set. 
Before running ORFeus on a given ribo-seq data set, we recommend running the sen-
sitivity and specificity simulations (included in the ORFeus code) to determine a cover-
age threshold that yields appropriate performance (Fig. 4F, G). ORFeus should only be 
run on transcripts with this ribo-seq coverage or higher. The number of transcripts in a 
given data set with the necessary coverage level will depend on the coverage threshold 
chosen (Fig. 4H).

Discussion
Limitations

ORFeus cannot detect translation occurring in more than one reading frame, meaning 
it is not designed to detect overlapping or internal ORFs. This limitation has impor-
tant consequences for interpretation of predictions generated by ORFeus. ORFeus may 
incorrectly predict programmed ribosomal frameshifting events to account for overlap-
ping translation in another reading frame.

ORFeus provides no mechanistic insights about how a predicted non-canonical trans-
lation event occurs, and is therefore limited in the scope of what types of events can be 
called. For example, we are unable to distinguish between alternate forms of stop codon 
readthrough. ORFeus can only identify that there is translation immediately past a stop 
codon, not whether it is due to selenocysteine incorporation, near-cognate tRNA decod-
ing, or bypassing of the stop codon altogether. All of these events result in downstream 
in-frame translation past a potential stop codon and are indistinguishable from each 
other at the current resolution of ribosome profiling data. Similarly, we cannot distin-
guish a + 1 programmed ribosomal frameshift from a − 2 frameshift (or a − 1 frameshift 
from a +2 frameshift), which could result in the same downstream ribo-seq signal. In 
fact, we even model a − 1 frameshift event as a +2 frameshift event given the lack of 
resolution to distinguish between their output, because it is convenient in the structure 
of the HMM.

Importantly, we limit ourselves to identifying events that could result in pronounced 
signal changes. For example, we search only for uORFs and dORFs that are translated 
at a rate comparable to the main ORF, because setting a lower expected signal is more 
likely to pick up noise. ORFeus is also only capable of predicting frameshifts that gen-
erate C-terminally extended protein products (e.g. E. coli prfB +1 frameshift), since it 
requires that there be ribo-seq signal in a new frame downstream of the frameshift site. 
It is unable to identify frameshifts that result in early termination, where little or no 
sequence is translated in the alternate frame after the frameshift site (e.g. E. coli dnaX 
− 1 frameshift). ORFeus is only designed to detect frameshifts with high efficiency (most 
of the translating ribosomes frameshift and continue translating in the downstream 
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reading frame). This is because the model only returns the single most likely translation 
of a transcript. If there is a low efficiency frameshift or an alternate ORF start site that is 
not used by the majority of translating ribosomes, ORFeus will not detect it.

A final important limitation is that ORFeus cannot distinguish true recoding signals 
from signals that arise from ambiguous ribo-seq read mapping. Ribo-seq reads from dif-
ferent mRNA isoforms may map to multiple of these isoforms, even though they only 
truly belong to one. Mismapping of reads from the wrong isoform can lead to apparent 
changes in reading frame or upstream or downstream translation in the ribo-seq signal. 
Such signals are not due to true recoding but rather alternative isoforms. This is a long-
standing problem in the field of ribo-seq analysis. Alternative isoforms are a critical con-
sideration for eukaryotes that use alternative splicing, and results should be examined to 
assess whether an alternate isoform might be the cause of any prediction.

Applications

ORFeus can detect several important classes of non-canonical and recoding transla-
tion events. Running ORFeus on published or new whole-transcriptome ribo-seq data 
sets may uncover previously overlooked or unseen translation products. Even in well-
annotated genomes, it is likely that alternative protein sequences are translated and have 
escaped detection by proteomics due to short length or low abundance. For organisms 
with less well-annotated genomes, ORFeus provides an opportunity to search for both 
canonical ORFs and non-canonical translation products. However, predictions should 
be considered with the above limitations in mind and will necessitate additional down-
stream computational and experimental analysis.

Conclusions
We developed an HMM-based model for inferring both canonically and non-canonically 
translated ORFs from ribo-seq data. With the ability to detect important types of non-
standard translation, ORFeus is a general-purpose tool for uncovering potential novel 
protein products and expanding our knowledge of translation across different organisms.

Methods
Transcript annotations

Genome sequence and annotations were downloaded for SARS-CoV-2,  E. coli, S. cer-
evisiae, D. melanogaster, and  D. rerio  from Ensembl [42] (Table  1). Since alternative 
translation can lead to translation outside of annotated ORFs, it was important to have 
complete UTR annotations for all species. We updated the annotations and transcript 
sequences for E. coli to include UTRs from RegulonDB [43] and S. cerevisiae to include 
UTRs from Nagalakshmi et al [44].

Ribo‑seq data

In order to infer ORFs, ORFeus requires information about the relative density of 
elongating ribosomes at each position of annotated transcripts. We downloaded raw 
ribo-seq read data for SARS-CoV-2 infected C. sabaeus Vero E6 cells [41], E. coli 
[20], S. cerevisiae [38], D. melanogaster embryos [16], and D. rerio embryos [31]. The 
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SRA accessions used to download each of the raw ribo-seq data sets are shown in 
Table 1.

We realigned all data sets, since aligned data was not available for many of the 
studies. This also allowed us to align to the most recent genome version and to off-
set reads to align to the P-site, which is necessary for correct analysis with ORFeus. 
Wherever possible, we attempted to replicate the methods used to align the data in 
the original reference. Each of the raw ribo-seq libraries was processed by: (i) trim-
ming adapters and low quality bases (phred score below 20) with Cutadapt v1.8.1 
(Martin, 2011); (ii) removing reads mapping to ladder sequences and organism-spe-
cific non-coding RNAs from Ensembl [42]; (iii) aligning remaining reads uniquely to 
reference genome sequences from Ensembl; (iv) filtering reads by length and offset-
ting the reads so they correspond to the P-site of the ribosome using Shoelaces [21].

Reads from SARS-CoV-2, E. coli, and S. cerevisiae were aligned uniquely using 
Bowtie1 v1.1.1 (-v 2 -y -m 1 -a –best –strata) [45], since few or no introns are pre-
sent. Reads from D. melanogaster and D. rerio were aligned using the splice-aware 
aligner STAR v2.7.0 (–outSAMmultNmax 1 –outFilterMultimapNmax -1 –outFil-
terMismatchNmax 2) [46] and uniquely mapped reads were identified with Sam-
tools v1.10 (view -h -q 255) [47]. For the offset to the P-site, the exact nucleotide 
position within the P-site was chosen separately for each data set. Since the model 
relies on detecting periodicity within an ORF, the precise offset could align the read 
anywhere within the A-site or P-site. We selected the P-site position that resulted 
in any distinct start or stop codon signals being mapped to within the start or stop 
codon respectively, since distinct start and stop signals are explicitly modeled by 
ORFeus. For example, for the S. cerevisiae data [38], we used an offset of 14 nucleo-
tides from the 5’ end (which corresponds to the 3rd nucleotide of the P-site) to 
ensure the distinct stop codon peak mapped within the stop codon (Fig. 1B). How-
ever, another offset could be used as long as it still generates a periodic signal 
within the ORF. Read lengths and offsets selected for each experiment are shown in 
Table 1.

Table 1  Data sources used in this study

P-site position indicates the nucleotide of the P-site where most reads map, after the P-site offset is applied. A ? indicates 
that the periodicity in the data is not clear enough to determine the exact nucleotide within the P-site

Organism Genome 
version

SRA 
accession(s)

Read lengths P-site offset P-site 
position

Ribo-Seq data 
references

Coronavirus 
(SARS-CoV-2)

ASM985889v3 SRR12216748-
50

28-30nt 5’+14nt 3rd nt Finkel et al. [41]

E. coli (K12, 
MG1655)

ASM584v2 SRR4023281 20-40nt 3’-3nt 3rd nt Hwang and 
Buskirk [20]

S. cerevisiae 
(S288C)

R64-1-1 SRR7241903-
04

28nt 5’+14nt 3rd nt Wu et al. [38]

D. mela-
nogaster 
(embryos)

BDGP6.28 SRR942868-
71,74-79

20-40nt 5’+16nt ? Dunn et al. [16]

D. rerio 
(embryos)

GRCz11 SRR1062294-
302

28-29nt 5’+12nt 1st nt Bazzini et al. 
[31]
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Parameter estimation

The altORF event parameters were set to the following values: α = 10
−5 , β = 0.5 , 

γ = 10
−4 , δ = 10

−3 , ζ = 10
−10 . All other parameters in the model were estimated sep-

arately for each ribo-seq data set and corresponding annotations file. Canonical start 
(AUG), stop (UAA, UAG, UGA), and sense codons were used. Transition probabilities 
between codons were set to the frequency of each codon in the annotated transcripts. 
Mean uORF and dORF lengths were set to 50 nts. Mean main ORF lengths were set to 
the mean ORF length of all annotated transcripts for all data sets.

Sequence simulation

Sequences were simulated by generating a valid state path from the model (using the 
transition probabilities), then generating valid ribo-seq and nucleotide emissions 
from each state (using the emission probabilities). For calculation of sensitivity and 
specificity for rare non-canonical events, sequences were simulated starting at the 
rare event state(s) and extended in either direction: continuing forward until the end 
state and backward until the begin state. This was done to ensure the event would be 
present in the simulated sequence, despite it rarely occurring in normal simulation.

The transition probabilities were used to calculate paths forward during simula-
tion, and the reverse transition probabilities were used to calculate paths backward. 
Reverse transitions are calculated according to Eq. (1), as outlined by Solow and 
Smith [48].

This computation requires that the model meet the conditions of reversibility: stationary 
(transition matrix doesn’t change over time), irreducible (each state can eventually be 
reached from every other state), positive recurrent (expected return time to each state is 
finite), and aperiodic (starting in each state, there is no regular period at which the state 
cannot be reached). These conditions are met for the case where all states are accessible 
(i.e. α , β , γ , δ , and ζ are all nonzero). π is then the stationary distribution, which is com-
puted by finding the eigenvector for the transpose of the transition probability matrix 
corresponding to the eigenvalue � = 1.

Coverage threshold

The minimum ribo-seq coverage needed to accurately infer altORFs was estimated 
using simulated sequences. We used the model to generate one hundred sequences 
per each mean coverage value from 0.01 footprints per nucleotide to 1.0 footprints 
per nucleotide, in steps of 0.01. To estimate sensitivity, we ran ORFeus on each simu-
lated sequence and determined whether the output Viterbi path contained the cor-
rect non-canonical translation event (starting and ending within ±10 nucleotides of 
the true simulated positions). For example, a programmed ribosomal frameshift was 
considered correctly inferred if it was up to 10 nucleotides upstream or downstream 

(1)

pjk = P(Xt = k|Xt−1 = j)

qjk = P(Xt = k|Xt+1 = j)

qjk =
πk

πj
pjk
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of the true simulated frameshift site. Similarly, a uORF, dORF, or canonical ORF was 
considered correctly inferred if its start and stop codons were within ±10 nucleotides 
of the simulated start and stop codons respectively. To estimate specificity, we ran 
ORFeus on sequences simulated without any altORF events and determined whether 
the output Viterbi path contained any non-canonical translation event (at any posi-
tion in the sequence).

Abbreviations
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PRF	� Programmed ribosomal frameshift
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