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Background
Advances in sequencing technology have led to the identification of widespread vari-
ations in the human genome [1]. Some of these variants can lead to cellular and 
phenotypic changes, thereby contributing to pathogenicity and associated illness. 
Genome-wide association studies have revealed that most disease-associated variants 
are located within noncoding regions [2], which comprise approximately 98% of the 
human genome and contain many transcription factor binding sites (TFBSs) or open 
chromatin regions [3]. In recent decades, phenotype-related variants have been identi-
fied, and a significant number of phenotype-related variants have been implicated to be 
allele-specific (AS).

AS refers to the phenomenon wherein one allele inherited from either the mother 
or the father exhibits preferential binding or expression compared to the other allele. 
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Results: Here we present ASB‑analyzer, a software platform that enables the users 
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containing the cytogenetic map of ASB SNPs and their associated phenotypes. This 
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strated that the ASB SNPs were more likely to be enriched at important sites in TF‑
binding domains.
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Evidence suggests that the AS events are widespread and cell-type specific [4] and can 
influence many biological processes, such as transcription factor (TF) binding [5–7], 
chromatin organization [8], RNA binding [9] and gene expression [8, 9]. Allele-specific 
binding (ASB) is a type of AS event that occurs when transcription factors preferen-
tially bind to one parental allele in a hybrid due to different SNPs inherited from the 
parental genomes [5]. Likewise, ASB SNPs have been implicated in affecting the expres-
sion of downstream effectors by impacting the recruiting efficiency of TFs. As an exam-
ple, Musunuru et  al. [10] reported that the noncoding polymorphism site rs12740374 
located at the C/EBP (CCAAT/enhancer binding protein) binding site on 1p13 affected 
the binding of C/EBP to DNA, thereby altering the expression of the Sortilin 1 (SORT1) 
gene and increasing the risk of myocardial infarction. Therefore, ASB analysis provides a 
unique opportunity to understand the genetic basis of complex traits, including disease 
susceptibility.

In recent years, there has been a significant interest in associating the identified ASB 
SNPs with biological processes and clinical manifestations. The typical allele-specific 
workflow includes preprocessing and alignment of sequencing reads, identification of 
ASB SNPs, and integration of ASB data with other genomic annotations and functional 
analysis. Examples of bioinformatics tools developed to identify allele-specific binding 
SNPs include ABC (allele-specific binding from ChIP-seq) [11], regSNPs-ASB (regula-
tory SNPs-allele-specific binding tool) [12], BaalChIP (Bayesian analysis of allelic imbal-
ance from ChIP-seq data) [13], GERV (generative evaluation of regulatory variants) 
[14], ADASTRA (Allelic Dosage-corrected allele-specific human Transcription factor 
binding sites) [15] and stratAS (stratified allele-specific tool) [16]. Most of these tools 
aim to minimize issues related to mapping bias in alignment, as the reads carrying the 
alternative allele may have a lower probability of aligning correctly. After filtering out 
the mapping bias, allele-specific binding signals can then be identified by comparing 
the read counts between the parental alleles using either the beta-binomial distribution 
(e.g., BaalChIP), the negative binomial distribution (e.g., regSNPs-ASB) or other meth-
ods, such as learning the effects of specific k-mers on observed binding [14]. However, 
the aforementioned software programs could not automatically link the ASB SNPs to 
subsequent biological and clinical analyses, which are of interest to researchers, particu-
larly bioinformaticians. In contrast, ANANASTRA (annotation and enrichment analy-
sis of allele-specific transcription factor binding at SNPs) [17], a web server designed 
for the annotation and enrichment analysis of allele-specific transcription factor binding 
at SNPs, could annotate multiple user-submitted SNPs and conduct thorough enrich-
ment analysis, including evaluating ASB SNPs of particular TFs or in specific cell types. 
Inspired by this software, we next developed an easy-to-use ASB-analyzer pipeline that 
removes mapping bias with WASP [18] and identifies ASB SNPs using the beta-binomial 
model. Our multimodular toolkit also automatically connects the identified ASB SNPs 
to databases such as the Single Nucleotide Polymorphism Database (dbSNP), Genome 
Browser [19], Variant Viewer [20], the Genotype-Tissue Expression (GTEx) portal [21], 
and the genome-wide association study (GWAS) catalog [22] to generate an HTML 
report consisting of a cytogenetic map of ASB SNPs as well as a summary report detail-
ing allele information, read counts, p values, crosslinks, features of the cis-regulatory 
element (cCRE), and motif analysis (Table 1). With this pipeline, we identified 3772 ASB 
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SNPs from thirty downloadable biosamples from The Encyclopedia of DNA Elements 
(ENCODE) database [23] and demonstrated that the ASB SNPs were more likely to be 
observed at important sites in TF-binding domains.

Implementation
The workflow for our pipeline designed to detect, analyze and visualize allele-specific 
binding SNPs is illustrated in Fig. 1, and a detailed description of the tools integrated 
into this pipeline is shown in Additional file 1: Table S1. The proposed ASB-analyzer was 
initially tested with chromatin immunoprecipitation followed by sequencing (ChIP-seq) 
datasets of GM12878 downloaded from ENCODE. This ASB-analyzer pipeline utilized 
input files such as single-end or paired-end ChIP-seq FASTQ files, heterozygous geno-
type files and the motif position weight matrix (PWM) files to generate an output HTML 
report containing the ASB SNPs, variant annotation files, and motif analysis results 
(Fig. 1). Further details are provided in the subsequent sections below.

ASB SNP identification

The ASB-analyzer workflow is simple with only one manual step (Fig. 1), which requires 
the users to provide the ChIP-seq FASTQ files in the unmapped read data (.fastq) for-
mat, genotype files containing heterozygous SNPs in the Variant Call Format (.VCF) 
and the corresponding motif PWM file. The input FASTQ files can be either a single-
end file or paired-end files (read1 and read2). In the command line, the ChIP-seq data is 

Fig. 1 Schematic workflow of the ASB‑analyzer. This pipeline is designed to detect, analyze and visualize 
allele‑specific binding (ASB) SNPs. It consists of several steps, initiated by the input data “ChIP‑seq FASTQ file”, 
“VCF file (heterozygous SNPs only)” and “Motif PWM file”, as indicated. The orange rectangles refer to the input 
data. The purple ovals indicate the software or the model, as indicated, incorporated into the ASB‑analyzer 
multimodular toolkit. The green rectangles denote the specific operational processes or functions included in 
the package. The red rectangles correspond to the output of those processes or functions
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specified using either the -s or -p flag, where -s denotes single-end data and -p denotes 
paired-end data. The VCF genotype file could be generated by variant calling software 
such as Genome Analysis Toolkit (GATK) [24] and SAMtools [25] or by downloading 
from publicly available databases, such as the 1000 Genome Project [26] or Genome in a 
Bottle (GIAB) [27] database.

In this pipeline, raw FASTQ files were preprocessed by fastp [28] for quality control 
with default parameters, while the heterozygous genotypes (.VCF format) were indexed 
with Tabix and converted to HDF5 format with WASP-snp2h5 script [18]. The FASTQ 
files were subsequently automatically mapped and remapped using Burrows–Wheeler 
Alignment (BWA) [29] and then filtered using WASP [18, 30] to remove the mapping 
bias. Next, Picard [31] was utilized with the default strategy ‘SUM_OF_BASE_QUALI-
TIES’ to filter duplicates. It is worth noting that a read carrying the alternative allele of 
a variant is considered a mismatch and subsequently discarded due to lower mapping 
quality (MAPQ). Thus, we specifically incorporated Picard with default parameters, as 
this collection of command-line tools does not introduce bias due to base quality.

The alleles were then counted using WASP-bam2h5.py [18], and the SNPs were 
extracted in peaks.

The ASB SNP detection criteria are based on Chen’s method [32], which requires SNP 
counts to be greater than six, as low counts lack statistical significance. The beta-bino-
mial p value was subsequently calculated using the Vector Generalized Linear and Addi-
tive Models (VGAM) [33] R package. The expected null distribution assuming no allelic 
imbalance was then calculated by using the probability density function of the beta-
binomial distribution available in the R VGAM. Note that the beta-binomial distribution 
was defined by the total number of reads at a particular locus, two shape parameters 
of the beta distribution, and the overdispersion parameter r. Since the null hypoth-
esis assumes no allelic imbalance, the probability of success was fixed at 0.5. Then the 
expected beta-binomial distributions for r values ranging from 0 to 1 in increments of 
0.1 were obtained. The value of r that minimizes the least sum of squared errors (LSSE) 
between the empirical and expected distributions was selected. Given the read counts 
for the reference and alternative alleles at a locus, the probability of success (0.5), and 
the overdispersion parameter (r), the VGAM function pbetabinom could then be used 
to calculate the p value. Finally, an explicit computational simulation was performed to 
correct for multiple hypothesis testing. The false discovery rate (FDR) was computed by 
comparing the number of false positives obtained from the simulation to the number of 
observed empirical positives at a given sliding p value threshold. Then, an FDR cutoff of 
10% was used for ChIP-seq data, due to the shallower coverage. SNPs that have an FDR 
below 10% are considered to be ASB SNPs, while those with an FDR above 10% are clas-
sified as non-ASB sites.

ASB SNP function annotation

This section described the steps presented in Fig. 1: “Variant Annotation”, “Overlap with 
cCREs” and “eQTLs and GWAS analysis”. During “Variant Annotation”, each ASB SNP 
was annotated with the reference SNP identification number (rsID) and hyperlinked to 
the corresponding variant information page in dbSNP, Genome Browser and Variant 
Viewer. The SNP variant annotation and effect prediction tool SnpEff [34] was utilized 
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to obtain information such as genomic regions, base changes, and allele frequency. 
Genomic region annotated by SnpEff included intron, 3_prime_UTR, 5_prime UTR, 
downstream_gene, upstream_gene, intergenic_region and other information. Linked 
expression quantitative trait loci (eQTL) information was annotated using the significant 
variant-gene associations file downloaded from the GTEx portal. GWAS associations 
downloaded from the GWAS catalog and incorporated into our pipeline were used to 
annotate the associated phenotypes.

To further explore the potential genome regulation mechanisms, the ASB SNPs 
were also mapped to the cCREs. Note that a file containing 1,063,878 human cCREs in 
GRCh38 downloaded from SCREEN [35] was prebuilt into our pipeline to enable effi-
cient and rapid mapping. Each ASB SNP was labeled with one type of cCRE defined by 
ENCODE: dELS (distal enhancer-like signature), pELS (proximal enhancer-like signa-
ture), PLS (promoter-like signature), DNase-only, CTCF-only, DNase-H3K4me3 and 
unclassified.

ASB SNP motif analysis

Motif analysis included three steps as shown in Fig. 1: motif disruption, motif enrich-
ment and motif score. TF-binding motif sequences were scanned by Find Individual 
Motif Occurrences (FIMO) [36] based on the PWM downloaded from the HOmo sapi-
ens COmprehensive MOdel COllection (HOCOMOCO) database [37]. The FIMO 
search was incorporated within the scripts of the entire pipeline. Sequences carry-
ing either the reference or alternative allele with ± 20  bp of each SNP were generated 
in pairs, with each sequence being 41 bp in total and with the SNP at the center. Both 
the reference and alternate sequences were then scanned for motif prediction. Only the 
FIMO hits that directly overlapped with the SNP position and had the predicted p value 
less than 1e−4 were considered significant hits.

For each ChIP-seq sample, the statistical significance for the enrichment of the ASB 
SNPs in the TF-binding motif was estimated. To balance the number of non-ASB SNPs 
with that of the ASB SNPs and obtain a reliable control group, we randomly selected 
an equal number of non-ASB SNPs as controls, even though the starting pool of non-
ASB SNPs was larger than the number of ASB SNPs. To ensure robustness, this process 
was iterated 10,000 times to calculate the mean and standard deviation of the non-ASB 
SNPs located in the TF binding motifs. Subsequently, z scores were calculated and a 
two-sided p value was obtained using the pnorm function in R. Through this analysis, 
we could determine whether the ASB SNPs significantly disrupted the motif recognition 
sequences for a particular sample, suggesting a greater impact on regulation.

For each ChIP-seq sample, correlation analyses were performed to examine whether 
motif disruption by ASB SNPs had a stronger effect than the non-ASB SNPs on TF 
binding. Within these analyses, two visualization outcomes were generated. The first 
outcome illustrated the correlation between the allele ratio and the motif score change 
of the SNPs in motifs. Here, the reference allele ratio is defined as the ratio of reads 
mapped to the reference allele, while the motif PWM score change is calculated as the 
PWM score of the reference allele minus that of the alternative allele. The PWM score 
represents the strength or affinity of a transcription factor’s binding to a specific DNA 
sequence. We then obtained the motif score change and allele ratios for both ASB and 
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non-ASB sites and visualized the data with ggpubr. The Pearson correlation coefficient 
and corresponding p value were calculated using the ggpubr R package. The second out-
come showed the position-specific correlation of motif-disrupted SNP frequency with 
motif conservation, which was measured by the information content (IC). Higher IC 
indicates that the nucleotide at that position is more conserved and important. Through 
this analysis, users should be able to determine whether the ASB SNPs in a particular 
sample are likely to occur at highly conserved sites. The IC was calculated with the R 
package ggseqlogo, and the Pearson correlation was calculated with R cor.test.

Finally, for batch analysis of multiple samples, we further subdivided the conservation 
information content and frequency into high and low categories. Specifically, IC and fre-
quency values above the mean values were classified as high, while those below the mean 
values were classified as low. Additionally, IC and frequency were considered ‘consistent’ 
when both were correspondingly ‘high’ or ‘low’. Then, the ratio of the consistent posi-
tions was calculated.

Result visualization for each sample

The final step of our analysis involved generating a user-friendly and interactive HTML 
report summarizing the findings. This report included an interactive and hyperlinked 
cytogenic map, detailing the distribution of the identified ASB and non-ASB SNPs on 
each chromosome; the distribution in the different genome regions was annotated by 
SnpEff. Each ASB SNP, sorted by default using the allele imbalance p value, was anno-
tated with the rsID. This HTML report not only included statistical analysis of the 
motifs, but it also listed the position of the allele, read counts, p values, cis-regulatory 
elements (cCREs), motif enrichment and analysis, and hyperlinks to multiple databases, 
including the Genome Browser, Variant Viewer, the GTEx portal, and the GWAS data-
base. An example of the HTML formatted output is available in the output summary 
folder on Github. Overall, our ASB-analyzer’s ability to integrate genotypes with phe-
notypes is expected to provide researchers with a clearer insight needed to elucidate the 
potential biological impact of ASB SNPs.

In conclusion, our ASB-analyzer pipeline requires three input files: raw ChIP-seq 
FASTQ reads, a heterozygous genotype VCF file, and the corresponding motif PWM file. 
The FASTQ reads and VCF file are used for ASB detection, while the motif file is used 
for motif analysis. The ASB detection step utilizes the beta-binomial model to output a 
list of the ASB SNPs. The functional annotation step generates the annotated results by 
SnpEff and cCREs, along with the distribution bar plots, as well as the hyperlinks to the 
variant’s information page in dbSNP, Genome Browser and Variant Viewer. The motif 
analysis step provides results on motif enrichment, motif disruption and motif score 
change. Finally, the results visualization step generates a comprehensive summary of the 
analysis performed on each ASB SNP. This HTML report includes the basic information 
of the ASB SNPs, such as the distribution across all the chromosomes, read counts and 
allele ratios, motif enrichment, eQTLs, and hyperlinks to multiple databases. The HTML 
report also provides valuable insights into the potential biological significance of these 
SNPs through GWAS associations (Table 1), the distribution of annotations by SnpEff 
and the overlap with cCREs, as well as the results of motif analysis.
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Results
Comparison of mapping bias removal methods

Allelic mapping bias is a known hurdle for the identification of ASB SNPs. However, 
WASP [18] overcomes this mapping bias by checking the remapping consistency of all 
reads that overlap the SNP when the allele that is present in the read is changed to match 
the SNP’s other allele. Correspondingly, hierarchical indexing for spliced alignment of 
transcripts 2 (Hisat2) [38] overcomes the mapping bias by incorporating a large catalog 
of known genomic variants and haplotypes into its data structure used for searching and 
alignment, thereby enabling increased accuracy for the alignment of reads containing 
the SNPs. To date, no direct comparison of the two methods has been reported.

To search for the best combination of tools to incorporate into our pipeline, we next 
compared the performance of Hisat2 and BWA, with and without WASP, on various 
simulated datasets. Specifically, we randomly selected 100 SNPs per chromosome (a 
total of 2300 SNPs) from NA12878 (also known as GM12878, downloaded from GIAB) 
to generate the simulated reads. Two types of datasets were constructed, one comprising 
of single-end (SE) and paired-end (PE) reads with different lengths (e.g., 36 bp, 50 bp, 
and 100 bp), and the other was more complex, with a fixed read length of 100 bp for 
both single-end and paired-end reads. In the latter datasets, we also introduced a ran-
dom mismatch in each constructed read. Additionally, we tested the performance of the 
different methods when imbalance events occurred by using ratios of reference to alter-
native alleles with 10% of SNPs between 1.5:1 and 5:1.

Ideally, the allele ratio of each SNP dataset obtained should be exactly the same as the 
constructed ratio, but there were some bias in the experimental model due to technical 
errors. Therefore, the mean square error (MSE) was used to measure the bias of differ-
ent methods. As shown in Fig. 2, the ‘BWA_WASP’ method, which used BWA to map 
and remap and WASP to remove bias, outperformed the other methods, yielding the 
minimum MSE. Therefore, to achieve optimal results, we specifically incorporated the 
BWA_WASP approach into our pipeline.

Testing the pipeline using the ENCFF001HIA dataset

Using the ENCFF001HIA dataset as a test dataset, we first followed the steps detailed in 
“2.1 ASB SNP identification” to generate a file containing the ASB SNPs, which was sub-
sequently processed following the steps outlined in “2.2 ASB SNP function annotation”. 
The latter step enabled access to annotation outcomes for the SNPs, enriched cCREs cat-
egories, as well as the gene and phenotypic associations among the GTEx eQTLs and 
GWAS. These phenotype associations were derived from the GWAS catalog database’s 
data, generated together with the GTEx eQTLs in the “motif/GTEx_GWAS/” folder 
within the result directory. We then subjected the test dataset to the “2.3 ASB SNP motif 
analysis” stage, to obtain files and visualizations depicting the results of the motif analy-
sis (Fig. 3). As shown in Fig. 3A, the ASB SNPs for this particular dataset exhibited a 
marked enrichment within motif recognition sequences when compared to the non-ASB 
SNPs. Based on comparative analyses, a higher correlation of the reference allele ratio 
and motif score change were observed in the example data, indicating that the allele-
specific events are more likely to occur in the SNPs with larger differences in the motif 
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scores, and that the direction of the imbalance favors the allele with the larger PWM 
score (Fig. 3B). The position-specific correlation of motif-disrupted SNP frequency with 
motif conservation, as described in “ASB SNP motif analysis” Section, was further illus-
trated in Fig. 3C. Our ASB-analyzer thereby supports the premise that, for this specific 
test dataset, the ASB SNPs are more likely to occur in high information content (IC) 
positions, indicating a higher likelihood of the ASB SNPs appearing within the con-
served regions. For example, in Fig. 3C, ASB SNPs at positions 9, 10, and 13 of the motif 
exhibit higher information content, suggesting that these positions are more likely to be 
conserved sites. Here, the approach can be translated to applications on well-established 
HOCOMOCO [37] TF motifs, as in the case of the Nuclear Receptor Subfamily 2 Group 
F Member 1 (NR2F1), where the ASB sites follow sequence-specific binding for proteins 
like the transcription factors and predominantly occurs at key position [39]. To push the 
analysis one step further, we subsequently subjected the dataset to the steps described 
in “2.4 Result visualization for each sample”, which generated a comprehensive text file 
and an HTML-formatted report containing all the discussed information, including the 
cytogenetic map (Fig. 4) generated by ggplot2 [40] that showed the distribution of ASB 
SNPs and non-ASB SNPs in each chromosome. All of the information for the ASB SNPs 
on that chromosome were then displayed (Table 1), just by clicking the corresponding 
chromosome in the navigation bar. Taken together, our ASB-analyzer combines ASB 
SNP identification, biological annotation, motif analysis, clinical phenotype associa-
tions and report visualization in one pipeline. This composite report should enable the 
users to speculate on the potential impacts associated with the ASB SNPs of interest. For 
example, the ASB SNP rs599134, located on chromosome 1, disrupts the motif recogni-
tion sequences of CTCF and is associated with glycated hemoglobin levels (Table 1).

Fig. 2 The performance of different methods in removing mapping bias from simulated reads. A 
Performance of Hisat2 or BWA, either alone (e.g., Hisat2‑only or BWA‑only as indicated) or in combination 
with WASP (e.g., BWA_WASP) on the simulated reads with different lengths (e.g., 36 bp, 50 bp, and 100 bp, as 
indicated). Two types of datasets were tested: either single‑end (SE) reads with different lengths: SE‑36 bp, 
SE‑50 bp, and SE‑100 bp; or paired‑end (PE) reads with different lengths: PE‑50 bp and PE‑100 bp. B and C. 
Performance of the indicated methods, as detailed in (A), on simulated single‑end (B) and paired‑end (C) 
reads with a fixed read length of 100 bp and difference effect sizes. ‘Hisat2_only’ and ‘BWA_only’ referred to 
methods with basic parameters without removing mapping bias, while ‘Hisat2_SNP’ adopted the parameter 
of ‘‑snp’. Using BWA to map and remap and using WASP to remove bias were indicated with "BWA_WASP". The 
mean square error (MSE) was used to measure the performance of the different methods. Effect size refers to 
the ratios of the reference allele and alternative allele with 10% of SNPs between 1.5:1 and 5.0:1
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Annotation of ASB SNPs and comparison across samples

A total of 30 datasets of different TF ChIP-seq samples of GM12878 (Additional file 2: 
Table S2) downloaded from ENCODE were utilized to evaluate the pipeline. In addi-
tion to annotating each sample, we also pooled the results of all samples to identify 
and characterize the more generalized patterns of ASB SNPs.

Genomic annotation performed by SnpEff revealed no significant difference among 
most of the SNPs located in the intron region, intergenic region and upstream region 
of a gene (Fig. 5A); the same was observed between the ASB SNPs and the non-ASB 
SNPs. However, ASB SNPs were significantly enriched in cCREs, especially dELSs 
(Chi-Squared Test, p < 2.2e−16), suggesting that the ASB SNPs might have a stronger 
effect on genome regulation (Fig. 5B).

The allelic imbalance direction of ASB SNPs across different samples was also com-
pared (Fig. 5C). The allele ratios of shared ASB SNPs between different samples were 
highly correlated, indicating that the direction of imbalance among the ASB SNPs 
tended to be consistent across different samples, even though the target TFs were 
different.

Fig. 3 Motif analysis exemplified by ENCFF001HIA. A Histogram of the number of ASB SNPs and control 
non‑ASB SNPs in the motifs. The number of ASB SNPs enriched in the motifs is shown as the red line, and 
the mean value of the control SNPs is shown as the blue line. B Scatter plot of the reference allele ratio (Ref 
allele ratio) and motif score change of the ASB SNPs (ASB, n = 46) and non‑ASB SNPs (non‑ASB, n = 344). The 
allele ratio is defined as the ratio of reads mapped to the reference allele, while the motif PWM score change 
is calculated as the PWM score of the reference allele minus that of the alternative allele. The kernel density 
plot and the marginal density plot are also shown in the figure. In the kernel density plot, denser contour 
lines indicate higher data density. The marginal density plot shows the distribution of ASB and non‑ASB SNPs 
in motif score change and reference allele ratio separately. (C) Position‑specific correlation of motif‑disrupted 
SNP frequency with motif conservation between the ASB and non‑ASB SNPs, as measured by the information 
content (IC), also known as the bit score (Bits)
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Impact of ASB SNPs on TF‑binding motifs

It has been reported that the ASB events are often associated with changes in TF-bind-
ing motifs. Our results confirmed that ASB SNPs were preferentially enriched in the 
TF motifs compared with non-ASB SNPs. As shown in Fig.  5D and Additional file  2: 
Table  S2, the ASB SNPs were significantly enriched in most TF motifs. Notably, in at 
least two biological replicates, more than 20 ASB SNPs were enriched in the TF motif 
sequences for TFs such as CCCTC-binding factor (CTCF), Activating Transcription 
Factor 2 (ATF2), Basic Helix–Loop–Helix Family Member E40 (BHLHE40), or E74 Like 
ETS Transcription Factor 1 (ELF1). Correlation analysis of the PWM score change and 
allele ratio (Fig. 5E) showed that the allele ratio was positively correlated with the dif-
ference between the PWM scores of the two alleles, and that the correlation coefficient 
of the ASB SNPs was higher than that of the non-ASB SNPs. A positive correlation 
between the PWM score difference and allele ratio was observed in 27 out of 30 samples 
(Fig. 5E), suggesting that SNPs with a significant difference in PWM scores between the 
two alleles are more likely to exhibit ASB events. Therefore, the PWM score may be used 
as a marker for predicting ASB SNPs. Moreover, ASB SNPs were more frequently iden-
tified at the conserved sites, as exemplified by the CTCF sample (Fig. 3C) as well as all 
thirty GM12878 ChIP-seq datasets (Fig. 5F).

Discussion
Allele-specific binding (ASB) events may play a role in genomic regulation, gene expres-
sion and disease susceptibility. Herein, we presented an open-source and standalone 
pipeline named ASB-analyzer that not only detects ASB SNPs but also annotates and 
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links the identified ASB SNPs to biological and clinical phenotypic alterations. In sum-
mary, ASB-analyzer provides a user-friendly platform for efficient identification, charac-
terization, annotation and visualization of ASB SNPs. Its successful application to thirty 
GM12878 ChIP-seq datasets highlights its effectiveness in uncovering ASB events and 
their enrichment within transcription factor-binding regions. ASB-analyzer, available 
on GitHub, serves as a valuable, open-source tool for researchers exploring the genetic 
nuances of complex traits. The pipeline incorporates scripts in shell, Python, and R 
codes; it is easily installable on different computers as it is packaged in a Conda environ-
ment for managing software dependencies. To the best of our knowledge, our tool is the 
first pipeline on linux platform that automatically annotates while minimizing mapping 
bias, and it also provides an interactive and hyperlinked report linking biological pheno-
types and disease susceptibility to the ASB SNPs. Like the web-server software ANANA-
STRA, our tool can provide annotations for dbSNPs and associations with GTEx eQTLs. 
However, our ASB-analyzer extends beyond these features by offering a more compre-
hensive range of SNP annotations and analyses. For instance, in addition to dbSNP and 

Fig. 5 Cumulative results for the thirty ENCODE samples. A Distribution of ASB and non‑ASB SNPs in different 
genome regions annotated by SnpEff. B Distribution of the ASB and non‑ASB SNPs in cis‑regulatory elements 
(cCREs). C Pearson correlations of shared SNPs of different samples. D Motif enrichment in different samples. 
The color reveals the fold change in the number of ASB SNPs enriched in motifs and the mean value of 
controls. E Pearson correlations of allele ratio and PWM score difference of the two alleles. F Consistency 
of disrupted motif positions with information content (IC). If the frequency of one SNP’s disrupted location 
is consistent (either high or low) with its IC, it is ‘consistent’. Higher IC indicates that the nucleotide at that 
position is more conserved and important. Specifically, information contents and frequencies above the 
mean values were classified as high, while those below the mean values were classified as low
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GTEx annotations, our platform encompases a more detailed motif enrichment analysis. 
Our open-source multimodular toolkit also includes information on genomic positional 
distribution, enrichment in cCREs, and connections to SNPs in the GWAS catalog.

Thirty GM12878 ChIP-seq datasets were used to evaluate the performance of our 
pipeline. This ASB-analyzer streamlined the whole analytical process, such that only one 
manual input step is sufficient to generate a detailed HTML summary with informative 
annotation, plots and hyperlinked resources for each sample. Moreover, the composite 
statistical analysis of all 30 datasets revealed that the ASB SNPs were enriched in cCREs 
compared with non-ASB SNPs, especially dELSs (Fig. 5B). Motif analysis further indi-
cated that the ASB SNPs had stronger impacts on TF-binding motifs than the non-ASB 
SNPs (Fig. 5D–F). In contrast, there was no preference in the distribution of the ASB 
SNPs in the intronic, intergenic, and upstream regions relative to that of the non-ASB 
SNPs (Fig. 5A).

One potential limitation of this pipeline is that it currently analyzes ASB SNPs but not 
allele-specific expression (ASE) SNPs. ASE SNPs are associated with ASB events and 
have been linked to the occurrence and development of diseases. Therefore, we plan to 
expand the ASB-analyzer’s capabilities to include ASE SNP detection and annotation, 
developing it into a more flexible and multifunctional toolkit.

Conclusions
We have developed a novel pipeline that integrates ASB SNP detection, annotation, 
and visualization in a single package. The mapping bias was minimized by concurrently 
applying BWA to map and remap and utilizing WASP to filter the bias; the latter step 
was performed without the phased genotype file. The results from the thirty GM12878 
ChIP-seq datasets showed significant enrichment of the ASB SNPs with TF-binding 
motifs. Additionally, SNPs that are more conserved or exhibit greater differences in 
PWM scores between the two alleles are more likely to be ASB SNPs.

In conclusion, the ASB-analyzer is a comprehensive and user-friendly pipeline that 
reports allele counts, allele ratios, motif analysis results, cCRE enrichment, genomic 
annotation and phenotype associations for each sample. This study provides valuable 
insights for researchers analyzing the transcriptional regulation and gene expression of 
ASB SNPs.

Availability and requirements
Project name: ASB-analyzer.

Project home page:  https:// github. com/ Liyin g1996/ ASBan alyzer
Operating system(s): Linux.
Programming language: Python, R, Bash shell.
Other requirements: Listed on the project home page.
License: MIT license.
Any restrictions to use by non-academics: License needed.

Abbreviations
ABC  Allele‑specific binding from ChIP‑seq
ADASTRA   Allelic dosage‑corrected allele‑specific human transcription factor binding sites
ANANASTRA   Annotation and enrichment analysis of allele‑specific transcription factor binding at SNPs

https://github.com/Liying1996/ASBanalyzer
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AR  Allele ratio
AS  Allele‑specific
ASB  Allele‑specific binding
ASE  Allele‑specific expression
ATF2  Activating transcription factor 2
BaalChIP  Bayesian analysis of allelic imbalance from ChIP‑seq data
BHLHE40  Basic Helix–Loop–Helix family member E40
Bp  Base pair
BWA  Burrows–Wheeler alignment
C/EBP  CCAAT/enhancer binding protein
cCREs  Candidate cis‑regulatory elements
ChIP‑seq  Chromatin immunoprecipitation followed by sequencing
chr  Chromosome
CTCF  CCCTC‑binding factor
dbSNP  Single nucleotide polymorphism database
dELS  Distal enhancer‑like signature
DNase  Deoxyribonuclease
ELF1  E74 like ETS transcription factor 1
ENCODE  The encyclopedia of DNA elements
eQTLs  Expression quantitative trait loci
fastp  FASTQ preprocessor
FASTQ (.fastq)  Unmapped read data
FDR  False discovery rate
FIMO  Find individual motif occurrences
GATK  Genome analysis toolkit
GERV  Generative evaluation of regulatory variants
GIAB  Genome in a bottle
GTEx  Genotype‑tissue expression
GWAS  Genome‑wide association study
H3K4me3  Histone H3 protein with trimethylation at the 4th lysine residue
Hisat2  Hierarchical indexing for spliced alignment of transcripts 2
HOCOMOCO  HOmo sapiens COmprehensive MOdel COllection
IC  Information content
Len (Mb)  Genome length in million base‑pair
LSSE  Least sum of squared errors
MAPQ  Mapping quality
MSE  Mean squared error
NR2F1  Nuclear receptor subfamily 2 group F member 1
PE  Paired‑end
pELS  Proximal enhancer‑like signature
PLS  Promoter‑like signature
p value  Probability value
PWM  Position weight matrix
pos  Position
regSNPs‑ASB  Regulatory SNPs‑allele‑specific binding
rsID  Single nucleotide polymorphism identification number
SAMtools  Sequence alignment/map (SAM) tools
SCREEN  Search candidate cis‑regulatory elements by ENCODE
SE  Single‑end
SNP  Single nucleotide polymorphism
SnpEff  SNP variant annotation and effect prediction tool
SORT1  Sortilin 1
stratAS  Stratified allele‑specific
TF  Transcription factor
TFBSs  Transcription factor binding sites
VCF  Variant call format
VGAM  Vector generalized linear and additive models
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Additional file 1. A list of the tools used in this study.  This table contains a detailed list of the tools, language/plat‑
form, version, as well as the descriptions of the script tools either incorporated into the ASB‑analyzer pipeline or used 
in this work. All listed tools are included in the scripts of the ASB‑analyzer pipeline, except for the universalmotif, 
which was used to calculate the information content of the motifs, as presented in Fig. 5F.

Additional file 2. Summary of the motif analysis for the thirty GM12878 ChIP‑seq datasets from the ENCODE data‑
base. This table lists the sample name (sample) of the thirty GM12878 ChIP‑seq datasets as well as their associated TF 
motifs (TF). It also reports the number of ASB in motif (ASB_inmotif ), the total number of ASB SNPs (ASB_total), the 
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number of non‑ASB in motif (non‑ASB_inmotif ), the total number of non‑ASB sites (non‑ASB_total) for each ChIP‑seq 
dataset as well as the control mean (Control_mean), control standard deviation (Control_sd) and p value (P.Val).
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