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Abstract 

Background: With the COVID-19 outbreak, an increasing number of individuals are 
concerned about their health, particularly their immune status. However, as of now, 
there is no available algorithm that effectively assesses the immune status of normal, 
healthy individuals. In response to this, a new score-based method is proposed that uti-
lizes complete blood cell counts (CBC) to provide early warning of disease risks, such 
as COVID-19.

Methods: First, data on immune-related CBC measurements from 16,715 healthy 
individuals were collected. Then, a three-platform model was developed to normalize 
the data, and a Gaussian mixture model was optimized with expectation maximization 
(EM-GMM) to cluster the immune status of healthy individuals. Based on the results, 
Random Forest (RF), Light Gradient Boosting Machine (LightGBM) and Extreme Gradi-
ent Boosting (XGBoost) were used to determine the correlation of each CBC index 
with the immune status. Consequently, a weighted sum model was constructed to cal-
culate a continuous immunity score, enabling the evaluation of immune status.

Results: The results demonstrated a significant negative correlation 
between the immunity score and the age of healthy individuals, thereby validating 
the effectiveness of the proposed method. In addition, a nonlinear polynomial regres-
sion model was developed to depict this trend. By comparing an individual’s immune 
status with the reference value corresponding to their age, their immune status can be 
evaluated.

Conclusion: In summary, this study has established a novel model for evaluating 
the immune status of healthy individuals, providing a good approach for early detec-
tion of abnormal immune status in healthy individuals. It is helpful in early warning 
of the risk of infectious diseases and of significant importance.
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Background
It is quite challenging to detect diseases in their early stages. When symptoms appear, 
the immune system’s balance may be severely disrupted, and its defense ability is 
greatly weakened [1, 2]. Therefore, it is of great significance to identify the abnormal 
immune status in healthy individuals as early as possible. This can contribute to pro-
viding early warnings about the risk of contracting diseases, such as COVID-19.

Walford proposed the theory of immunosenescence, which suggests that the decline 
in immune functions is the primary factor for aging [3–6]. This decline involves struc-
tural and functional changes in immune organs, particularly a decrease in the capa-
bility of immune cells. It weakens the body’s ability to resist infections and leads to 
a higher prevalence of autoimmune diseases, chronic inflammation, and even can-
cers [7]. However, aging affects individuals to different extents. A recent study has 
shown that the immune status of healthy individuals is continuous rather than dis-
crete, meaning that individuals of the same age may differ in their physiological age 
in terms of immunity. This high inter-individual variability emphasizes the need for 
quantitative evaluation of immune status to study the gradual changes occurring 
in the immune system [5, 8–18]. Currently, clinicians generally assess the immune 
status of patients based on the presence of basic diseases such as diabetes, malig-
nant tumors, and chronic renal failure. However, this approach lacks precision [19]. 
Immunologists are seeking ways to directly assess the immune status of humans to 
improve our understanding of the human immune system [20–23]. Typical methods 
for assessing immune function include clinical evaluation of susceptibility to infec-
tions. For example, the Jeffrey Modell Foundation (JMF) has developed a set of warn-
ing signs for 10 primary immunodeficiency diseases that may indicate susceptibility 
to infection [24]. Analyzing a combination of autoimmune, allergic, or malignant 
tumor immunodeficiency states is another assessment method. Formal laboratory 
evaluation of immune status can be performed in multiple ways, such as measuring 
immunoglobulins, IgG subclasses, complement function, counts of T cells, B cells, 
NK cells, vaccine responses, and T cell proliferation. Deviations in these indicators 
from the reference range can have clinical significance in assessing immune functions 
and diagnosing diseases. However, these methods primarily focus on populations that 
already have immune problems and are not sensitive enough to detect subtle immune 
changes in healthy individuals. Although these methods have certain clinical value 
in the diagnosis and treatment of certain diseases, they are all aimed at populations 
that already have immune problems, and are not sensitive enough to detect subtle 
immune changes in healthy individuals.

Some researchers have attempted to evaluate human immune states based on the 
number and function of lymphocytes [19]. However, while these studies compared 
individuals of different ages, they did not develop an immune state assessment model. 
Another study attempted to establish an immune scoring model based on the combi-
nation of lymphocyte number, function, and phenotype [25]. Although this model ena-
bled the assessment of an individual’s immune status, it was relatively simplistic and only 
indicated whether the results fell within the normal range or exceeded the limit. To date, 
few studies have focused on developing an algorithm that provides continuous immunity 
scores for healthy individuals to assess their immune status.
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In this study, we collected complete blood cell counts from a large cohort of healthy 
individuals. We measured the absolute counts and percentages of various immune cell 
types, including white blood cells, lymphocytes, neutrophils, eosinophils, and basophils, 
along with their corresponding percentages. Using these measurements, we developed 
an immune status assessment model. We then investigated the relationship between the 
immunity score generated by the model, age, and lifestyle factors such as staying up late. 
Our findings suggest that age and lifestyle factors have a significant impact on immune 
status in healthy individuals, and our model effectively measures this impact. Develop-
ing a simple, reliable, and inexpensive method to evaluate immune status is crucial for 
enhancing our understanding of immune function and promoting better health. With 
our method, healthy individuals can easily monitor their immune status and identify 
early changes that may lead to immune-related diseases.

Methods
Currently, there is a lack of methods that comprehensively assess the immune status of 
healthy individuals. To address this gap, this study developed a machine learning-based 
approach to enhance the evaluation of immune status using complete blood count 
(CBC) data. The study was conducted in five distinct stages: data processing, immune 
status clustering, correlation evaluation of CBC indexes with immune status, score cal-
culation of immunity, and immune status assessment. First, the CBC data obtained from 
the physical examination of healthy individuals underwent a cleaning process based on 
inflammatory indexes, as shown in Fig. 1a. Then, a three-platform model was devised to 
normalize the data, and an optimization of the Gaussian mixture model using the expec-
tation–maximization (EM-GMM) technique was performed to cluster the immune 
status of the healthy participants, as shown in Fig.  1b. Using the obtained results, RF, 

Fig. 1 Overall workflow of the study. a Data processing. b Immune status clustering. c Correlation evaluation 
of CBC indexes with immune status. d Immunity score calculation. e Assessment of immune status
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LightGBM and XGBoost algorithms were employed to assess the correlation between 
each CBC index and immune status, as shown in Fig. 1c. Based on these findings, an 
assessment model was constructed to calculate a continuous immunity score for healthy 
individuals, as shown in Fig.  1d. Lastly, a nonlinear polynomial regression model was 
developed to further evaluate an individual’s immune status, as shown in Fig.  1e. The 
overall workflow of the study is illustrated in Fig. 1.

Data
Data acquisition

The study involved the collection of complete blood cell counts (CBC) data from a total 
of 19,102 adults aged 20–84 years. Among the participants, there were 11,041 (57.8%) 
males and 8061 (42.2%) females. To ensure data accuracy, certain measures were 
taken to remove any potential interference. Firstly, data with procalcitonin (PCT) lev-
els exceeding 0.5 ng/mL, which is often indicative of bacterial infection, were excluded 
from the analysis [26, 27]. Subsequently, data points that fell outside the clinical normal 
reference range for inflammatory-related indicators were also eliminated. The retained 
dataset consisted of CBC data from healthy individuals, with white blood cell counts 
ranging from 4 to 10  (109/L), neutrophil counts ranging from 2 to 7  (109/L), lymphocyte 
counts ranging from 0.8 to 4  (109/L), neutrophil percentages ranging from 40 to 75%, 
and lymphocyte percentages ranging from 20 to 50%. Ultimately, immune-related CBC 
data from 16,715 healthy individuals were obtained, comprising 9831 (58.8%) males and 
6884 (41.2%) females.

The study considered a total of 15 immune-related CBC indexes, including white blood 
cell count (WBC), lymphocyte count (LYMPH), neutrophil count (NEUT), monocyte 
count (MONO), eosinophil count (EO), basophil count (BASO), lymphocyte percentage 
(LYMPH%), neutrophil percentage (NEUT%), monocyte percentage (MONO%), eosino-
phil percentage (EO%), basophil percentage (BASO%), neutrophil to lymphocyte ratio 
(NLR), monocyte to lymphocyte ratio (MLR), eosinophil to lymphocyte ratio (ELR), and 
basophils to lymphocytes ratio (BLR).

To analyze the data, each index was logarithmized, and their distributions were con-
firmed to be Gaussian, as depicted in Additional file 1: Fig. S1A. The mean value (μ) and 
standard deviation (σ) for each index were calculated and presented in Additional file 2: 
Table S1. A comparison of different indexes within the same coordinate system is dis-
played in Additional file 1: Fig. S1B.

Based on previous studies, it is well-established that the human immune status tends 
to decline with age [25, 28–31]. To investigate the changes in each CBC index, Spearman 
correlation tests were conducted between each index and age. The results indicated sig-
nificant correlations between age and all indexes except NEUT. Notably, WBC, LYMPH, 
and LYMPH% exhibited negative correlations with age. These correlation results are pre-
sented in Additional file 1: Fig. S1C.

Data normalization

To address the magnitude bias among different indexes (Additional file 1: Fig. S1B), all 
data were normalized to a range of 0 to 1. Taking into account the biological charac-
teristics, a normalized function was designed to simulate an S-shaped growth curve, 
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which was defined as a three-platform model. The two platforms at the maximum and 
minimum values represent the saturation states of immune status, while an additional 
platform near the median value reflects the self-regulation ability of the human immune 
system.

Spearman correlation analysis was performed separately for each CBC index and age, 
considering different genders. The results indicated consistent directions of the relation-
ship between CBC indices and age for both males and females. Additional file  1: Fig. 
S2 provides a visual representation of these correlation results. Consequently, data from 
different genders were combined for further analysis in this study.

Based on the correlation between each index and age (Additional file 1: Fig. S3), it was 
observed that the quantities of WBC, LYMPH, NEUT, and LYMPH% tended to decrease 
with age. The three-platform models for these four indicators can be represented by 
Eq. (1):

where μ denotes the mean value and σ indicates the standard deviation of each index 
after logarithmization.

In contrast, the quantities of MONO, EO, BASO, NEUT%, MONO%, EO%, BASO%, 
NLR, MLR, ELR, and BLR tended to increase with age. The Three-platform models for 
these 11 indicators can be expressed by Eq. (2):

These two functions have similar forms, and both including two Gaussian functions. 
The main difference lies in that Eq.  (1) takes one form when x is less than or equal to 
a mean value µ , and another form when x is greater than µ ; whereas Eq.  (2) does the 
opposite, taking the second form of Eq. (1) when x is less than or equal to µ and the first 
form when x is greater than µ.

Clustering analysis using EM‑GMM algorithm

In this study, we employed two commonly used unsupervised clustering methods, 
namely the Expectation–Maximization Gaussian Mixture Model (EM-GMM) algorithm 
and the k-means algorithm. To determine the most suitable clustering method for the 
data and the appropriate number of clusters (K value), we conducted a comprehensive 
evaluation using key metrics such as silhouette coefficient, Calinski–Harabasz index, 
and Davies–Bouldin index.

According to the Silhouette Coefficient, a measure of clustering effectiveness, which 
considers both the cohesion and separation of samples after clustering, a higher value 
closer to 1 indicates a better clustering result, where samples within the same cluster 
are closer and samples from different clusters are farther. Conversely, a value closer to 
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− 1 indicates a poorer clustering result. Equation (3) shows the calculation of silhou-
ette coefficient:

where a(i) measures the similarity within the group, b(i) measures the similarity between 
groups, and s(i) ranges from − 1 to 1, with higher values indicating higher similarity 
within groups and greater distance between groups.

According to the Calinski–Harabasz index, a metric for evaluating clustering qual-
ity, a higher value signifies better clustering results. It considers both the within-
cluster dispersion and the between-cluster dispersion. The index is calculated using 
Eq. (4).

where Bk represents the between-cluster dispersion, Wk represents the within-cluster 
dispersion, N is the total number of samples, and k is the number of clusters. A higher 
index value indicates a stronger separation between clusters and a more compact cluster 
structure.

On the other hand, the Davies–Bouldin index measures the average similar-
ity between clusters and takes into account both the within-cluster scatter and the 
between-cluster separation. To calculate the index, we employ Eq. (5).

where Rij is the similarity measure between clusters Ci and Cj . A lower Davies-Bouldin 
index indicates better clustering results, with well-separated and distinct clusters having 
smaller values. The evaluation results of the clustering performance metrics for the two 
unsupervised clustering methods under different numbers of clusters are presented in 
Table 1.

Therefore, taking into account the silhouette coefficient, Calinski-Harabasz index, 
Davies–Bouldin index, and the biological significance, we utilized the EM-GMM 
algorithm to cluster the immune states into three categories.

(3)s(i) =
b(i)− a(i)

max (a(i), b(i))

(4)CH =
Bk

Wk
×

N − k

k − 1

(5)DB =
1

k

k
∑

i=1

max
j �=i

Rij

Table 1 Comparison of EM-GMM and K-means clustering performance

The bold font indicates the optimal value for this parameter

Clustering algorithm Silhouette coefficient Calinski–Harabasz index Davies–
Bouldin 
index

EM-GMM (K = 2) 0.391 10,447.381 1.178

EM-GMM (K = 3) 0.400 11,285.403 1.073
EM-GMM (K = 4) 0.398 12,465.243 1.235

K-means (K = 2) 0.183 4015.301 1.921

K-means (K = 3) 0.179 3550.229 1.710

K-means (K = 4) 0.145 3165.865 1.733
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Gaussian mixture model(GMM) is an unsupervised learning model, which is a linear 
combination of multiple nonlinear Gaussian distribution functions. In theory, GMM can 
fit any type of distribution, and is usually used to simulate data containing different dis-
tributions with the same type but different parameters. The input here was a matrix of 
16,715 × 15 dimensions, and the expectation–maximization Gaussian mixture algorithm 
(EM-GMM) was adopted to determine features and perform unsupervised clustering 
simultaneously. The 15 indicators used for clustering were described in the subsection 
“Data acquisition”.

The number of clusters K was set to 3 trying to divide human immune status into three 
categories: high, medium, and low. That means the Gaussian mixture model should 
consist of 3 Gaussian “Component”, and these components are linearly superimposed 
together to form the probability density function of the GMM, which is depicted as 
Eq. (6):

where µk is the mean value, �k is the covariance matrix,p(x|k)=N(x|µk ,�k) is called 
conditional probability of the kth component in the mixture model,p(k)=πk refers to 
the probability when component K is selected, and satisfies �K

k=1πk=1(0 ≤ πk ≤ 1).
A 3-dimensional latent variable z is introduced with the value of 0 or 1, and zk= 1 

means the sample is selected. The posterior probability indicates the possibility of the ith 
data belonging to the category k, which satisfies �K

k=1γ (zik) = 1 and γ (zik) ∈ {0, 1} , as 
shown in Eq. (7):

Assuming that there are N samples, and each of them follows a certain type of distri-
butions p(x) . Then the parameters θ=(πk ,µk ,�k) need to be determined to maximize 
the probability of observing these samples from the mixture distributions. The log-likeli-
hood form is in Eq. (8):

Then, we apply the derivation to solve the maximum likelihood problem:

We let the derivatives equal to 0 and get the optimal values of mean µk and variance 
�k:

(6)p(x) =

K
∑

k=1

p(k)p(x|k) =

K
∑

k=1
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(7)γ (zik) = p(xi, z; θ) =
p(x, zk = 1)

p(x)
=

πkN(xi|µk ,�k)

�K
j=1πjN

(
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)

(8)l(θ)=

N
∑

i=1

ln p(xi, z; θ) =

N
∑

i=1

ln

[

K
∑

k=1

πkN(xi|µk ,�k)

]

(9)
∂l(θ)

∂µk
= −

N
∑

i=1

πkN(xi|µk ,�k)

�K
j=1πjN

(

xi|µj ,�j

)�−1
k (xi − µk)

(10)
∂l(θ)

∂�k
=

N
∑

i=1

πkN(xi|µk ,�k)

�K
j=1πjN

(

xi|µj ,�j

)
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1
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where NK = �N
i=1γ (zik) represents the number of samples belonging to the kth compo-

nent of the model.
Next, in order to find the component probability πk , it is necessary to use the Lagran-

gian operator �K
k=1πk=1.

The derivative of πk is defined in Eq. (14) and the value can be obtained in Eq. (15):

The steps of the EM algorithm are listed in Table 2. It is necessary to use the algorithm 
to find a set of parameter values to maximize the Eq. (8) until convergence. In this study, 
the maximum number of iterations times was set to 100.

Correlation evaluation of CBC indexes with immune status

In this section, correlation was evaluated between each CBC index and the immune 
status of healthy individuals. Random forest, LightGBM (Light Gradient Boosting 
Machine), and XGBoost (Extreme Gradient Boosting) are three widely used machine 
learning algorithms, all of which are adept at ranking the effect of input factors during 
classification [32].

Random forest (RF) is an algorithm that integrates multiple decision trees through 
ensemble learning, so that it has better generalization ability [33]. For a certain input 

(11)µk =
1

Nk

N
∑

i=1

γ (zik)xi

(12)�k =
1

Nk

N
∑

i=1

γ (zik)(xi−µk)(xi−µk)
T

(13)l
(

θ ′
)

= l(θ)+ �

(

�K
k=1πk−1

)

(14)
∂l
(

θ ′
)

∂πk
=

N
∑

i=1

N(xi|µk ,�k)

�K
j=1

πjN
(

xi|µj ,�j

) + � = 0

(15)πk =
Nk

N

Table 2 Steps of EM algorithm

EM algorithm:

Step1:

The number of categories K is preset as 3, then set the initial values of θ for each component K and calculate the 
log-likelihood value in Eq. (7)

Step2: E step

Based on current values of θ , the value of z for each sample is estimated

Step3:M step

The values of z in Eq. (7) are updated, and the log-likelihood value is maximized to get a new set of θ values

Step4:

Return to Step 2 until convergence
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sample, each decision tree is a classifier, and N trees will get N classification results. The 
RF can integrate all classification results through taking the most voted class as the final 
output. The dataset was split into a training set accounting for 80% of all and a test set 
of 20%. The model parameters were set as n_estimators = 100, random_state = 1, n_
jobs = − 1. The RF classification algorithm is shown in Additional file 1: Fig. S4.

LightGBM is another framework that implements the GBDT algorithm, which sup-
ports efficient parallel training, and has faster training speed, lower memory consump-
tion and better accuracy [34]. This method has been applied to the interpretability of 
classification, as evidenced by previous studies [35]. The dataset was also split into a 
training set accounting for 80% of all and a test set of 20%, and tenfold cross-validation 
was used to adjust hyperparameters to build the best model [36]. The model parame-
ters were set as num_leaves = 31, learning_rate = 0.1, n_estimators = 40, max_bin = 256, 
max_depth = − 1. The LightGBM classification algorithm is presented in Additional 
file 1: Fig. S5.

XGBoost is another widely used machine learning algorithm that performs excep-
tionally well in various classification tasks. Standing for Extreme Gradient Boosting, 
XGBoost is an optimized distributed gradient boosting library designed to be efficient, 
flexible, and portable. Similar to RF and LightGBM, the dataset was divided into 80% for 
training and 20% for testing. Hyperparameters were optimized through tenfold cross-
validation to build the best model, with model parameters set as max_depth = 3, learn-
ing_rate = 0.1, n_estimators = 100.

After classification through RF, LightGBM and XGBoost algorithms, the effect of each 
CBC indexes could be evaluated, which would be used to reflect the correlation degree 
of each CBC index with human immune status.

Immunity score calculation

Altogether, N experiments were conducted (N was set to 200), where the training set 
and test set in each experiment changed randomly. The mean value of the correlations 
between each index and human immune status was adopted as the weight of the index 
wi , Eventually, the weighted sum of indexes was calculated as the individual’s immunity 
score, which is shown in Eq. (16):

where scorei represents the score of the ith of 15 indexes, which was calculated with the 
designed three-platform model.

Nonlinear polynomial regression model for assessing immune status with age

In this section, we aimed to determine the appropriate order of polynomial regression to 
evaluate an individual’s immune status score with age. We considered linear, quadratic, 
cubic, and quartic polynomial regression models. To assess the performance of each 
model, we compared their mean squared error (MSE) values. However, when selecting 
the model complexity, it is important to consider not only the MSE but also the model’s 
generalization ability.

(16)score =

15
∑

i

wiscorei (i = 1, 2, . . . , 15)
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We plotted the MSE values for different polynomial orders in Additional file  1: Fig. 
S6. It can be observed that the fourth-degree polynomial regression model has the low-
est MSE value, indicating a better fit to the data. Additionally, the third-degree poly-
nomial regression model exhibits a slightly higher MSE compared to the fourth-degree 
model. We opted for the third-degree polynomial regression model based on its balance 
between model complexity and generalization ability. Although non-linear regression 
approaches may be challenging to interpret compared to linear regression, they can 
effectively capture the nonlinearity between an individual’s immunity score and age.

In conclusion, we selected the third-degree polynomial regression model for evaluat-
ing immune status due to its reasonable fit to the data and its ability to capture the non-
linearity in the relationship between an individual’s immunity score and age.

The model here is a univariate cubic polynomial regression model, where x means age 
and f (x) means the normal immunity score of the age. The formula is as follows:

If an individual’s immunity score is higher than the normal immunity score of his age, 
his immune status is healthy, on the contrary, his immune status is sub-healthy, so as to 
describe the immune status of each individual more accurately.

Results
Data processing

The participants in this study were adults aged 20–84. Previous research has highlighted 
that chronic inflammation can be a common underlying cause of various diseases. Even 
in the absence of apparent injury or disease, a low level of inflammation can be activated. 
In such cases, the immune system triggers white blood cells to attack nearby healthy 
tissues and organs, initiating a chronic inflammatory process. This process plays a cen-
tral role in the development of challenging diseases such as rheumatoid arthritis, can-
cer, heart disease, diabetes, asthma, and even Alzheimer’s disease [37, 38]. Therefore, in 
order to construct an accurate immune status evaluation model for healthy individuals, 
it was necessary to clean the CBC data by removing individuals with mild inflammation. 
Subsequently, the remaining data could more precisely represent the immune status of 
healthy individuals.

After the data cleaning process, the CBC data of 16,715 healthy individuals were nor-
malized using the three-platform model. The resulting shape of the data after processing 
is depicted in Fig. 2.

Clustering of immune status

In this study, the EM-GMM algorithm was employed to cluster the immune status of 
healthy individuals. The results of the clustering analysis are presented in Fig. 3. Among 
the three groups, Group 0 had the highest proportion among the elderly individuals and 
the lowest proportion among the young individuals (Fig. 3b). Furthermore, the propor-
tion of Group 0 showed a positive correlation with age (Fig. 3d; r = 0.4289; ***, Spear-
man’s correlation). Thus, Group 0 was classified as the poor immune status group. On 
the other hand, Group 2 exhibited the lowest proportion among the elderly individuals 
and the highest proportion among the young individuals. Moreover, the proportion of 

(17)f (x) = a3x
3 + a2x

2 + a1x + a0
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Fig. 2 Three-platform model for normalization of CBC data. a The resulting shape of the data after 
processing for four indicators. b The resulting shape of the data after processing for eleven indicators

Fig. 3 The clustering results of immune status for healthy individuals. a PCA visualization of the clustering 
results; b The proportions of each immune status group across different age periods (the young: 20–40; the 
middle-aged: 41–60; the old: > 60); c The number of individuals belonging to each immune status group as a 
function of age; d The proportion of individuals belonging to each immune status group as a function of age 
(*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001)
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Group 2 displayed a negative correlation with age (Fig. 3d; r = − 0.9062; ****, Spearman’s 
correlation). Therefore, Group 2 was identified as the good immune status group. Group 
1, situated between the other two groups, was designated as the medium immune status 
group (Fig. 3d; r = 0.80000; ****, Spearman’s correlation).

Correlations between CBC indexes and immune status

The correlation between each CBC index and the immune status of healthy individuals 
was evaluated using RF, LightGBM, and XGBoost. The data was divided into a training 
set (80%) and a test set (20%), with three labels representing immune status categories: 
poor, medium, and good. The test results of the three models are presented in Table 3. 
The confusion matrix and ROC for RF, LightGBM, and XGBoost are presented in Addi-
tional file 1: Figs. S7, S8 and S9, respectively.

Finally, the RF, LightGBM and XGBoost models were validated using a tenfold cross-
validation approach, demonstrating similar accuracy results for all methods. The results 
are presented in Additional file 1: Fig. S10. Therefore, to comprehensively consider both 
approaches, the test results of the trained three models were averaged to assess the cor-
relation between each CBC index and the immune status of healthy individuals. The 
results are summarized in Table 4.

Internal validation of immune status assessment model

The designed three-platform model was applied to normalize the values of each CBC 
index in healthy individuals. Subsequently, the weighted sum of the normalized values 
was computed as the final score for assessing immune status. The relationship between 
the immune status scores and the ages of the 16,715 healthy samples was analyzed and is 
depicted in Fig. 4.

As shown in Fig. 4a, the median values of immune status scores exhibited a decreas-
ing trend and were found to be significantly correlated with age (r = − 0.9139, Spearman 
correlation coefficient), indicating a consistent pattern with the observed data. In Fig. 4b, 
the distribution of individuals based on different ranges of immune status scores is pre-
sented. The numbers of individuals falling into the ranges of 0.6–0.8, 0.4–0.6, 0.2–0.4, 
and < 0.2 were 2401 (14.4%), 11,686 (69.91%), 2498 (14.94%), and 130 (0.78%), respec-
tively. This distribution follows a reasonable Gaussian pattern, with the average value 
being close to 0.5.

Table 3 Test results of the three integrated learning models

Model Group Precision Recall F1‑score Accuracy AUC 

RF Group0 0.97 0.98 0.97 0.977 1

Group 1 0.96 0.97 0.97 1

Group 2 0.99 0.98 0.98 1

LightGBM Group 0 0.98 0.99 0.98 0.982 1

Group 1 0.98 0.96 0.97 1

Group 2 0.99 0.99 0.99 1

XGBoost Group0 0.99 0.97 0.98 0.979 1

Group 1 0.96 0.97 0.96 1

Group 2 0.99 0.99 0.99 1
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Evaluating immune status with polynomial regression model

The immune status reflects the overall vitality and health of an individual. In this 
study, a cubic polynomial regression model was utilized to capture the relationship 
between immunity scores and age, allowing us to visualize the trend of immune 
status across different ages. The fitted curve, as shown in Fig. 5, provides valuable 
insights into interpreting an individual’s immune status. Based on the curve, if a 
person’s immunity score exceeds the fitted value for their age, it indicates a healthy 
immune status. Conversely, if their immunity score falls below the fitted value, it 
suggests a suboptimal or sub-healthy immune status. This representation vividly 
portrays the immune status of an individual and facilitates a comprehensive under-
standing of their overall health.

Table 4 The correlation degree between each CBC index and the immune status of healthy 
individuals

Parameter RF LightGBM XGBoost Mean

WBC 0.018 0.049 0.066 0.044

NEUT 0.015 0.041 0.049 0.035

LYMPH 0.030 0.149 0.126 0.101

MONO 0.011 0.035 0.037 0.028

EO 0.162 0.102 0.069 0.111

BASO 0.081 0.042 0.038 0.053

NEUT (%) 0.041 0.031 0.038 0.037

LYMPH (%) 0.101 0.084 0.079 0.088

MONO (%) 0.012 0.045 0.046 0.035

EO (%) 0.119 0.027 0.029 0.059

BASO (%) 0.056 0.039 0.036 0.044

NLR 0.073 0.042 0.058 0.058

MLR 0.044 0.088 0.089 0.074

ELR 0.135 0.115 0.119 0.123

BLR 0.102 0.111 0.122 0.111

Fig. 4 The relationship between immune status scores and age. a The trend of age-related immune status 
scores. b Immune status score distribution by range
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External validation of immune status evaluation model

Validation of immune status model using longitudinal data in healthy individuals

The immune status of five healthy individuals was monitored using the proposed 
immune status evaluation model for a period of ten days. The results of the monitoring 
are presented in Table 5. Each person underwent five consecutive CBC tests using the 
same instrument, with tests conducted every two days. During the monitoring period, 
the individuals deliberately stayed up late on specific days to intentionally disrupt their 
immune status. The interference days for each person were as follows: Person 1 (Day 
5), Person 2 (Days 3 and 7), Person 3 (Days 5 and 9), Person 4 (Days 1, 5, 7, and 9), and 
Person 5 (Days 3, 5, and 7). The raw data obtained from these tests can be found in Addi-
tional file 2: Tables S2–S6.

Among the five individuals, the immunity scores remained relatively stable throughout 
the monitoring period. The immunity scores of persons 1, 2, and 3 exceeded the ref-
erence immunity score, indicating that their immune status was healthy. On the other 
hand, persons 4 and 5 regularly stayed up late, and their immunity scores were lower 
than the reference immunity score, suggesting that their immune status was sub-healthy. 
Furthermore, it is worth noting that the immunity scores of person 1 on Day 5, person 2 
on Days 3 and 7, person 3 on Days 5 and 9, person 4 on Days 1, 5, 7, and 9, and person 5 

Fig. 5 Fitted values of the immunity scores as a function of age

Table 5 Monitoring of immune status based on the immunity scores

The immunity scores presented in bold font represent the immune status scores obtained under sleep deprivation 
conditions. Ref: reference immunity score

Date Person1 (27 years, 
female)

Person2 
(23 years, male)

Person3 (26 years, 
female)

Person4 
(29 years, male)

Person5 
(23 year, 
male)

Day 1 0.604 0.581 0.624 0.462 0.522

Day 3 0.621 0.532 0.600 0.521 0.428
Day 5 0.530 0.599 0.579 0.423 0.456
Day 7 0.645 0.550 0.657 0.418 0.463
Day 9 0.601 0.550 0.574 0.341 0.499

Ref 0.528 0.535 0.529 0.524 0.535
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on Days 3, 5, and 7 all showed a slight decrease. This decrease may be attributed to insuf-
ficient sleep caused by staying up late. It is evident that staying up late and experiencing 
insufficient sleep can have an impact on the individual’s immune status.

External validation in diverse healthy individuals

In this study, we conducted independent validation of our model using a separate data-
set. The validation dataset consisted of CBC data from 40 healthy individuals, collected 
from a different device, a different batch, and a separate group of subjects as compared 
to the data used for model establishment. We applied the method described in this arti-
cle to calculate the immune status score for each individual in the validation dataset.

To assess the relationship between immune status score and age, we performed a Pear-
son correlation analysis. The analysis revealed a significant negative correlation between 
immune status score and age (r = − 0.432, p < 0.01), as shown in Fig. 6. This finding sug-
gests that as age increases, the immune status score tends to decrease.

Overall, the results from the independent validation dataset support the validity and 
generalizability of our model in assessing immune status.

Discussion
Our research has successfully developed a model for assessing immune status by pro-
cessing, clustering, and conducting correlation analysis on the complete blood count 
(CBC) data of healthy adult individuals. By processing and analyzing the data from 
16,715 healthy individuals, we discovered a correlation between immune status and age, 
and designed an assessment model that effectively monitors and evaluates individual 
immune health.

Firstly, we cleaned the CBC data by excluding individuals with mild inflammation to 
more accurately represent the immune status of healthy individuals. Subsequently, we 
normalized the CBC data of these 16,715 healthy individuals using a three-platform 

Fig. 6 The relationship between the immune status scores and age in the independent validation dataset. 
The results indicated a significant negative correlation (r = − 0.432, **P < 0.01) between age and score
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model and performed cluster analysis on their immune status using the EM-GMM algo-
rithm. Through this series of data processing and analysis, we successfully divided these 
individuals into three groups: good, moderate, and poor immune status, and identified 
the correlation between immune status and age.

Secondly, we evaluated the correlation between various CBC indicators and the 
immune status of healthy individuals using the RF, LightGBM, and XGBoost models. 
We designed a comprehensive scoring system to assess individual immune status. We 
also visualized the trend of immune status changes with age using polynomial regres-
sion models and validated the effectiveness and universality of the model in assessing 
immune status.

Finally, we conducted practical tests and independent validations by monitoring the 
immune status of five healthy individuals for ten days and using an independent dataset 
for model verification. The experimental results demonstrated that the model has good 
stability and accuracy, effectively assessing individual immune status, and exhibiting 
good applicability with external validation data.

The contribution and innovation of this study lie in establishing an immune status 
assessment model using CBC data from 16,715 healthy individuals, and demonstrat-
ing the stability of the model through multiple independent tests, which is a large-scale 
study. In contrast, many earlier studies had smaller sample sizes, which limited their uni-
versality and reliability. Previous studies have mostly focused on assessing the immune 
status of patients, with limited research on the immune status of healthy individuals, 
which has only allowed for qualitative comparisons. Additionally, the quantitative meth-
ods used in previous studies have been too rudimentary, further highlighting the lack 
of comprehensive research in evaluating the immune status of healthy individuals. Our 
model is more scientific and actionable, facilitating early detection of health issues and 
providing important reference information for clinical medicine and public health.

In conclusion, the proposed immunological status assessment model in this study 
demonstrates significant potential for application in the field of immune health. How-
ever, considering the primary focus on cellular-level factors in this research, future 
investigations should further consider molecular-level factors such as TCR, BCR. that 
influence immune status, aiming to enhance and optimize the assessment model. Addi-
tionally, long-term follow-up observations of patients with lower immune status scores 
are necessary to validate the stability and reliability of the model.

Conclusions
In conclusion, our study successfully developed the three-platform model for normal-
izing CBC data of healthy individuals. Through the use of advanced clustering and 
machine learning algorithms, we constructed an immune status evaluation model 
that allows for the assessment of an individual’s immune status by comparing their 
immunity score to age-specific reference values. Our findings highlighted the detri-
mental impact of insufficient sleep on immune status, as evidenced by lower immu-
nity scores in individuals intentionally disrupting their immune status by staying up 
late. This evaluation method holds promise as an early warning system for disease 
risks, including susceptibility to COVID-19 infection. Our research underscores the 
potential of this model in assessing immune status and identifying influential factors 
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such as sleep disruption and age. Further investigation is warranted to delve into the 
underlying mechanisms and implications of these findings.
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