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Abstract 

Cancer prediction in the early stage is a topic of major interest in medicine since it 
allows accurate and efficient actions for successful medical treatments of can-
cer. Mostly cancer datasets contain various gene expression levels as features 
with less samples, so firstly there is a need to eliminate similar features to permit faster 
convergence rate of classification algorithms. These features (genes) enable us to iden-
tify cancer disease, choose the best prescription to prevent cancer and discover devia-
tions amid different techniques. To resolve this problem, we proposed a hybrid novel 
technique CSSMO-based gene selection for cancer classification. First, we made altera-
tion of the fitness of spider monkey optimization (SMO) with cuckoo search algorithm 
(CSA) algorithm viz., CSSMO for feature selection, which helps to combine the benefit 
of both metaheuristic algorithms to discover a subset of genes which helps to pre-
dict a cancer disease in early stage. Further, to enhance the accuracy of the CSSMO 
algorithm, we choose a cleaning process, minimum redundancy maximum relevance 
(mRMR) to lessen the gene expression of cancer datasets. Next, these subsets of genes 
are classified using deep learning (DL) to identify different groups or classes related 
to a particular cancer disease. Eight different benchmark microarray gene expression 
datasets of cancer have been utilized to analyze the performance of the proposed 
approach with different evaluation matrix such as recall, precision, F1-score, and confu-
sion matrix. The proposed gene selection method with DL achieves much better clas-
sification accuracy than other existing DL and machine learning classification models 
with all large gene expression dataset of cancer.

Keywords: Deep learning (DL), Cuckoo search algorithm (CSA), Spider monkey 
optimization (SM), Minimum redundancy maximum relevance (mRMR), Cancer 
classification

Introduction
Successful cancer therapy has remained a significant issue despite enormous improve-
ments in healthcare over the past century, and it is the second leading cause of mortal-
ity globally, after cardiovascular disease [1]. According to data from the World Health 
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Organization (WHO), cancer is the leading cause of death worldwide. Of the estimated 
18.1 million cancer cases worldwide, 9.3 million cases involved males and 8.8 million 
involved women. The most common types of cancer are lung, liver, prostate, colon, 
breast, and rectum [1]. Figure 1 illustrates the projected worldwide count of new cases, 
categorized by age groups and gender based on 2023 estimates delivered by the Ameri-
can Cancer Society (ACS) [1, 2]. Clinical research and the treatment of many diseases 
are significantly influenced by the gene expression levels in an organism [3]. Gene 
expression microarray data is also known as gene-chip is a scientific advanced tool used 
by many researchers to study the magnitudes of several genes expressed in the abnor-
mal sample [4]. It serves as a tool that reflects the possible spectrum of the genome to 
analyze and investigate the root cause of the diseases. Problems related to gene expres-
sion profile could be solved using DNA microarray and RNA-seq based platform [5]. 
The use of gene expression profile in genetic research is a potent strategy that presents 
the data scientist with several analytical difficulties [5]. In order to locate the relevant 
gene that is conveyed, advanced biomarker machine learning approaches help by using 
gene expression data [6]. The development of trustworthy cancer biomarkers is crucial 
for the field of clinical diagnostics [6]. Gene expression profiles like microarray technol-
ogy and RNA-seq based platforms with machine learning and deep learning are useful 
in managing and isolating the genes responsible for inherited diseases [7, 8]. It helps to 
design suitable treatments in suppressing the magnitude of expressed genes linked with 
inherited diseases during the early development of the organism. The gene expression 
profiles generate high dimensional data, which is a major issue to deal with before creat-
ing the actual classifier. The accuracy and cost of computation affect the performance 

Fig. 1 Estimated number of new cases in 2023, worldwide with both sexes and all ages
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of the classifier [7]. The specific methods to decrease the dimensionality of the gene 
expression and to conquer the related problems are the Feature selection technique & 
method of Feature extraction [8]. The latter provides new fewer size features, condens-
ing the properties of high dimensional features as far as possible and the previous, on the 
other hand feature selection, filters irrelevant and reductant features and includes criti-
cal informative features [9]. The optimization techniques of linear algebra and the core 
part of statistics are the fundamental tools of most of the machine algorithms developed 
for gene expression data analysis [10]. Analyzing the expression patterns of genes can be 
approached through diverse machine learning methodologies [11, 12]. However, the effi-
cacy and precision of deep learning (DL) algorithms in this context have garnered sig-
nificant attention due to their capacity for capturing complex patterns and dependencies 
inherent in molecular interactions [13, 14]. This precision makes DL is a valuable tool for 
advancing our understanding of gene expression in various biological processes. Early 
screening for cancer is important before they damage vital organs, as it is very difficult to 
treat once it invades and most cancers have a moderately high chance of being cured if 
diagnosed and treated at early stages [15]. Hence, early prediction of cancers plays vital 
role in clinical management of the disease. Researchers leveraging advanced computa-
tional models to analyze intricate patterns and subtle indicators within diverse datasets, 
contributing to more accurate and timely cancer prognosis.

Salem et  al. implemented Information Gain & Standard Genetic Algorithm to clas-
sify human cancer disease depending on gene expression profiles. The Information 
Gain algorithm serves the purpose for feature selection followed by feature reduction 
and cancer type classification is achieved through hybrid Genetic algorithm and Genetic 
programming algorithm respectively to improved the accuracy of the classifier [15]. 
Wang et al. classified microarray data of leukaemia and colon cancer, using the hybrid 
technique with Adaptive Elastic Net with Conditional Mutual Information. The pro-
posed hybrid algorithm dominates traditional methods not only by improving the accu-
racy but also by using the minimum number of genes [16]. Medjahed et al. developed a 
unique two steps algorithm. It is based on Support Vector Machine Recursive Feature 
Elimination to extract the genes and the latest Binary Dragonfly Algorithm to improve 
performance of the previous. Authors, for the first time, incorporated the application 
of the metaheuristics algorithm with microarray data analysis that enhanced the accu-
racy of the classifier with a minimum number of genes [17]. Jansi et  al. implemented 
two-stage algorithms based on Mutual Information Genetic Algorithm. Screening of 
potential genes with high mutual values is followed by creating an optimal set of genes 
through Genetic Algorithm and SVM (Support Vector Machine). The proposed method 
shows improvement in accuracy when applied on datasets of different types of cancers 
[18]. Rouhi et al. proposed a hybrid approach which initially reduces the dimension of 
the features followed by implementation of Advanced Binary Ant Colony meta-heuris-
tic algorithm. The constructed hybrid approach enhanced the accuracy of the classifier 
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when compared with available methods [19]. Venkataramana et  al. implemented Par-
allelized hybrid feature selection (HFS) method. It not only incorporates the statistics 
related to subsets of features but also ranks them to set the selection of most effective, 
informative genes. The proposed method established the accuracy of 97% on the data 
sets related to gastric cancer and improved the accuracy to some extent when compared 
with available methods [20].

In recent times, Various researchers have employed deep learning classifiers for the 
classification of microarray data, especially in the context of cancer prediction [21]. 
Tabares et al. have shown comparative studies on the 11-tumor database and recorded 
accuracies of 90.6% & 94.43% respectively on logistic regression and convolutional neu-
ral networks. The proposed algorithm based on deep learning methods shows more 
promising results on microarray data analysis [22]. Liu et al. proposed Sample Expan-
sion Based technique with deep learning approaches used for categorization of microar-
ray data. The authors claimed improvement in the accuracy of the classifier after testing 
the data with proposed algorithms [23]. Zeebaree et al. tackled the main challenges of 
the classification of cancer microarray data with the help of deep learning algorithms 
based on Convolutional Neural Network (CNN), which show improvement in accuracy 
and extraction of informative genes as compared to machine learning model [24]. Aziz 
et al. evaluates the effectiveness of an Artificial Neural Network (ANN) classifier with 
six hybrid feature selection techniques, incorporating Independent Component Analysis 
(ICA) and bio-inspired algorithms for optimization. The study, achieved high classifica-
tion accuracy with a minimized number of selected genes. Statistical hypothesis testing 
confirms the significant differences between the algorithms, emphasizing the effective-
ness of the proposed approach [21].

Metaheuristic algorithms have emerged as effective solutions for feature selec-
tion problems, providing more accurate results [9, 10]. Currently, the Cuckoo Search 
Algorithm has shown particular promise across various domains, demonstrating 
its efficacy in addressing feature selection challenges. Alzaqebah et  al. presented a 
study demonstrating use of cuckoo search methods for feature selection. This study 
involved use of cuckoo search alongside a memory-based mechanism to save opti-
mal solutions (feature vectors) to find features that enhanced the classification accu-
racy [25]. Swathypriyadharsini et  al. have put out a methodology for identifying 
co-expressed genes that combines tri-clustering methods with a hybridized CSA algo-
rithm and clonal selection. After that, to ascertain the biological importance of the 
genes in the generated clusters, this technique makes use of gene ontology, functional 
annotation, and transcription factor binding site analysis. In comparison to both con-
ventional cuckoo search techniques and other current tri-clustering algorithms, the 
experimental results of this approach were shown to be superior [26]. Zhao et al. pro-
posed a new search algorithm namely, the Elite Hybrid Binary Cuckoo Search algo-
rithm which employed feature weighting and elite strategy to improve over Cuckoo 
Search. The proposed algorithm showed results outperforming binary genetic 
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algorithm and binary particle swarm optimization algorithm in terms of standard 
deviation, sensitivity, specificity, precision, and F-measure [27]. Othman et  al. use 
of innovative operators for genomic selection is included in a hybrid multi-objective 
CSA that has been developed. To do this, this study employed single crossover and 
double mutation operators. Using seven high dimensional cancer microarray data-
sets that are freely available, the suggested method was assessed. According to the 
experimental findings, the suggested technique selected fewer relevant genes while 
outperforming multi-objective cuckoo search and classic cuckoo search algorithms in 
terms of performance [28]. Scaria et al. proposed a user-friendly rule-based classifica-
tion model for processing microarray gene data. Here, cuckoo search optimization 
algorithm was used to form classification rules and pruned by associative rule mining. 
This study concluded that the performance of the proposed approach was adequate 
enough in terms of accuracy, sensitivity, specificity and time consumption [29]. Aziz 
et al. explored a novel metaheuristic CO-WOA for accurate species identification due 
to diverse seafood diseases. Performance comparisons with Convolutional Neural 
Networks (CNN) and VGG-19 validate the proposed method’s applicability, show-
casing 100% accuracy in the suggested deep learning model. The study outperforms 
other models like ResNet150V2, DenseNet, Visual Geometry Group-19, Inception 
V3, and Xception, establishing the Proposed Deep Learning model as the most effec-
tive through empirical analysis leveraging artificial neural networks [30].

The important findings of this work defined as:

Fig. 2 The framework of the proposed model
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Hybrid metaheuristic learning-based approach has been designed with DL classifier 
for gene selection that classify cancer accurately using SMO and CSA as CSSMO to 
optimize the selected genes even if the patients are in an early stage.
Enhance the CSSMO results by adopting filtering method mRMR, to reduce the 
dimensionality of gene expression data.
The result of deep learning model with proposed hybrid approach achieves much 
better accuracy than other existing DL models. Figure 2 shows the complete frame-
work of the proposed model.

This paper focuses on identifying compact gene groups using CSSMO for efficient 
deep-learning classification of cancer classes. The remainder sections of the research 
document are arranged as follows: "Materials and methods" section presents initial 
learning terminology related to CSA, SM algorithms and DL and the proposed CSA 
and SM based important feature identification algorithm. In "Experimental setup" 
section explained complete experimental setup and parameter setting of proposed 
algorithm. "Experimental results and discussion" section outlines the empirical evalu-
ation and gives outcome. Finally, “Output the final optimized solution with the below 
three steps” section summarizes our paper.

Materials and methods
Deep learning

Deep learning, a specialized domain within the broader landscape of machine learning 
[13, 14]. DNNs have algorithm in the field of become the gold standard computer vision, 
achieved this by bestowing computers with the remarkable capacity to autonomously 
acquire and discern intricate patterns present within expansive and complex datasets, 
thereby emulating the intricate neural networks observed within the human cerebral 
architecture [31]. Optimization of such DNNs helps to improvise the classification 
results, backpropagation is one such approach [32]. The backpropagation method, an 
optimization technique integral to the field of deep learning, operates as a vital compo-
nent within each localized segment of a CNN [33]. This algorithm assumes a pivotal role 
by meticulously fine-tuning the network’s parameters through iterative computations of 
gradients associated with an objective function, consequently facilitating the localized 
optimization process [23, 33]. This technique has become indispensable in the optimi-
zation of deep neural networks, allowing them to attain exceptional levels of predictive 
accuracy across diverse and high-dimensional datasets [14, 30].

Cuckoo search algorithm (CSA)

CSA, pioneered by Yang and Deb in 2009, stands as a population-based metaheuris-
tic optimization paradigm. Its genesis finds inspiration in the intriguing reproductive 
behaviour of cuckoo birds, characterized by their clandestine practice of laying eggs in 
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the nests of unsuspecting host bird species, entrusting them with the incubation and 
care of their progeny [34]. In the field of optimization, CSA embarks on a meticulous 
traversal of the solution space, with the overarching goal of unearthing the most opti-
mal solution to a given problem [35, 36]. This optimization unfolds through a sequence 
of intricately choreographed phases encompassing reproduction, selection, and replace-
ment mechanisms [37]. Within the computational framework, each solution assumes 
the guise of a symbolic cuckoo egg, signifying a potential resolution to the optimiza-
tion conundrum at hand [38]. The odyssey commences with the stochastic creation of 
a population of these virtual cuckoo eggs [39]. As the quest progresses, select cuckoo 
eggs undergo replacement, being supplanted by novel solutions engendered through a 
stochastic random walk process, an analogue to the reproductive strategies of the avian 
inspiration [27, 28, 38]. To further augment its exploratory prowess, CSA integrates a 
Levy flight strategy, orchestrating the construction of fresh solutions designed to liber-
ate the algorithm from local optima entrapment, thus facilitating a more comprehensive 
traversal of the solution [25, 26, 39].

Spider monkey optimization (SMO) algorithm

The SMO (Spider Monkey Optimization) algorithm stands as a member of the swarm 
intelligence domain within metaheuristic optimization techniques [40]. Drawing inspi-
ration from the foraging behaviour of spider monkeys, it orchestrates a collective effort 
among a population of solutions, akin to a group of spider monkeys, in the pursuit of 
an optimal solution [40, 41]. This pursuit involves the dynamic exchange of information 
among the individuals as they continuously refine their positions during the iterative 
optimization process [41]. This algorithm operates through a structured sequence of six 
distinct phases meticulously designed to enhance the solution positions while mitigating 
the risks of stagnation or premature convergence [41, 42]. Commencing with the assign-
ment of initial positions, randomly generated for each solution, it proceeds to refine 
these positions iteratively [42]. Within the population, the most exemplary solution 
is accorded the title of the global leader, while the algorithm also has mechanisms for 
grouping individuals if the global leader’s performance plateaus over a certain number 
of iterations [43]. Each group then features its local leader, representing the best solu-
tion within that specific subgroup [41, 43]. Moreover, the algorithm integrates phases 
for generating trial solution positions, the selection of both global and local leaders, and 
strategies for addressing stagnation and premature convergence issues at both the popu-
lation and group levels [41, 43]. Through this intricate dance of information sharing and 
position refinement, the SMO algorithm orchestrates a collective intelligence strategy 
inspired by the food-finding prowess of spider monkeys to navigate complex optimiza-
tion landscapes effectively [41, 42]. The algorithm might exhibit weaknesses in striking 
the right balance between exploration and exploitation [40]. Specifically, it might strug-
gle with local optima traps, where it becomes entrenched in suboptimal solutions due 
to its exploration-centric nature [43]. This limitation can hinder its ability to efficiently 
exploit promising areas of the search space [44].
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Proposed methodology CSSMO

CSSMO (Cuckoo Search and Spider Monkey Optimization) has been proposed, this 
algorithm seamlessly integrating the strengths of two prominent metaheuristic algo-
rithms: CSA and SMO, to enhance solution discovery [36, 45]. This method comprises 
three distinctive phases: an initial preprocessing phase, followed by the application of 
Cuckoo Search, and a Spider Monkey-based feature selection strategy. Finally, it cul-
minates in the classification of cancer utilizing a selection of genes optimized through 
CSSMO, employing Deep Learning classifiers for precise diagnostic outcomes. "This 
hybrid approach is rooted in a referenced framework that adeptly manages the intricate 
balance between exploration and exploitation, thereby enhancing optimization efficacy, 
particularly in complex problem spaces [36, 44–46]. The cited reference provides foun-
dational insights into the integration of these two strategies, ensuring a nuanced and 
effective approach to addressing complex optimization challenges."

Preprocessing phase

Gene expression datasets pose a significant challenge because they contain a lot of 
genetic information from many genes. If we use these datasets without any preparation, 
it can slow down our algorithm and make it less accurate. It also complicates the pro-
cess of classifying the data. To tackle these issues, we’ve added the mRMR method as 
a crucial step before we start working with the data. The main goal of using mRMR is 
two-fold: first, it helps us get rid of unnecessary information and reduces the number of 
repetitive genes [47]. This makes our cancer classification model work better and give 
more accurate results. It does this by looking at two important things: first, it checks 
how related genes are to different types of cancer, and second, it figures out if some 
genes are very similar to each other [47]. Using mRMR before we start our work helps 
us choose the most important genes for predicting cancer and removes any unimportant 
data. This makes our CSSMO algorithm work better and gives us more reliable result 
and compute redundancy respectively.

Feature selection phase (CSSMO algorithm)

The domain of nature-inspired metaheuristic optimization techniques in scholarly lit-
erature underscores their accomplished history in addressing a wide spectrum of 
challenges [9, 30]. However, it is crucial to recognize that each algorithm possesses dis-
tinctive attributes and limitations, rendering them suitable for particular optimization 
scenarios [10]. In the domain of microarray data feature selection, replete with numer-
ous variables and combinatorial complexities, an array of soft computing approaches has 
been explored [8]. The essence of the matter lies in methodically evaluating the perfor-
mance of these algorithms and identifying the one that aligns most favourably with the 
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unique requisites of a given problem [12]. In this vein, our study introduces a hybrid 
metaheuristic methodology that capitalizes on the complementary characteristics of 
CSA and SMO algorithms to pinpoint optimal solutions for intricate optimization tasks. 
CSA excels in localized search capabilities, characterized by a reduced number of control 
parameters and a compact population size [36]. Conversely, the SMO algorithm special-
izes in global search and demonstrates resilience, although it can be susceptible to early 
convergence and slower convergence rates relative to alternative methodologies [44, 45]. 
Our innovative hybrid approach strategically harnesses the strengths of both algorithms 
by replacing the local fitness phase of the SMO algorithm with the local fitness mecha-
nism derived from the CSA algorithm. This integration, denoted as the CSSMO algo-
rithm, is designed to heighten the efficiency and efficacy of the optimization endeavour, 
streamlining the pursuit of optimal solutions.

Pseudo Code: Hybrid (CSSMO) Algorithm:

1. Initialize the algorithm population, control parameters ( LocalLeaderLimit & 
GlobalLeaderLimit ) and Perturbation rate ( pr).

2. Calculate fitness metrics (i.e., distance of population individuals from the food 
source).

3. Select global leader via greedy selection based on fitness metrics and use cuckoo 
search optimization for local leader selection.

4. Repeat the following steps until the termination criteria is not met:

a. Position update for all individuals in the population based on Local Leader 
Phase (LLP) by using self-experience, local leader experience, and group mem-
ber experience.

b. Greedily select newly generated positions based on fitness metrics.
c. Calculate probability ( probi ) using equation.
d. Position update for all group members selected by probi , based on Global Leader 

Phase (GLP) by using self-experience, global leader experience, and group mem-
ber experience.

e. Update the position of the local and global leaders by applying greedy selection.
f. If control parameters bind a Local Group Leader, redirect all members in that 

group for foraging using Local Leader Phase Optimized with Cuckoo Search.
g. If control parameters bind a Global Leader, divide the group into smaller groups 

using Global Leader Phase (GLDP).

5. Output the final optimized solution with the below three steps:
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Experimental setup
In this research, we employed CSSMO as a optimization technique to optimize the best 
subset of gene that selected by mRMR method, which served as inputs for the DL clas-
sification. The experimentation was performed using the Operating System Ubuntu 
20.04.5 LTS (Windows WSL) with IDE VS Code (Python) platform on a computer sys-
tem that featured an Processor Intel(R) Core ™ i9-12900  k (5.20  GHz) and 64  GB of 
RAM with Nvidia RTX Quadro A5000 Graphics Processing Unit (GPU).

Dataset used

Experiments were carried out to determine the efficiency of our technique. To assess the 
proposed algorithm’s accuracy, we used eight benchmark data sets: Leukemia, Colon, 
Prostate, Lung Cancer 2, Leukemia 2, and High-Grade Glioma. The characteristics of 
these datasets are described in Table 1. In the course of this research, we employed mul-
tiple datasets to substantiate our research objectives. All the utilized datasets are acces-
sible through the following link: https:// csse. szu. edu. cn/ staff/ zhuzx/ Datas ets. html.

Deep learning model configuration

Figure 3 depicts a deep learning model configuration that consists of eight convolutional 
layers. The first layer, "Convolution 8 2 × 2 × 1", applies 8 filters of size 2 × 2 to the input 
data, with a stride of 1. The second layer, "Convolution 16 2 × 2 × 8", applies 16 filters of 
size 2 × 2 to the output of the first layer, with a stride of 1, and uses 8 as the number of 
input channels. Similarly, the third layer, "Convolution 32 2 × 2 × 16", applies 32 filters of 
size 2 × 2 to the output of the second layer, with a stride of 1, and uses 16 as the number 
of input channels. The fourth layer, "Convolution 64 2 × 2 × 32", applies 64 filters of size 
2 × 2 to the output of the third layer, with a stride of 1, and uses 32 as the number of 
input channels. The fifth layer, "Convolution 128 2 × 2 × 64", applies 128 filters of size 
2 × 2 to the output of the fourth layer, with a stride of 1, and uses 64 as the number of 
input channels. The last layer, "Convolution 256 2 × 2 × 128", applies 256 filters of size 
2 × 2 to the output of the fifth layer, with a stride of 1, and uses 128 as the number of 
input channels. ReLU (Rectified Linear Unit) is a commonly used activation function 
in neural networks. It applies an operation on each element of the input, where any ele-
ment less than zero is set to zero and any element greater than zero is passed through 
unchanged. This operation is defined mathematically as y = (0, x) , where x is the input 
and y is the output. This function allows the network to converge faster and reduces the 
chances of encountering the vanishing gradient problem, as it increases the network’s 
non-linearity. Max pooling is a technique used to down-sample the spatial dimensions 
of the input data, typically used after the convolutional layer in CNN. The max pool-
ing operation is applied to small rectangular regions of the input data, called pooling 
windows, and for each window the maximum value within that window is selected and 
propagated to the next layer.

This operation helps to reduce the number of parameters in the network, reduce 
overfitting and preserves the dominant features in the images. Batch normalization 
is a technique used to normalize the input layer by adjusting and scaling the acti-
vations. The idea behind this technique is to ensure that the inputs of each layer 

https://csse.szu.edu.cn/staff/zhuzx/Datasets.html
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are in the same distribution and thus accelerate the convergence of the network. It 
normalizes the input data by re-centering and re-scaling them so that the mean of 
the data is zero and the standard deviation is one. During training, it maintains a 
moving average of the mean and variance of the data and during testing it uses these 
values to normalize the test data. This allows the network to be less sensitive to the 
initial conditions of the parameters, reducing the need for careful parameter initiali-
zation and makes it possible to use much larger learning rates, which speeds up the 
training process. Based on the above discussion, in our model between each of the 

Table 1 Detail of eight cancer microarray data

Data set Number 
of 
classes

Number of genes Class balance ± Number 
of 
samples

Brief description

Colon cancer [48] 2 2000 (22\40) 62 Colon cancer data 
gathered from patients 
who had tumor biopsies 
reveal that both routine 
positive biopsies and 
negative tumors come 
from healthy portions 
of the same patients’ 
colons

Acute leukemia [49] 2 7129 (47\25) 72 Acute Leukemia con-
sists of two categories: 
category 1 is the Acute 
Myeloid Leukemia 
(AML) with 47 samples 
and category 2 is 
Lymphoblastic Leuke-
mia (ALL) with 25

Prostate tumor [50] 2 12,600 (50\52) 102 Prostate tumor data 
was acquired from 
two types of samples: 
non-tumor (normal) and 
tumor samples (cancer)

High-grade Glioma 
[51]

2 12,625 (28\22) 50 High-grade Glioma con-
tains glioblastomas and 
anaplastic oligoden-
drogliomas from brain 
tumor tissues

Lung cancer II [52] 2 12,533 (31\150) 181 Lung cancer II com-
prises of Malignant 
Pleural Mesothelioma 
(MPM) and Adenocar-
cinoma (ADCA) tissue 
samples of the lung

Leukemia 2 [53] 3 7129 (28\24\20) 72 The Leukemia 2 data set 
includes three types of 
samples: 28 AML sam-
ples, 24 ALL samples, 
and 20 MLL samples

Breast [54] 2 24,481 (51\46) 97 Breast cancer data 
include two type of 
samples: non-relapse 51 
samples and relapse 46 
samples

Ovarian [55] 2 15,154 (162\91) 253 Ovarian cancer data 
include 162 cancer 
samples and normal 91 
samples
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convolutional layers, there is a batch normalization operation and a ReLU activation 
function which serves as a non-linearity to the output of the convolution operation. 
The output of each batch normalization and ReLU operation is then passed through 
a max pooling operation, except for the last layer, which does not have max pooling 
applied.

Parameter setting of proposed method

The fitness function given here is used to assess the accuracy of the proposed model. It 
is used to assess how well the model’s output matches the predicted or actual outcomes.

Equation 1 refers to the fitness function of the proposed approach, which is used to 
evaluate the classifier’s performance. The fitness function is dependent on the classifier’s 
prediction accuracy, which is a measure of how successfully the classifier categorizes 
data. In the equation, N is the total number of samples in the relevant class, and CC is 
the number of properly classified observations. The number of correctly classified obser-
vations is the numerator of the equation, while the total number of samples in the class 
is the denominator. The accuracy is the resultant number, which ranges from 0 to 1, with 
1 indicating perfect accuracy and 0 indicating no accuracy. Finally,

The LOOCV accuracy has been utilized as a fitness function to evaluate the classifier’s 
performance. It is critical to grasp the parameters and their values in order to properly 
comprehend the performance of the suggested approach. It’s also worth mentioning that 

(1)Accuracy =
CC

N
× 100

(2)Fitness f = Accuracy fa

Fig. 3 Visualization of used deep learning model configuration
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alternative parameter setups may be required for different issue domains. Algorithm 1 
illustrated the all-sequential steps of modified proposed algorithm and Table  2 shows 
the parameters used for the proposed algorithm.

Algorithm 1 

Experimental results and discussion
Deep learning classification accuracy

Table  3 presents a comparative analysis of classification outcomes with Standard 
Deviation (SD), revealing that the CSSMO algorithm consistently achieves higher 
accuracy than the CSA and SMO algorithms across various datasets. Moreover, the 
comparison is visually depicted through boxplots in Fig. 4. Both the tabulated results 
and graphical representation affirm that while CSA and SMO algorithms exhibit 
commendable cancer classification accuracy, the CSSMO algorithm consistently 
outperforms them, reaching a maximum accuracy of 100% across all eight datasets 
employed. The box plot in Fig. 4 provides a comprehensive representation of the sta-
tistical measures, including mean, maximum, and minimum accuracy, across all eight 
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cancer datasets. It also indicate the convergence exhibited by the CSA, SMO, and 
CSSMO algorithms.

Error estimation

Figure 5 provides insight into the classification errors of a deep learning model utiliz-
ing three different algorithms for all eight datasets. Notably, the CSSMO algorithm 
consistently outperforms the CS and SMO algorithms across eight cancer datasets. 
The CSSMO algorithm generally exhibits the lowest prediction errors, showcasing its 
superior performance compared to the other two algorithms for each dataset.

Model performance

In Fig.  6a–f, the training accuracy and loss scores are used to assess the model’s 
performance on training data. Training accuracy is the proportion of properly cat-
egorized instances in the training set, whereas the training loss is the mistake of the 
model in predicting the right output for a given case. The testing accuracy and loss 
scores assess the model’s ability to generalize to new, previously unknown data. The 
testing accuracy is the proportion of properly categorized instances in the test set, 

Table 2 Parameter setting of the proposed CSSMO algorithm

Parameter Value

Number of nests (population) 50

Total No. of eggs 10

Total No. of generations 200

Minimum probability (Pα) of discovering an egg Pamin
0.3

Maximum probability (Pα) of discovering an egg Pamax
0.5

α Step size 1

The swarm size N 50

MG 5

Global leader limit 50

Local leader limit 1500

The number of simulations/runs 100

Table 3 Classification accuracy of SMO, CSA, and CSSMO algorithms for all eight data sets

S. No Mean classification accuracy (CA) and standard deviation (SD)

SMO algorithm CSA algorithm CSSMO algorithm

Mean CA SD Mean CA SD Mean CA SD

Colon cancer 88.7 6.02 93.7 5.18 98.9 2.02

Acute leukemia 88.92 8.66 88.67 7.41 98.23 2.12

Prostate tumor 86.99 8.12 89.12 4.37 99.02 1.23

High-grade Glioma 89.21 5.23 87.99 6.21 99.11 1.42

Lung cancer II 90.33 4.22 94.21 2.71 99.51 0.9

Leukemia 2 89.67 3.44 95.44 1.76 100 0.5

Breast data 90.23 4.12 92.44 2.34 98.32 1.56

Ovarian cancer data 91.45 5.06 93.44 3.06 96.98 2.01
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Fig. 4 Classification accuracy results with boxplot analysis for the SMO, CSA, and the proposed CSSMO 
algorithms

Fig. 5 Comparison of average error rate for all 8 cancer datasets with CSA, SMO, and CSSMO algorithms
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whereas the testing loss is the model’s inaccuracy in predicting the right output for a 
particular example in the test set.

Figure  6a, b plots accuracy and loss vs epochs for CSA algorithm, it has a rela-
tively large gap between training and testing accuracy and loss. On the other hand, in 
Fig. 6c, d plots accuracy & loss vs epochs for SMO algorithm which shows a narrower 
gap between training and testing accuracy and loss. Figure 6e, f plots accuracy & loss 
vs epochs for CSSMO algorithm, it clearly shows that the CSSMO algorithm has the 
least difference in accuracy and loss between training and testing compared to CSA 
and SMO, indicating that hybrid algorithm CSSMO can learn from training data and 
generalize effectively to new, unknown data. Based on the facts supplied, the CSSMO 
is the most effective of the three algorithms for reducing gene dimensionality.

Confusion matrix

In Fig.  7a–c, we have used confusion matrix to evaluate the performance of a clas-
sification made by CSA, SMO and the proposed CSSMO algorithm. It is a summary 

Fig. 6 Accuracy versus epochs and loss versus epochs of deep learning for CSA, SMO and CSSMO algorithms
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of the actual and predicted class labels for a given set of test data. The rows of the 
matrix represent the actual class labels, while the columns represent the predicted 
class labels. In the case of the three algorithms CSA, SMO, and CSSMO, the confu-
sion matrices show the number of correct and incorrect classifications made by each 
algorithm on a set of test data. The diagonal values of the confusion matrix repre-
sent the number of correct classifications made by the algorithm. Figure  7a shows 
confusion matrix for CSA algorithm, Fig.  7b shows confusion matrix for SMO and 
lastly Fig. 7c shows confusion matrix for CSSMO algorithm. In Fig. 7c CSSMO algo-
rithm had the highest number of correct classifications on the test data, as indicated 
by the highest diagonal values in the confusion matrix. This indicates that CSSMO 
algorithm is the best for classifying the eight different types of cancer and hence the 
most effective one.

Comparison with others machine learning and deep learning model

For further comparisons, the proposed algorithm employed with most popular 
machine learning (SVM and NB classifiers) and deep learning (VGG and LeNet clas-
sifiers), being a widely used classifier for medical data classification and cancer clas-
sification from gene expression profiles.

Figure 8 shows the mean performance comparison of all comparative and proposed 
model with training accuracy, F1 score, Recall and Precision. In Fig.  8 it is clearly 

Fig. 7 Confusion matrix for a CSA, b SMO and c CSSMO algorithms
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depicted from all observation that proposed model with deep learning gives compara-
tive good results as compared to others popular models of deep learning and machine 
learning for cancer classification.

Figure  9 presents the radar graph that ranks the algorithms based on their error 
evaluation. Area near the center of the radar graph represents lower error values. 
Therefore, algorithms that have a narrow area that perform the best classification 
task, which is the proposed approach at first, followed by the VGG algorithm. The 
performance of the proposed approach is compared in Table 4 and the radar plot in 
Fig.  9, from which it can be deduced that the proposed method is superior to the 
established deep learning and machine learning methods.

Fig. 8 Performance evaluation of proposed algorithm in relation to others popular algorithms for cancer 
classification with different evaluation matrix

Fig. 9 The radar plot curves of the proposed algorithm (blue line) (e) and the comparative classification 
algorithms (a–d) NB (Yellow line), SVM (Red line), VGG (Green line), LeNet (Purple line) obtained with 8 
medical datasets
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Comparison with recent published state‑of‑the‑art feature selection algorithms

In this subsection of our experiments, we assess the performance of our proposed 
algorithm in comparison to state-of-the-art gene selection algorithms from the litera-
ture. The evaluation is based on classification accuracy, as detailed in Table 5. Note-
worthy algorithms included for comparison are KSV-HHO [56], MRMR-MGWO 
[47], BGWOA [57], AD-GA [58], BCROSAT [59], Gene Vit [60], RFE-BEE [61], 
HAGNN [62], and ICA + CSABC [63]. Table  4 provides a comprehensive overview 
of the classification accuracy for our algorithm and the nine other methods across 
eight microarray datasets. Unknown values in the table are denoted by the character 
“−“. Examining Table 4 reveals that our proposed method exhibits improved accuracy 
compared to above including other 9 state-of-the-art gene selection algorithms. Nota-
bly, our method consistently achieves higher or equal classification accuracy across 

Table 4 The comparison result of SVM, NB, VGG and LeNet classifiers with proposed approach

Datasets NB SVM VGG LeNet Proposed model
Mean 
classification 
accuracy (%)

Mean 
classification 
accuracy (%)

Mean 
classification 
accuracy (%)

Mean 
classification 
accuracy (%)

Mean 
classification 
accuracy (%)

Colon cancer 
data

94.12 94.11 94.01 94.21 98.27

Acute leukemia 
data

91.35 90.45 88.67 86.37 93.15

Prostate tumor 
data

90.14 89.90 89.38 87.18 92.38

High-grade 
Glioma data

90.32 89.22 91.24 90.04 92.16

Lung cancer II 
data

93.71 92.34 91.34 94.22 96.23

Leukemia 2 data 94.67 93.33 94.84 95.44 96.75

Breast data 90.23 92.44 95.22 96.43 98.32

Ovarian cancer 
data

91.45 93.22 94.44 96.06 96.98

Table 5 Comparison of classification accuracy of proposed algorithm with the recent published 
state-of-the-art feature selection algorithms

Algorithms Colon Lung cancer 
II

Acute 
leukemia

High‑
grade 
Glioma

Prostate Lekuemia‑2 Breast Ovarian

CSSMO 99.36 99.07 99.28 99.82 99.98 100 98.23 96.98

kSV-HHO [51] 98.11 97.88 99.15 – – 98.80 –

rMRMR-
MGWO [52]

95.86 97.91 – – – 100 –

BGWOA [53] 100 94.97 97.7 – – 100 80.56 94.24

AD-GA [54] – – 90.9 – 93.2 97.7 – 98.88

BCROSAT [55] 992.25 93.57 – 97.2 – 98.04 93.26

GeneViT [56] 98.4 96.91 – – – 96.61 – 97.33

RFE-BEE [57] 99.58 99.43 – 100 – – –

HAGNN [58] 98.49 98.88 – 99.05 98.85 – 91.26 93.23

ICA + CSABC 
[59]

99.13 93.45 98.97 97.23 100 97.63 –
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nine out of eight datasets, with exceptions observed in the Breast, and Lung cancer-
II datasets. Furthermore, CSSMO achieves a theoretical optimal accuracy of 100%, 
accompanied by a minimum standard deviation for the aforementioned datasets.

Advantages of proposed approach

Following are the advantage of proposed algorithm:

• Optimized gene selection: This hybrid algorithm streamlines the identification of 
pertinent genes, reducing data dimensionality crucial for classification tasks. This, 
in turn, accelerates the process and enhances accuracy.

• Synergistic search capabilities: The fusion of Spider Monkey Optimization (SMO) 
and Cuckoo Search (CSA) amalgamates the exploration strength of SMO and the 
exploitation efficiency of CSA. This synergy fortifies the algorithm’s robustness in 
locating optimal solutions.

• Mitigated overfitting: Through precise gene selection and noise reduction, the hybrid 
algorithm demonstrates reduced susceptibility to overfitting, ensuring improved 
generalization to unseen data.

• Elevated model performance: The selected genes drive a deep learning classification 
model, harnessing deep learning’s potency for precise classification and capturing 
intricate data patterns.

• Reduced computational load: Gene selection significantly trims down the features 
processed by the deep learning model, resulting in expedited training and inference 
times.

• Competitive accuracy: Across diverse datasets, the hybrid approach showcases com-
petitive or superior accuracy compared to conventional gene selection and classifica-
tion methods. It excels by adeptly combining two complementary optimization tech-
niques.

• Versatile applications: The algorithm’s adaptability extends its utility to various clas-
sification tasks, encompassing cancer classification, disease diagnosis, and beyond, 
making it a valuable tool for diverse applications.

Limitations of proposed approach

The hybrid CSSMO gene selection algorithm, designed for deep learning classifica-
tion, faces several limitations. Primarily, it may encounter challenges with datasets of 
exceptionally high dimensionality, leading to computational and resource-intensive 
processes for feature selection and optimization, particularly when handling extensive 
multi-omics datasets. Additionally, the algorithm’s performance is sensitive to parameter 
settings, demanding careful tuning, which may pose challenges for users lacking exten-
sive optimization expertise. Furthermore, the interpretability of the algorithm’s deci-
sions can be complex, potentially limiting its adoption in applications prioritizing model 
transparency. Lastly, its efficacy may vary across diverse biological data types, lacking 
the exploration of biological significance discussed in references [64–66], crucial for 
cancer-related applications. Addressing these limitations and enhancing the algorithm’s 
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scalability, user-friendliness, and robustness are essential areas for future research and 
development to broaden its applications in genomics and deep learning classification.

Conclusion
In this paper, a hybrid method for deep learning classification, named CSSMO is pro-
posed for the utilization of feature selection. The CSSMO method is utilized in the 
proposed model to perform feature selection, which identifies the best subset of genes. 
Following that, this subset of genes is categorized by means of deep learning to identify 
distinct groupings or classes that are associated with a specific disease. For determining 
how accurate the suggested algorithm is, eight different benchmark data sets are utilized. 
These data sets are Colon cancer, Acute leukemia, Prostate tumor, High-grade Glioma, 
Lung cancer II, and Leukemia 2. We have carried out classification tests to demonstrate 
that the proposed model is accurate. In addition, the proposed CSSMO model’s perfor-
mance was superior to that of the conventional ML and DL models that are currently 
being utilized. As a result, we can draw the conclusion that the proposed methodology 
contributes to an increase in the classification model’s efficiency.

Future research

Researchers will be able to overcome the constraints of cancer classification using gene 
expression data with the assistance of this method. This model has the potential to be 
used in the future for the purpose of enhancing accuracy by employing it as a parallel 
framework in conjunction with other extraction strategies in order to obtain findings 
that are more precise. Future research directions for the Spider Monkey and Cuckoo 
Search hybrid algorithm in gene selection and deep learning classification include 
exploring its potential for multi-omics integration, enhancing interpretability, investi-
gating transfer learning capabilities, adapting to dynamic datasets, assessing ensemble 
approaches, testing real-time applications in medical diagnostics, addressing scalability, 
extending to cross-domain applications, leveraging hardware acceleration, considering 
ethical implications in medical contexts, and developing benchmark datasets for stand-
ardized performance evaluations. These avenues aim to further advance the algorithm’s 
effectiveness, applicability, and ethical considerations in the field of genomics and deep 
learning-based classification. Future research will look into ways to improve accuracy 
by adjusting various performance metrics. Furthermore, in future work the proposed 
model may be evaluated on Next Generation Sequencing datasets, which can be used 
to sequence genomes and investigate human biomes at a much quicker and more cost-
effective rate than earlier techniques.
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PSO  Particle swarm optimization
NB  Naïve Bayes
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