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Background
Tools to compare nucleotide or amino-acid sequences, such as BLAST, are some of the 
most used bioinformatic methods [1]. Performing sequence alignments can lead to func-
tional and evolutionary insights at the level of whole genes and proteins. Tools such as 
MUSCLE [2], DIAMOND [3], and MMSeqs2 [4] were created to speed up the alignment 
process beyond BLAST, increase recall, and address specific challenges in alignments.

Abstract 

Background: Numerous tools exist for biological sequence comparisons and search. 
One case of particular interest for immunologists is finding matches for linear peptide 
T cell epitopes, typically between 8 and 15 residues in length, in a large set of protein 
sequences. Both to find exact matches or matches that account for residue substi‑
tutions. The utility of such tools is critical in applications ranging from identifying 
conservation across viral epitopes, identifying putative epitope targets for allergens, 
and finding matches for cancer‑associated neoepitopes to examine the role of toler‑
ance in tumor recognition.

Results: We defined a set of benchmarks that reflect the different practical applica‑
tions of short peptide sequence matching. We evaluated a suite of existing methods 
for speed and recall and developed a new tool, PEPMatch. The tool uses a deterministic 
k‑mer mapping algorithm that preprocesses proteomes before searching, achieving 
a 50‑fold increase in speed over methods such as the Basic Local Alignment Search 
Tool (BLAST) without compromising recall. PEPMatch’s code and benchmark datasets 
are publicly available.

Conclusions: PEPMatch offers significant speed and recall advantages for peptide 
sequence matching. While it is of immediate utility for immunologists, the developed 
benchmarking framework also provides a standard against which future tools can be 
evaluated for improvements. The tool is available at https:// nextg en‑ tools. iedb. org, 
and the source code can be found at https:// github. com/ IEDB/ PEPMa tch.
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Immunology researchers who study T-cell epitopes often apply general-purpose align-
ment tools. Such epitopes are typically linear peptides bound to major histocompat-
ibility complex (MHC) molecules that are presented on the surface of host cells. These 
complexes enable T cells of the immune system to test them for binding to their T cell 
receptors. For MHC Class I, epitopes are typically 8–11 residues in length [5]. For MHC 
class II, epitopes are typically 13–17 residues in length [6], though shorter and longer 
peptides can be bound. A common research question is whether MHC-presented pep-
tides are found within the proteins expressed by a given organism (its proteome), such as 
a pathogen, an allergen, or the host itself. We have compiled four real-life use cases from 
our own work as examples of the types of questions typically asked.

(1) The Immune Epitope Database (IEDB) has curators combing the scientific litera-
ture to catalog epitopes and the experiments characterizing them [7]. If there is no 
literature information on the specific protein that an epitope is derived from, such 
source proteins are assigned by searching proteomes for exact matches.

(2) The emergence of the novel coronavirus (SARS-CoV-2) in late 2019 led to an ongo-
ing pandemic, causing global health, social, and economic disturbance. Researchers 
attempted to understand the nature of this virus, including exploring the possibility 
of immune cross-reactivity with other endemic viruses. Peptides from SARS-CoV-2 
were found to share similarities with peptides from the four of the most common 
human coronaviruses (HCoV-229E, HCoV-HKU1, HCoV-NL63, and HCoV-OC43) 
[8], using a similarity metric based on the number of mismatches between pep-
tides.

(3) T lymphocytes of the immune system can recognize cancer cells expressing 
mutated proteins through their presentation of “neoepitopes.” Such neoepitopes 
have amino acid substitutions compared to their unmutated sequence, allowing 
them to be recognized as non-self. Comparing neoepitope sequences against the 
host-proteome can aid in determining if the same sequence is found elsewhere and 
might thus be tolerated.

(4) Cow’s milk allergy is the most common pediatric food allergy, affecting nearly 2% of 
all children in the United States [9]. Reactions to cow milk allergens can be severe 
and makeup 8–15% of fatal or near-fatal food-induced anaphylaxis [10]. Research-
ers have postulated that the conservation of cow’s milk peptides in the human host 
may affect their allergenicity, with the less conserved peptides being more likely to 
cause allergic responses. In a recently published study [11], we examined a set of 
Cow’s milk peptides screened for allergic responses and found the best match in 
the human proteome for each. Of the peptides conserved at 100% homology, every 
single one was non-reactive, and the majority of the reactive peptides were poorly 
conserved in comparison.

As the examples above show, the matches of interest are identical peptides or allow for 
minimal mismatches. The currently available tools, such as BLAST, were not created for 
this particular task. They were developed and optimized to align longer sequences and 
lower sequence similarity. While they allow users to set parameters to tweak the meth-
ods for shorter sequence matches, such as the epitope use cases we describe above, our 
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work demonstrates that they are not ideal and are not guaranteed to find every possible 
match.

We used several common sequence alignment tools and real data from the applica-
tions mentioned above as tests to establish benchmarks for speed and recall. We also 
developed our own tool, PEPMatch, which is publicly available and is hosted on the 
Immune Epitope Database (https:// nextg en- tools. iedb. org). PEPMatch uses a non-align-
ment, deterministic k-mer mapping algorithm, which first preprocesses the proteome 
desired to search against and achieves a significant search speed increase compared with 
the other sequence alignment tools while still guaranteeing high recall. We have pub-
lished the code used to benchmark these tools to facilitate collaborations with external 
users who may be incentivized to improve performance with better tools.

Implementation
Collection of relevant tools and algorithms

Four string searching algorithms and five additional tools, including the newly developed 
PEPMatch tool, were used to find epitope matches against a reference proteome. The 
four string searching algorithms are also deterministic; they can only find exact matches, 
and thus, they are only tested on the first dataset. The names of these algorithms are 
Boyer-Moore, Horspool, Knuth-Morris-Pratt (KMP), and the Z algorithm [13–16]. 
These algorithms were re-implemented in Python version 3.9 using previously published 
literature as references. We used the five other tools that could perform both exact 
matching and finding matches with substitutions as standalone binaries with Python 
version 3.9 wrappers written to standardize metrics for benchmarking. We downloaded 
the BLAST bin files from the NCBI website, version 2.10.0. The Biopython library, ver-
sion 1.78, was used to run the BLAST algorithm locally. To allow maximum capture of 
true positives, we set the E-value threshold to 100 for exact match searching and 10,000 
for mismatch searching. Both the DIAMOND and MMseqs2 tools have download-
able standalone binaries hosted on GitHub that were used for benchmarking, and their 
parameters were also set to allow for the capture of true positives for short sequences. 
For DIAMOND, the E-value was set to 10,000, k (the number of alignments to report 
per query) to 100, and the “ultra-sensitive” flag was passed. Lastly, for Mmseqs2, we 
used an E-value of 10,000 and set the tool’s sensitivity to 7, which is the highest possible. 
Another tool, NmerMatch (unpublished; https:// github. com/ IEDB/ NmerM atch), is a 
peptide-searching tool written in the Perl programming language. A Linux machine was 
used to run the benchmarking code with a 16-core Intel i9-9900 K CPU @ 3.60 GHz, 32 
GiB of RAM, and a Samsung 970 EVO Plus 1 TB SSD.

Application datasets

We compiled four separate datasets to test these tools. There were three main pep-
tide searching objectives associated with these datasets: finding exact matches, finding 
matches with mismatches (residue substitutions), and finding the best match (match 
with the least substitutions). Each of these datasets represents a unique application 
within immunology research. All method implementations, Python wrappers for bench-
marking, and datasets are available within the GitHub codebase and the benchmarking 
framework at github.com/IEDB/PEPMatch.

https://nextgen-tools.iedb.org
https://github.com/IEDB/NmerMatch
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Exact matching: MHC class I eluted ligands dataset

To compare the performance of the tools for exact match epitope searching within 
a reference proteome, we randomly selected 1000 9-mer HLA ligands from a recent 
paper [12], and we also shuffled these 1000 peptides into random sequences (Addi-
tional file 1: Table S1)  to make sure the methods don’t incorrectly match these. We 
downloaded the human reference proteome from UniProt to search these epitopes 
within (UniProt Proteome ID: UP000005640). The four string searching algorithms 
can only be benchmarked for this dataset as they only perform exact matching.

Mismatching: SARS‑CoV‑2 and neoepitope datasets

To test the ability of these tools and algorithms to find peptides with limited mis-
matches (amino acid substitutions), we used two separate datasets with applications 
in infectious disease research and cancer research. A dataset containing 628 SARS-
CoV-2 peptides (Additional file 2: Table S2) of varying lengths [8] was used to search 
against the entirety of the betacoronavirus genus proteins found in the NCBI RefSeq 
database [17]. We searched these peptides against this enormous set of proteins for 
up to and including two mismatches. Next, we used a dataset of 620 neoepitopes, all 
15-mers  (Additional file  3: Table  S3), taken from the Cancer Epitope Database and 
Analysis Resource (CEDAR) [18], a freely accessible resource for cancer epitopes, to 
search against the human reference proteome taken from UniProt (UniProt Proteome 
ID: UP000005640). We searched these neoepitopes for up to and including three 
mismatches.

Best match: milk allergen dataset

The best match is defined as the peptide within the given proteome with the least 
number of amino acid substitutions. We used 677 15-mers (Additional file 4: Table S4) 
from a recent study [11] derived from cow milk proteins and screened across donors 
who had severe milk allergies. All of these peptides were searched in the human pro-
teome (UniProt Proteome ID: UP000005640) to find the best match, the same way 
that was done in the study.

PEPMatch: k‑mer mapping algorithm

We developed PEPMatch to ensure all short peptide matches at a given mismatch 
frequency would be found. Our algorithm is based on matching shorter k-mers by 
breaking up the given proteome into all possible k-mers. We store all k-mers mapped 
to their index positions within the proteome as a key-value database. This preprocess-
ing step is performed only once per proteome and per given k value. The hash table 
data structure allows for extremely fast lookup times when the preprocessed data is 
read into memory. Both exact matching of a peptide and searching for a peptide with 
mismatches can capitalize on hash table lookups and are explained separately below.

We store the k-mer to index mapping in a SQLite database or a serialized pickle 
format, depending on the matching task, either exact matching or matching with mis-
matches. The peptides queried for searching are passed and broken up into k-mers of 
the same size k as the preprocessed proteome. They can be broken up as k-mers using 
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a rolling window of one amino acid. Alternatively, the peptides can be generated such 
that the total coverage of the peptide is obtained using the least number of k-mers, 
even if there is some overlap with the last two k-mers. Lookups are performed, and 
depending on the type of search (exact matching versus mismatching), specific calcu-
lations are executed to find matches; this is explained below.

Exact matching

For exact matching, each query peptide is broken up into the appropriate k-mers based 
on the preprocessing carried out on the reference proteome, and each k-mer is assigned 
a sequential index. For example, given a proteome preprocessed with k = 5, the peptide 
YLLDLHSYL can be split into overlapping 5-mers: (0) YLLDL, (1) LLDLH, (2) LDLHS, 
(3) DLHSY, (4) LHSYL (Fig. 1). For an exact match to be found, all of the k-mers must be 
found in the proteome in consecutive order. The PEPMatch algorithm checks that these 
conditions are met by subtracting each k-mer index (in the first example, 0 through 4) 
from the corresponding proteome index where the k-mer match was found (the exam-
ple k-mers were found in indices 237,000,561 through 237,000,565) and recording the 
result. Thus, in the case of an exact match, the start index (in the example, 237,000,561) 
is recorded for each k-mer (5 times), which indicates that all k-mers are aligned con-
secutively. Alternatively, to maximize performance, this peptide can be split into two 
overlapping 5-mers: (0) YLLDL and (1) LHSYL, and only these two would need to be 
checked for consecutive alignment. We then use the start index location to map back 
to the protein within which the query peptide is found. Ideally, the optimal k would be 
the length of the peptide; however, since multiple peptides of different lengths can be 

Fig. 1 Exact matching search protocol. The query peptide is split into overlapping 5‑mers since k = 5 for the 
preprocessed proteome in this example. Each 5‑mer is searched in the preprocessed proteome using hash 
table lookups. The indexes where the 5‑mers are found minus the position within the query peptide are 
recorded. Lastly, the frequencies of the index locations are counted, and if there are index counts equal to the 
number of 5‑mers from the query peptide (five 5‑mers in this example), then a match is found
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searched and we want to minimize preprocessing, using a smaller k can cover more use 
cases without sacrificing much performance. If a given peptide contains multiple exact 
matches within a proteome, all are guaranteed to be found by PEPMatch.

Mismatch searching

Mismatching is done slightly differently but has similar steps involved. Given a query 
peptide and a number of allowed mismatches within it, we utilize the pigeonhole princi-
ple [19] to find the optimal k for the preprocessing step and use it to search for matches. 
The pigeonhole principle states that if n objects are put into m locations, where n < m, 
then at least one location must be empty. We apply this to sequence searching: given a 
number of mismatches, a peptide can be split up into k-mers such that, if a match exists, 
at least one k-mer would be exactly matched. This means we can vary either k or the 
number of mismatches to guarantee finding every match within the given proteome. The 
optimal k for a given peptide length, l, and the number of mismatches, m, is determined 
by the following equation:

We can also find the maximum number of mismatches given k and l:

Note that each equation takes the floor function if k or m is not an integer. Equa-
tion (1) will be used most often as the user is more likely to have a query peptide of a 
given length and would like to specify the mismatch allowance.

After k is determined, given the number of mismatches and length, we split the query 
peptide into the appropriate k-mers. The hash table lookups are performed within the 
preprocessed proteome in the same way as exact matching. Once a k-mer is found, the 
neighboring k-mers of the query peptide are compared to the neighboring k-mers within 
the preprocessed proteome. The Hamming distance of equal-length strings is the num-
ber of different letters at the same position (mismatches). We check these corresponding 
neighbors for their Hamming distance and combine the total number of mismatches for 
the query peptide. If there are less than or equal to the number of mismatches than the 
given allowance, it is a match (Fig. 2). We then record these corresponding k-mers and 
combine them to determine the matched sequence.

Best match searching

A valuable feature of peptide searching is finding the best match within a given pro-
teome, defined as the match within a proteome with the lowest number of mismatches. 
Our solution for this problem is to perform the preprocessing step multiple times on 
a proteome for different k values. After this, we perform the exact match search once 
and mismatching search protocol multiple times using the different preprocessed data 
while increasing the mismatch threshold. If the query contains multiple peptides, those 
finding a match in earlier searches are removed from the next mismatching search until 
every query peptide has been matched.

(1)k =

[

l

m+ 1

]

(2)m =
l

k
− 1
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We first preprocess the proteome using k equal to the length of the query peptide (l), 
searching for exact matches only. Then, we preprocess using k = l/2, rounding down if 
l/2 is not an integer. We then continue halving and preprocessing until we reach k = 2. 
A preprocessed proteome of k = 1 is the same as brute force searching, so we do not go 
further. After all preprocessing is complete, we search the proteome starting with the 
highest k and work down until a match is found (Fig. 3). Using Eq. (2), we determine the 
maximum number of mismatches for the k value utilized and use that as our threshold 
for each search.

Results
Establishing benchmark

To compare the performance of different tools for peptide searching, we established 
benchmark datasets and metrics to evaluate the performance of different tools and algo-
rithms. We developed a framework that provides a set of query peptides, a reference 
proteome, a mismatch frequency threshold, and a file of expected output. A tool that 
accepts these inputs can then be plugged into this framework to test itself against the 
methods available. The framework tracks the time it takes to preprocess the proteome, 
preprocess the query (if a tool performs such a task), perform the search, and then 
evaluate the output’s recall. In the evaluation of method performance, recall and search 
time are taken into consideration. Recall is defined as the percentage of actual positive 
matches the method correctly identifies. All the methods report the query peptide, the 

Fig. 2 Mismatch search protocol. Given the query peptide of length 9 and the specified number of 
mismatches equal to 2, we determine that k needs to be 3, using Eq. (1). The peptide can also be split 
evenly since 9 is divisible by 3, so the k‑mers are non‑overlapping. The 3‑mers are searched through the 
preprocessed proteome using hash table lookups. DLH is found at index 1,414,500,458, and the neighboring 
indexes are checked for Hamming distance. The left neighbor has 0 mismatches, and the right neighbor 
has 2 mismatches compared with the preprocessed proteome locations. In this case, the total number of 
mismatches is 2, which is equal to our threshold value, which means a match is found here
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matched sequence, the match’s protein ID, and the match’s index position within the 
protein. We used this framework to run the datasets with the abovementioned methods 
and generated the results below.

Since building a framework to test these many methods was necessary, we have 
attempted to make it easier for users to test other possible methods with our codebase. 
The framework we created to establish these benchmarks can allow an individual to 
write a Python wrapper around their tool, which can be written in any language, and 
“plug” it into our benchmarking code. The wrapper must accept standardized inputs and 
give standardized outputs established by this benchmark. Instructions for testing a new 
tool can be found at https:// github. com/ IEDB/ PEPMa tch/ tree/ master/ bench marki ng.

Benchmark results

Exact matching: MHC class I eluted ligands dataset

We compared the methods as explained above by the total time for the task, which is 
composed of the time it took to preprocess the proteome, preprocess the query, and 
search the peptides (Fig. 4). First, we tested the performance of all methods in finding 
exact matches in the human proteome for a dataset containing 2000 9-mers (Table 1). 
Proteome preprocessing was relevant for five methods: PEPMatch, NmerMatch, BLAST, 
DIAMOND, and MMseqs2. PEPMatch and NmerMatch used a significant fraction of 
the total time preprocessing the proteome (39.6 s and 53.7 s, respectively). BLAST, DIA-
MOND, and MMseqs2 preprocessed the proteome much quicker, taking between 0.25 
and 2.65 s. The other exact matching methods do not perform any preprocessing step. 
Only one of the methods, NmerMatch, performed preprocessing on the query pep-
tides, which took only 0.006 s. Search time varied from 0.08 s (PEPMatch) to 113 min 
(Z algorithm). Six out of the nine methods found every match with 100% recall. BLAST 

Fig. 3 Best match searching feature. The proteome is preprocessed multiple times, starting with 15 (length 
of the query peptide) and halving k until we reach 2. We preprocessed the proteome four times using 
15‑mers, 7‑mers, 3‑mers, and 2‑mers. The mismatching protocol uses the calculated maximum number of 
mismatches for each search. This is done until a match is found; we found a match with six mismatches in this 
case. If we had found a match in an earlier search, the subsequent searches would not have been performed

https://github.com/IEDB/PEPMatch/tree/master/benchmarking
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Fig. 4 Search times and for the benchmarks. The methods tested for each benchmark with their time to 
complete their search (blue bars) and the recall as a percentage of matches found (red dots). The search 
times (in seconds) are shown on the left y‑axis, with their respective accuracies on the right y‑axis. The search 
time for the MHC ligands benchmark is on a logarithmic scale due to the major differences between the 
methods. PEPMatch is many orders of magnitude faster for the exact matching benchmark (MHC ligands) 
and can achieve 100% recall in finding matches for all the benchmarks. It is only outperformed in the 
coronavirus epitope benchmark by NmerMatch when factoring for recall

Table 1 Results from the MHC class I dataset

Method Proteome 
preprocessing time 
(s)

Query 
preprocessing 
time (s)

Searching 
time (s)

Total time (s) Recall (%)

PEPMatch 39.6 N/A 0.08 39.7 100

NmerMatch 53.7 0.006 12.3 66.0 100

BLAST 1.27 N/A 11.3 12.6 98.3

DIAMOND 0.25 N/A 5.01 5.26 1.5

MMseqs2 2.65 N/A 0.50 3.15 0.0

Horspool N/A N/A 1,310 1,310 100

Boyer‑Moore N/A N/A 5,424 5,424 100

KMP N/A N/A 3,807 3,807 100

Z N/A N/A 6,782 6,782 100
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found 98.3% of all true matches, while DIAMOND and MMseqs2 found < 2% of the true 
matches. None of the methods matched the 1000 shuffled peptides anywhere in the 
human proteome. Overall, PEPMatch was the second slowest method for proteome pre-
processing. However, it was several orders of magnitude faster in search time than the 
other methods. Total time was the shortest for MMseqs2, DIAMOND, and BLAST, fol-
lowed by NmerMatch, PEPMatch, and the remaining string-searching algorithms.

Mismatching: SARS‑CoV‑2 and neoepitope datasets

Next, we tested the performance of the methods that calculate mismatching (this 
excludes the string searching algorithms: Horspool, Boyer-Moore, KMP, and Z). We 
aimed to find all matches in the entire betacoronavirus genus for a SARS-CoV-2 data-
set containing 628 peptides of varying lengths (8–15) up to and including 2 mismatches 
(Table 2). Proteome preprocessing time varied from 0.15 s (DIAMOND) to 214 s (Nmer-
Match). This step increased significantly for NmerMatch because it performs this step 
for each length of the query peptides. Query preprocessing is only done by NmerMatch, 
and this took 0.003 s. Search time varied from 0.77 s (MMSeqs2) to 115.9 s (BLAST). 
Recall was 100% for PEPMatch and NmerMatch but was considerably lower for the other 
methods. BLAST found 73.3% of the matches, whereas DIAMOND and MMSeqs2 only 
found 6.4% and 7.4%, respectively. The total time for the task was shortest for MMseqs2 
and DIAMOND, followed by PEPMatch, BLAST, and then NmerMatch.

We also tested the methods on a neoepitope dataset composed of 620 15-mers 
(Table 3). We wanted to find all matches in the human proteome with up to and includ-
ing 3 mismatches. The time it took to preprocess the proteome varied from 0.24  s 
(DIAMOND) to 50.4 s (NmerMatch), and again, query preprocessing was only done by 
NmerMatch, which took 0.002 s. Search time was significantly faster for MMseqs2 and 

Table 2 Results from the SARS‑CoV‑2 dataset

Method Proteome 
preprocessing time 
(s)

Query 
preprocessing 
time (s)

Searching 
time (s)

Total time (s) Recall (%)

PEPMatch 34.1 N/A 32.6 66.7 100

NmerMatch 214 0.003 21.3 235.9 100

BLAST 0.51 N/A 115.9 116.4 73.3

DIAMOND 0.15 N/A 3.45 3.60 6.4

MMseqs2 1.83 N/A 0.77 2.60 7.4

Table 3 Results from the neoepitopes dataset

Method Proteome 
preprocessing time 
(s)

Query 
preprocessing 
time (s)

Searching 
time (s)

Total time (s) Recall (%)

PEPMatch 13.3 N/A 18.4 31.7 100

NmerMatch 50.4 0.002 40.1 90.5 100

BLAST 1.28 N/A 119.2 120.5 58.1

DIAMOND 0.24 N/A 4.93 5.17 34.0

MMseqs2 2.28 N/A 0.59 2.87 24.6
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DIAMOND at 0.59 and 4.93 s, respectively, whereas BLAST took the longest at 119.2 s. 
PEPMatch took 18.4 s to search, and NmerMatch took 40.1 s. Recall was higher on this 
dataset for the alignment tools BLAST, DIAMOND, and MMseqs2 at 58.1%, 34.0%, and 
24.6%, respectively. PEPMatch and NmerMatch were able to find all matches with 100% 
recall. Total time was longest for BLAST and shortest for MMseqs2.

Best match: milk allergen dataset

Finally, we wanted to test the task of finding the best match within a proteome. Here, we 
ran the methods on a dataset of 677 15-mers from milk allergens to find the best match 
in the human proteome (Table 4). Only PEPMatch and NmerMatch have best match fea-
tures; however, we also searched using BLAST, DIAMOND, and MMseqs2 to observe 
how they would perform. Preprocessing the proteome varied from 0.25 s (DIAMOND) 
to 203.7  s (NmerMatch), and search time varied from 0.48  s (MMseqs2) to 19.5  min 
(NmerMatch). Again, PEPMatch and NmerMatch found all the best matches at 100% 
recall, whereas BLAST, DIAMOND, and MMseqs2 found ~ 75 to 85% of all matches. 
Total time was shortest for MMseqs2 and longest for NmerMatch.

Discussion
In this paper, we present a benchmark for finding short peptide sequences in large sets 
of proteins. Unbiased benchmarking is important when comparing any in silico methods 
since certain parameters can be tweaked to show an advantage when overall there may 
not be. This benchmark is intended to be unbiased by running all methods on the same 
machine, comparing their speed and recall without the concern of gaining an unfair 
advantage by parameter manipulation. We also present a new tool, PEPMatch, that per-
forms well in these benchmark tasks.

Overall, we show that the tools utilizing hash table lookups (PEPMatch and Nmer-
Match) were able to perform speedy exact matching and mismatching searches with 
100% recall. The common string-searching algorithms (Horspool, Boyer-Moore, KMP, 
and Z) used in many other string-searching applications are too slow for this task despite 
finding every match. The development of alignment tools over many decades, including 
BLAST, DIAMOND, and MMseqs2, was foundational for allowing search with residue 
substitutions, insertions, and deletions taken into account. These tools, while often faster 
for the task of finding matches with residue substitutions, their accuracies are lower 
when compared to deterministic algorithms such as PEPMatch for short sequences. 
This is likely because the alignment tools use k-mers for gapped and ungapped seeding 

Table 4 Results from the milk peptides dataset

Method Proteome 
preprocessing time 
(s)

Query 
preprocessing 
time (s)

Searching 
time (s)

Total time (s) Recall (%)

PEPMatch 45.5 N/A 600.3 645.8 100

NmerMatch 203.7 0.005 1,168 1,372 100

BLAST 1.30 N/A 105.3 106.6 84.2

DIAMOND 0.25 N/A 5.24 5.49 75.3

MMseqs2 2.25 N/A 0.48 2.73 75.6
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and extending to find alignments of long sequences. Finding shorter sequences in large 
datasets is a different problem, and this is the conceptual advantage of PEPMatch. This 
is one possible explanation for the low recall of the alignment tools, as they are opti-
mized for longer sequence alignments and are not easily amenable to account for the 
short peptide sequences. Since they also consider insertions and deletions when doing 
their alignments, and since we only tested for substitutions, they had more difficulty 
finding every match. This is supported by the fact that their accuracies were higher with 
the neoepitopes and milk allergen datasets, which were all 15-mers, as opposed to the 
SARS-CoV-2 dataset, which ranged from 8 to 15 residues. MMseqs2 and DIAMOND 
also had extremely low recall for the MHC class I dataset, all 9-mers. In addition, given 
that the benchmark code and method implementation is hosted on GitHub, it is easy to 
rerun and change parameters for potentially better results.

Preprocessing a proteome before searching dramatically increases the search time 
speed. If multiple runs are expected to be done subsequently with similar datasets, the 
preprocessing step only needs to be performed once, and the preprocessed data can be 
stored. This dramatically reduces the total time. For example, in the MHC class I data-
set, PEPMatch searches all 2000 9-mers in 0.08 s, which is only 0.2% of the total time 
for the task. BLAST performs the fastest in total time for this dataset and has a high 
recall (98.3%), though its searching time was over 100 times slower than PEPMatch. It 
is also worth noting that we set up the benchmark to check for the matched sequence, 
protein ID, and index position of the match, which ensures that a false positive would 
be excluded, hence the use of the recall metric. Lastly, the alignment tools do not have 
a best match feature, whereas PEPMatch and NmerMatch do. For this reason, they can 
find every best match despite their search and total time being much longer.

Progress must still be made towards speedier search times as proteomics involves big 
data, and researchers may need to perform searches on enormous datasets. For example, 
one may want to search within the entire bacteria domain, which contains > 164,000,000 
proteins (queried on UniProt [20]). Speed improvements while maintaining 100% 
match recall are likely possible. The utilization of GPU programming and paralleliza-
tion may significantly improve performance. Since peptide searching is a prevalent task 
in research, pipelines to and from PEPMatch can be established with other tools to 
facilitate the research process. In fact, on the IEDB Next Gen Tools site (https:// nextg 
en- tools. iedb. org), PEPMatch is already piped to the IEDB peptide clustering and the 
MHC Class I prediction tools. Another potential extension for the tool might be rank-
ing matches based on an amino acid substitution score. Certain amino acid substitu-
tions are more frequent than others, which could be considered in the final output. It 
is also worth noting that peptides will often map to multiple proteins, especially when 
accounting for residue substitutions, which is important in immunology. Figure 5 shows 
an example output of the PEPMatch tool from the Next-Generation IEDB Tools website, 
which features a peptide that maps to multiple proteins.

Conclusion
Our study introduces PEPMatch, a specialized tool for speedy and accurate short pep-
tide sequence matching. Built on a k-mer mapping algorithm that preprocesses pro-
teomes, the tool dramatically outpaces existing methods (such as BLAST) in speed 

https://nextgen-tools.iedb.org
https://nextgen-tools.iedb.org
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without compromising recall. The study also presents an unbiased benchmarking 
framework that serves as a standard for evaluating future tools and methods for this 
task. The applications mentioned are only a few areas within immunology where such 
a tool could be utilized. This type of small sequence searching is vital for researchers 
working with T-cell epitopes, as described in the introduction. Ultimately, we believe 
PEPMatch, along with this benchmark, will help progress immunological research by 
providing highly accurate and speedy peptide searching.
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