
PEPMatch: a tool to identify short peptide
sequence matches in large sets of proteins
Daniel Marrama1, William D. Chronister1, Luise Westernberg1, Randi Vita1, Zeynep Koşaloğlu‑Yalçın1,
Alessandro Sette1,2, Morten Nielsen3, Jason A. Greenbaum1 and Bjoern Peters1,2*

Background
Tools to compare nucleotide or amino-acid sequences, such as BLAST, are some of the
most used bioinformatic methods [1]. Performing sequence alignments can lead to func-
tional and evolutionary insights at the level of whole genes and proteins. Tools such as
MUSCLE [2], DIAMOND [3], and MMSeqs2 [4] were created to speed up the alignment
process beyond BLAST, increase recall, and address specific challenges in alignments.

Abstract

Background: Numerous tools exist for biological sequence comparisons and search.
One case of particular interest for immunologists is finding matches for linear peptide
T cell epitopes, typically between 8 and 15 residues in length, in a large set of protein
sequences. Both to find exact matches or matches that account for residue substi‑
tutions. The utility of such tools is critical in applications ranging from identifying
conservation across viral epitopes, identifying putative epitope targets for allergens,
and finding matches for cancer‑associated neoepitopes to examine the role of toler‑
ance in tumor recognition.

Results: We defined a set of benchmarks that reflect the different practical applica‑
tions of short peptide sequence matching. We evaluated a suite of existing methods
for speed and recall and developed a new tool, PEPMatch. The tool uses a deterministic
k‑mer mapping algorithm that preprocesses proteomes before searching, achieving
a 50‑fold increase in speed over methods such as the Basic Local Alignment Search
Tool (BLAST) without compromising recall. PEPMatch’s code and benchmark datasets
are publicly available.

Conclusions: PEPMatch offers significant speed and recall advantages for peptide
sequence matching. While it is of immediate utility for immunologists, the developed
benchmarking framework also provides a standard against which future tools can be
evaluated for improvements. The tool is available at https:// nextg en‑ tools. iedb. org,
and the source code can be found at https:// github. com/ IEDB/ PEPMa tch.

Keywords: Peptide matching, T‑cell epitopes, Sequence searching, K‑mer mapping,
BLAST comparison, Benchmarking, Immunology

Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo‑
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Marrama et al. BMC Bioinformatics (2023) 24:485
https://doi.org/10.1186/s12859-023-05606-4

BMC Bioinformatics

*Correspondence:
bpeters@lji.org

1 Division of Vaccine Discovery,
La Jolla Institute for Immunology,
La Jolla, San Diego, CA, USA
2 University of California San
Diego School of Medicine, La
Jolla, San Diego, CA, USA
3 Department of Health
Technology, Technical University
of Denmark, Lyngby, Denmark

https://nextgen-tools.iedb.org
https://github.com/IEDB/PEPMatch
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05606-4&domain=pdf

Page 2 of 14Marrama et al. BMC Bioinformatics (2023) 24:485

Immunology researchers who study T-cell epitopes often apply general-purpose align-
ment tools. Such epitopes are typically linear peptides bound to major histocompat-
ibility complex (MHC) molecules that are presented on the surface of host cells. These
complexes enable T cells of the immune system to test them for binding to their T cell
receptors. For MHC Class I, epitopes are typically 8–11 residues in length [5]. For MHC
class II, epitopes are typically 13–17 residues in length [6], though shorter and longer
peptides can be bound. A common research question is whether MHC-presented pep-
tides are found within the proteins expressed by a given organism (its proteome), such as
a pathogen, an allergen, or the host itself. We have compiled four real-life use cases from
our own work as examples of the types of questions typically asked.

(1) The Immune Epitope Database (IEDB) has curators combing the scientific litera-
ture to catalog epitopes and the experiments characterizing them [7]. If there is no
literature information on the specific protein that an epitope is derived from, such
source proteins are assigned by searching proteomes for exact matches.

(2) The emergence of the novel coronavirus (SARS-CoV-2) in late 2019 led to an ongo-
ing pandemic, causing global health, social, and economic disturbance. Researchers
attempted to understand the nature of this virus, including exploring the possibility
of immune cross-reactivity with other endemic viruses. Peptides from SARS-CoV-2
were found to share similarities with peptides from the four of the most common
human coronaviruses (HCoV-229E, HCoV-HKU1, HCoV-NL63, and HCoV-OC43)
[8], using a similarity metric based on the number of mismatches between pep-
tides.

(3) T lymphocytes of the immune system can recognize cancer cells expressing
mutated proteins through their presentation of “neoepitopes.” Such neoepitopes
have amino acid substitutions compared to their unmutated sequence, allowing
them to be recognized as non-self. Comparing neoepitope sequences against the
host-proteome can aid in determining if the same sequence is found elsewhere and
might thus be tolerated.

(4) Cow’s milk allergy is the most common pediatric food allergy, affecting nearly 2% of
all children in the United States [9]. Reactions to cow milk allergens can be severe
and makeup 8–15% of fatal or near-fatal food-induced anaphylaxis [10]. Research-
ers have postulated that the conservation of cow’s milk peptides in the human host
may affect their allergenicity, with the less conserved peptides being more likely to
cause allergic responses. In a recently published study [11], we examined a set of
Cow’s milk peptides screened for allergic responses and found the best match in
the human proteome for each. Of the peptides conserved at 100% homology, every
single one was non-reactive, and the majority of the reactive peptides were poorly
conserved in comparison.

As the examples above show, the matches of interest are identical peptides or allow for
minimal mismatches. The currently available tools, such as BLAST, were not created for
this particular task. They were developed and optimized to align longer sequences and
lower sequence similarity. While they allow users to set parameters to tweak the meth-
ods for shorter sequence matches, such as the epitope use cases we describe above, our

Page 3 of 14Marrama et al. BMC Bioinformatics (2023) 24:485

work demonstrates that they are not ideal and are not guaranteed to find every possible
match.

We used several common sequence alignment tools and real data from the applica-
tions mentioned above as tests to establish benchmarks for speed and recall. We also
developed our own tool, PEPMatch, which is publicly available and is hosted on the
Immune Epitope Database (https:// nextg en- tools. iedb. org). PEPMatch uses a non-align-
ment, deterministic k-mer mapping algorithm, which first preprocesses the proteome
desired to search against and achieves a significant search speed increase compared with
the other sequence alignment tools while still guaranteeing high recall. We have pub-
lished the code used to benchmark these tools to facilitate collaborations with external
users who may be incentivized to improve performance with better tools.

Implementation
Collection of relevant tools and algorithms

Four string searching algorithms and five additional tools, including the newly developed
PEPMatch tool, were used to find epitope matches against a reference proteome. The
four string searching algorithms are also deterministic; they can only find exact matches,
and thus, they are only tested on the first dataset. The names of these algorithms are
Boyer-Moore, Horspool, Knuth-Morris-Pratt (KMP), and the Z algorithm [13–16].
These algorithms were re-implemented in Python version 3.9 using previously published
literature as references. We used the five other tools that could perform both exact
matching and finding matches with substitutions as standalone binaries with Python
version 3.9 wrappers written to standardize metrics for benchmarking. We downloaded
the BLAST bin files from the NCBI website, version 2.10.0. The Biopython library, ver-
sion 1.78, was used to run the BLAST algorithm locally. To allow maximum capture of
true positives, we set the E-value threshold to 100 for exact match searching and 10,000
for mismatch searching. Both the DIAMOND and MMseqs2 tools have download-
able standalone binaries hosted on GitHub that were used for benchmarking, and their
parameters were also set to allow for the capture of true positives for short sequences.
For DIAMOND, the E-value was set to 10,000, k (the number of alignments to report
per query) to 100, and the “ultra-sensitive” flag was passed. Lastly, for Mmseqs2, we
used an E-value of 10,000 and set the tool’s sensitivity to 7, which is the highest possible.
Another tool, NmerMatch (unpublished; https:// github. com/ IEDB/ NmerM atch), is a
peptide-searching tool written in the Perl programming language. A Linux machine was
used to run the benchmarking code with a 16-core Intel i9-9900 K CPU @ 3.60 GHz, 32
GiB of RAM, and a Samsung 970 EVO Plus 1 TB SSD.

Application datasets

We compiled four separate datasets to test these tools. There were three main pep-
tide searching objectives associated with these datasets: finding exact matches, finding
matches with mismatches (residue substitutions), and finding the best match (match
with the least substitutions). Each of these datasets represents a unique application
within immunology research. All method implementations, Python wrappers for bench-
marking, and datasets are available within the GitHub codebase and the benchmarking
framework at github.com/IEDB/PEPMatch.

https://nextgen-tools.iedb.org
https://github.com/IEDB/NmerMatch

Page 4 of 14Marrama et al. BMC Bioinformatics (2023) 24:485

Exact matching: MHC class I eluted ligands dataset

To compare the performance of the tools for exact match epitope searching within
a reference proteome, we randomly selected 1000 9-mer HLA ligands from a recent
paper [12], and we also shuffled these 1000 peptides into random sequences (Addi-
tional file 1: Table S1) to make sure the methods don’t incorrectly match these. We
downloaded the human reference proteome from UniProt to search these epitopes
within (UniProt Proteome ID: UP000005640). The four string searching algorithms
can only be benchmarked for this dataset as they only perform exact matching.

Mismatching: SARS‑CoV‑2 and neoepitope datasets

To test the ability of these tools and algorithms to find peptides with limited mis-
matches (amino acid substitutions), we used two separate datasets with applications
in infectious disease research and cancer research. A dataset containing 628 SARS-
CoV-2 peptides (Additional file 2: Table S2) of varying lengths [8] was used to search
against the entirety of the betacoronavirus genus proteins found in the NCBI RefSeq
database [17]. We searched these peptides against this enormous set of proteins for
up to and including two mismatches. Next, we used a dataset of 620 neoepitopes, all
15-mers (Additional file 3: Table S3), taken from the Cancer Epitope Database and
Analysis Resource (CEDAR) [18], a freely accessible resource for cancer epitopes, to
search against the human reference proteome taken from UniProt (UniProt Proteome
ID: UP000005640). We searched these neoepitopes for up to and including three
mismatches.

Best match: milk allergen dataset

The best match is defined as the peptide within the given proteome with the least
number of amino acid substitutions. We used 677 15-mers (Additional file 4: Table S4)
from a recent study [11] derived from cow milk proteins and screened across donors
who had severe milk allergies. All of these peptides were searched in the human pro-
teome (UniProt Proteome ID: UP000005640) to find the best match, the same way
that was done in the study.

PEPMatch: k‑mer mapping algorithm

We developed PEPMatch to ensure all short peptide matches at a given mismatch
frequency would be found. Our algorithm is based on matching shorter k-mers by
breaking up the given proteome into all possible k-mers. We store all k-mers mapped
to their index positions within the proteome as a key-value database. This preprocess-
ing step is performed only once per proteome and per given k value. The hash table
data structure allows for extremely fast lookup times when the preprocessed data is
read into memory. Both exact matching of a peptide and searching for a peptide with
mismatches can capitalize on hash table lookups and are explained separately below.

We store the k-mer to index mapping in a SQLite database or a serialized pickle
format, depending on the matching task, either exact matching or matching with mis-
matches. The peptides queried for searching are passed and broken up into k-mers of
the same size k as the preprocessed proteome. They can be broken up as k-mers using

Page 5 of 14Marrama et al. BMC Bioinformatics (2023) 24:485

a rolling window of one amino acid. Alternatively, the peptides can be generated such
that the total coverage of the peptide is obtained using the least number of k-mers,
even if there is some overlap with the last two k-mers. Lookups are performed, and
depending on the type of search (exact matching versus mismatching), specific calcu-
lations are executed to find matches; this is explained below.

Exact matching

For exact matching, each query peptide is broken up into the appropriate k-mers based
on the preprocessing carried out on the reference proteome, and each k-mer is assigned
a sequential index. For example, given a proteome preprocessed with k = 5, the peptide
YLLDLHSYL can be split into overlapping 5-mers: (0) YLLDL, (1) LLDLH, (2) LDLHS,
(3) DLHSY, (4) LHSYL (Fig. 1). For an exact match to be found, all of the k-mers must be
found in the proteome in consecutive order. The PEPMatch algorithm checks that these
conditions are met by subtracting each k-mer index (in the first example, 0 through 4)
from the corresponding proteome index where the k-mer match was found (the exam-
ple k-mers were found in indices 237,000,561 through 237,000,565) and recording the
result. Thus, in the case of an exact match, the start index (in the example, 237,000,561)
is recorded for each k-mer (5 times), which indicates that all k-mers are aligned con-
secutively. Alternatively, to maximize performance, this peptide can be split into two
overlapping 5-mers: (0) YLLDL and (1) LHSYL, and only these two would need to be
checked for consecutive alignment. We then use the start index location to map back
to the protein within which the query peptide is found. Ideally, the optimal k would be
the length of the peptide; however, since multiple peptides of different lengths can be

Fig. 1 Exact matching search protocol. The query peptide is split into overlapping 5‑mers since k = 5 for the
preprocessed proteome in this example. Each 5‑mer is searched in the preprocessed proteome using hash
table lookups. The indexes where the 5‑mers are found minus the position within the query peptide are
recorded. Lastly, the frequencies of the index locations are counted, and if there are index counts equal to the
number of 5‑mers from the query peptide (five 5‑mers in this example), then a match is found

Page 6 of 14Marrama et al. BMC Bioinformatics (2023) 24:485

searched and we want to minimize preprocessing, using a smaller k can cover more use
cases without sacrificing much performance. If a given peptide contains multiple exact
matches within a proteome, all are guaranteed to be found by PEPMatch.

Mismatch searching

Mismatching is done slightly differently but has similar steps involved. Given a query
peptide and a number of allowed mismatches within it, we utilize the pigeonhole princi-
ple [19] to find the optimal k for the preprocessing step and use it to search for matches.
The pigeonhole principle states that if n objects are put into m locations, where n < m,
then at least one location must be empty. We apply this to sequence searching: given a
number of mismatches, a peptide can be split up into k-mers such that, if a match exists,
at least one k-mer would be exactly matched. This means we can vary either k or the
number of mismatches to guarantee finding every match within the given proteome. The
optimal k for a given peptide length, l, and the number of mismatches, m, is determined
by the following equation:

We can also find the maximum number of mismatches given k and l:

Note that each equation takes the floor function if k or m is not an integer. Equa-
tion (1) will be used most often as the user is more likely to have a query peptide of a
given length and would like to specify the mismatch allowance.

After k is determined, given the number of mismatches and length, we split the query
peptide into the appropriate k-mers. The hash table lookups are performed within the
preprocessed proteome in the same way as exact matching. Once a k-mer is found, the
neighboring k-mers of the query peptide are compared to the neighboring k-mers within
the preprocessed proteome. The Hamming distance of equal-length strings is the num-
ber of different letters at the same position (mismatches). We check these corresponding
neighbors for their Hamming distance and combine the total number of mismatches for
the query peptide. If there are less than or equal to the number of mismatches than the
given allowance, it is a match (Fig. 2). We then record these corresponding k-mers and
combine them to determine the matched sequence.

Best match searching

A valuable feature of peptide searching is finding the best match within a given pro-
teome, defined as the match within a proteome with the lowest number of mismatches.
Our solution for this problem is to perform the preprocessing step multiple times on
a proteome for different k values. After this, we perform the exact match search once
and mismatching search protocol multiple times using the different preprocessed data
while increasing the mismatch threshold. If the query contains multiple peptides, those
finding a match in earlier searches are removed from the next mismatching search until
every query peptide has been matched.

(1)k =

[

l

m+ 1

]

(2)m =
l

k
− 1

Page 7 of 14Marrama et al. BMC Bioinformatics (2023) 24:485

We first preprocess the proteome using k equal to the length of the query peptide (l),
searching for exact matches only. Then, we preprocess using k = l/2, rounding down if
l/2 is not an integer. We then continue halving and preprocessing until we reach k = 2.
A preprocessed proteome of k = 1 is the same as brute force searching, so we do not go
further. After all preprocessing is complete, we search the proteome starting with the
highest k and work down until a match is found (Fig. 3). Using Eq. (2), we determine the
maximum number of mismatches for the k value utilized and use that as our threshold
for each search.

Results
Establishing benchmark

To compare the performance of different tools for peptide searching, we established
benchmark datasets and metrics to evaluate the performance of different tools and algo-
rithms. We developed a framework that provides a set of query peptides, a reference
proteome, a mismatch frequency threshold, and a file of expected output. A tool that
accepts these inputs can then be plugged into this framework to test itself against the
methods available. The framework tracks the time it takes to preprocess the proteome,
preprocess the query (if a tool performs such a task), perform the search, and then
evaluate the output’s recall. In the evaluation of method performance, recall and search
time are taken into consideration. Recall is defined as the percentage of actual positive
matches the method correctly identifies. All the methods report the query peptide, the

Fig. 2 Mismatch search protocol. Given the query peptide of length 9 and the specified number of
mismatches equal to 2, we determine that k needs to be 3, using Eq. (1). The peptide can also be split
evenly since 9 is divisible by 3, so the k‑mers are non‑overlapping. The 3‑mers are searched through the
preprocessed proteome using hash table lookups. DLH is found at index 1,414,500,458, and the neighboring
indexes are checked for Hamming distance. The left neighbor has 0 mismatches, and the right neighbor
has 2 mismatches compared with the preprocessed proteome locations. In this case, the total number of
mismatches is 2, which is equal to our threshold value, which means a match is found here

Page 8 of 14Marrama et al. BMC Bioinformatics (2023) 24:485

matched sequence, the match’s protein ID, and the match’s index position within the
protein. We used this framework to run the datasets with the abovementioned methods
and generated the results below.

Since building a framework to test these many methods was necessary, we have
attempted to make it easier for users to test other possible methods with our codebase.
The framework we created to establish these benchmarks can allow an individual to
write a Python wrapper around their tool, which can be written in any language, and
“plug” it into our benchmarking code. The wrapper must accept standardized inputs and
give standardized outputs established by this benchmark. Instructions for testing a new
tool can be found at https:// github. com/ IEDB/ PEPMa tch/ tree/ master/ bench marki ng.

Benchmark results

Exact matching: MHC class I eluted ligands dataset

We compared the methods as explained above by the total time for the task, which is
composed of the time it took to preprocess the proteome, preprocess the query, and
search the peptides (Fig. 4). First, we tested the performance of all methods in finding
exact matches in the human proteome for a dataset containing 2000 9-mers (Table 1).
Proteome preprocessing was relevant for five methods: PEPMatch, NmerMatch, BLAST,
DIAMOND, and MMseqs2. PEPMatch and NmerMatch used a significant fraction of
the total time preprocessing the proteome (39.6 s and 53.7 s, respectively). BLAST, DIA-
MOND, and MMseqs2 preprocessed the proteome much quicker, taking between 0.25
and 2.65 s. The other exact matching methods do not perform any preprocessing step.
Only one of the methods, NmerMatch, performed preprocessing on the query pep-
tides, which took only 0.006 s. Search time varied from 0.08 s (PEPMatch) to 113 min
(Z algorithm). Six out of the nine methods found every match with 100% recall. BLAST

Fig. 3 Best match searching feature. The proteome is preprocessed multiple times, starting with 15 (length
of the query peptide) and halving k until we reach 2. We preprocessed the proteome four times using
15‑mers, 7‑mers, 3‑mers, and 2‑mers. The mismatching protocol uses the calculated maximum number of
mismatches for each search. This is done until a match is found; we found a match with six mismatches in this
case. If we had found a match in an earlier search, the subsequent searches would not have been performed

https://github.com/IEDB/PEPMatch/tree/master/benchmarking

Page 9 of 14Marrama et al. BMC Bioinformatics (2023) 24:485

Fig. 4 Search times and for the benchmarks. The methods tested for each benchmark with their time to
complete their search (blue bars) and the recall as a percentage of matches found (red dots). The search
times (in seconds) are shown on the left y‑axis, with their respective accuracies on the right y‑axis. The search
time for the MHC ligands benchmark is on a logarithmic scale due to the major differences between the
methods. PEPMatch is many orders of magnitude faster for the exact matching benchmark (MHC ligands)
and can achieve 100% recall in finding matches for all the benchmarks. It is only outperformed in the
coronavirus epitope benchmark by NmerMatch when factoring for recall

Table 1 Results from the MHC class I dataset

Method Proteome
preprocessing time
(s)

Query
preprocessing
time (s)

Searching
time (s)

Total time (s) Recall (%)

PEPMatch 39.6 N/A 0.08 39.7 100

NmerMatch 53.7 0.006 12.3 66.0 100

BLAST 1.27 N/A 11.3 12.6 98.3

DIAMOND 0.25 N/A 5.01 5.26 1.5

MMseqs2 2.65 N/A 0.50 3.15 0.0

Horspool N/A N/A 1,310 1,310 100

Boyer‑Moore N/A N/A 5,424 5,424 100

KMP N/A N/A 3,807 3,807 100

Z N/A N/A 6,782 6,782 100

Page 10 of 14Marrama et al. BMC Bioinformatics (2023) 24:485

found 98.3% of all true matches, while DIAMOND and MMseqs2 found < 2% of the true
matches. None of the methods matched the 1000 shuffled peptides anywhere in the
human proteome. Overall, PEPMatch was the second slowest method for proteome pre-
processing. However, it was several orders of magnitude faster in search time than the
other methods. Total time was the shortest for MMseqs2, DIAMOND, and BLAST, fol-
lowed by NmerMatch, PEPMatch, and the remaining string-searching algorithms.

Mismatching: SARS‑CoV‑2 and neoepitope datasets

Next, we tested the performance of the methods that calculate mismatching (this
excludes the string searching algorithms: Horspool, Boyer-Moore, KMP, and Z). We
aimed to find all matches in the entire betacoronavirus genus for a SARS-CoV-2 data-
set containing 628 peptides of varying lengths (8–15) up to and including 2 mismatches
(Table 2). Proteome preprocessing time varied from 0.15 s (DIAMOND) to 214 s (Nmer-
Match). This step increased significantly for NmerMatch because it performs this step
for each length of the query peptides. Query preprocessing is only done by NmerMatch,
and this took 0.003 s. Search time varied from 0.77 s (MMSeqs2) to 115.9 s (BLAST).
Recall was 100% for PEPMatch and NmerMatch but was considerably lower for the other
methods. BLAST found 73.3% of the matches, whereas DIAMOND and MMSeqs2 only
found 6.4% and 7.4%, respectively. The total time for the task was shortest for MMseqs2
and DIAMOND, followed by PEPMatch, BLAST, and then NmerMatch.

We also tested the methods on a neoepitope dataset composed of 620 15-mers
(Table 3). We wanted to find all matches in the human proteome with up to and includ-
ing 3 mismatches. The time it took to preprocess the proteome varied from 0.24 s
(DIAMOND) to 50.4 s (NmerMatch), and again, query preprocessing was only done by
NmerMatch, which took 0.002 s. Search time was significantly faster for MMseqs2 and

Table 2 Results from the SARS‑CoV‑2 dataset

Method Proteome
preprocessing time
(s)

Query
preprocessing
time (s)

Searching
time (s)

Total time (s) Recall (%)

PEPMatch 34.1 N/A 32.6 66.7 100

NmerMatch 214 0.003 21.3 235.9 100

BLAST 0.51 N/A 115.9 116.4 73.3

DIAMOND 0.15 N/A 3.45 3.60 6.4

MMseqs2 1.83 N/A 0.77 2.60 7.4

Table 3 Results from the neoepitopes dataset

Method Proteome
preprocessing time
(s)

Query
preprocessing
time (s)

Searching
time (s)

Total time (s) Recall (%)

PEPMatch 13.3 N/A 18.4 31.7 100

NmerMatch 50.4 0.002 40.1 90.5 100

BLAST 1.28 N/A 119.2 120.5 58.1

DIAMOND 0.24 N/A 4.93 5.17 34.0

MMseqs2 2.28 N/A 0.59 2.87 24.6

Page 11 of 14Marrama et al. BMC Bioinformatics (2023) 24:485

DIAMOND at 0.59 and 4.93 s, respectively, whereas BLAST took the longest at 119.2 s.
PEPMatch took 18.4 s to search, and NmerMatch took 40.1 s. Recall was higher on this
dataset for the alignment tools BLAST, DIAMOND, and MMseqs2 at 58.1%, 34.0%, and
24.6%, respectively. PEPMatch and NmerMatch were able to find all matches with 100%
recall. Total time was longest for BLAST and shortest for MMseqs2.

Best match: milk allergen dataset

Finally, we wanted to test the task of finding the best match within a proteome. Here, we
ran the methods on a dataset of 677 15-mers from milk allergens to find the best match
in the human proteome (Table 4). Only PEPMatch and NmerMatch have best match fea-
tures; however, we also searched using BLAST, DIAMOND, and MMseqs2 to observe
how they would perform. Preprocessing the proteome varied from 0.25 s (DIAMOND)
to 203.7 s (NmerMatch), and search time varied from 0.48 s (MMseqs2) to 19.5 min
(NmerMatch). Again, PEPMatch and NmerMatch found all the best matches at 100%
recall, whereas BLAST, DIAMOND, and MMseqs2 found ~ 75 to 85% of all matches.
Total time was shortest for MMseqs2 and longest for NmerMatch.

Discussion
In this paper, we present a benchmark for finding short peptide sequences in large sets
of proteins. Unbiased benchmarking is important when comparing any in silico methods
since certain parameters can be tweaked to show an advantage when overall there may
not be. This benchmark is intended to be unbiased by running all methods on the same
machine, comparing their speed and recall without the concern of gaining an unfair
advantage by parameter manipulation. We also present a new tool, PEPMatch, that per-
forms well in these benchmark tasks.

Overall, we show that the tools utilizing hash table lookups (PEPMatch and Nmer-
Match) were able to perform speedy exact matching and mismatching searches with
100% recall. The common string-searching algorithms (Horspool, Boyer-Moore, KMP,
and Z) used in many other string-searching applications are too slow for this task despite
finding every match. The development of alignment tools over many decades, including
BLAST, DIAMOND, and MMseqs2, was foundational for allowing search with residue
substitutions, insertions, and deletions taken into account. These tools, while often faster
for the task of finding matches with residue substitutions, their accuracies are lower
when compared to deterministic algorithms such as PEPMatch for short sequences.
This is likely because the alignment tools use k-mers for gapped and ungapped seeding

Table 4 Results from the milk peptides dataset

Method Proteome
preprocessing time
(s)

Query
preprocessing
time (s)

Searching
time (s)

Total time (s) Recall (%)

PEPMatch 45.5 N/A 600.3 645.8 100

NmerMatch 203.7 0.005 1,168 1,372 100

BLAST 1.30 N/A 105.3 106.6 84.2

DIAMOND 0.25 N/A 5.24 5.49 75.3

MMseqs2 2.25 N/A 0.48 2.73 75.6

Page 12 of 14Marrama et al. BMC Bioinformatics (2023) 24:485

and extending to find alignments of long sequences. Finding shorter sequences in large
datasets is a different problem, and this is the conceptual advantage of PEPMatch. This
is one possible explanation for the low recall of the alignment tools, as they are opti-
mized for longer sequence alignments and are not easily amenable to account for the
short peptide sequences. Since they also consider insertions and deletions when doing
their alignments, and since we only tested for substitutions, they had more difficulty
finding every match. This is supported by the fact that their accuracies were higher with
the neoepitopes and milk allergen datasets, which were all 15-mers, as opposed to the
SARS-CoV-2 dataset, which ranged from 8 to 15 residues. MMseqs2 and DIAMOND
also had extremely low recall for the MHC class I dataset, all 9-mers. In addition, given
that the benchmark code and method implementation is hosted on GitHub, it is easy to
rerun and change parameters for potentially better results.

Preprocessing a proteome before searching dramatically increases the search time
speed. If multiple runs are expected to be done subsequently with similar datasets, the
preprocessing step only needs to be performed once, and the preprocessed data can be
stored. This dramatically reduces the total time. For example, in the MHC class I data-
set, PEPMatch searches all 2000 9-mers in 0.08 s, which is only 0.2% of the total time
for the task. BLAST performs the fastest in total time for this dataset and has a high
recall (98.3%), though its searching time was over 100 times slower than PEPMatch. It
is also worth noting that we set up the benchmark to check for the matched sequence,
protein ID, and index position of the match, which ensures that a false positive would
be excluded, hence the use of the recall metric. Lastly, the alignment tools do not have
a best match feature, whereas PEPMatch and NmerMatch do. For this reason, they can
find every best match despite their search and total time being much longer.

Progress must still be made towards speedier search times as proteomics involves big
data, and researchers may need to perform searches on enormous datasets. For example,
one may want to search within the entire bacteria domain, which contains > 164,000,000
proteins (queried on UniProt [20]). Speed improvements while maintaining 100%
match recall are likely possible. The utilization of GPU programming and paralleliza-
tion may significantly improve performance. Since peptide searching is a prevalent task
in research, pipelines to and from PEPMatch can be established with other tools to
facilitate the research process. In fact, on the IEDB Next Gen Tools site (https:// nextg
en- tools. iedb. org), PEPMatch is already piped to the IEDB peptide clustering and the
MHC Class I prediction tools. Another potential extension for the tool might be rank-
ing matches based on an amino acid substitution score. Certain amino acid substitu-
tions are more frequent than others, which could be considered in the final output. It
is also worth noting that peptides will often map to multiple proteins, especially when
accounting for residue substitutions, which is important in immunology. Figure 5 shows
an example output of the PEPMatch tool from the Next-Generation IEDB Tools website,
which features a peptide that maps to multiple proteins.

Conclusion
Our study introduces PEPMatch, a specialized tool for speedy and accurate short pep-
tide sequence matching. Built on a k-mer mapping algorithm that preprocesses pro-
teomes, the tool dramatically outpaces existing methods (such as BLAST) in speed

https://nextgen-tools.iedb.org
https://nextgen-tools.iedb.org

Page 13 of 14Marrama et al. BMC Bioinformatics (2023) 24:485

without compromising recall. The study also presents an unbiased benchmarking
framework that serves as a standard for evaluating future tools and methods for this
task. The applications mentioned are only a few areas within immunology where such
a tool could be utilized. This type of small sequence searching is vital for researchers
working with T-cell epitopes, as described in the introduction. Ultimately, we believe
PEPMatch, along with this benchmark, will help progress immunological research by
providing highly accurate and speedy peptide searching.

Abbreviations
MHC Major histocompatibility complex
IEDB Immune epitope database
SARS‑CoV‑2 Severe acute respiratory syndrome coronavirus 2
KMP Knuth–Morris–Pratt
HLA Human leukocyte antigen
CEDAR Cancer epitope database and analysis resource

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859‑ 023‑ 05606‑4.

Additional file 1: 1000 MHC ligand peptides and 1000 shuffled peptides, all 9‑mers, for the exact matching
benchmark.

Additional file 2: 628 SARS‑CoV‑2 peptides of varying lengths for the 1st mismatching benchmark.

Additional file 3: 620 neoepitopes, all 15‑mers, for the 2nd mismatching benchmark.

Additional file 4: 677 milk allergen peptides, all 15‑mers, for the best match benchmark, annotated with their
reactivity (True/False) from donor screening.

Acknowledgements
The authors wish to acknowledge the work of the Immune Epitope Database and Analysis Resource (IEDB) and the
Cancer Epitope Database and Analysis Resource (CEDAR) teams.

Author contributions
DM, JAG, and BP developed the underlying algorithm for the tool. DM developed and maintains the Python package.
DM and JG created the benchmarking framework to test other tools. RV, LW, ZK, and AS provided the datasets and
insights to the applications for the benchmarking. WDC, AS, MN, JAG, and BP provided insights into the analysis and
applications of the tool. DM wrote the main manuscript text, generated the benchmarking data in the tables, and cre‑
ated the figures for the manuscript. All authors read, edited, and approved the final manuscript.

Funding
This work was funded by 75N93019C00001 and U24CA248138 from the National Institutes of Health.

Fig. 5 Example PEPMatch output from Next‑Generation IEDB tools site. Using the peptide from the
implementation description, searching up to 2 mismatches, this peptide maps to multiple proteins. The
output includes the original sequence, the matched sequence, the UniProt protein ID, the protein name,
the gene symbol, the number of mismatches, and the residue positions where those mismatches occur. The
user has the option to also include the species or organism name for the proteome, the taxon ID for that
organism, the start and end index positions within the protein that the peptide is found in, and the protein
existence level, which is a value curated by UniProt providing the level of evidence which the protein exists

https://doi.org/10.1186/s12859-023-05606-4

Page 14 of 14Marrama et al. BMC Bioinformatics (2023) 24:485

Availability of data and materials
Project name: PEPMatch. Project home page: https:// github. com/ IEDB/ PEPMa tch. Operating system(s): Platform inde‑
pendent. Programming language: Python. Other requirements: Python 3.7 + , pandas, NumPy, and Biopython. License:
Non‑Profit Open Software License 3.0 (NPOSL‑3.0). Any restrictions to use by non‑academics: None. All data and code for
this work are available on the PEPMatch GitHub repository (https:// github. com/ IEDB/ PEPMa tch)

Declarations

Ethical approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 30 September 2023 Accepted: 6 December 2023

References
 1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.

https:// doi. org/ 10. 1016/ S0022‑ 2836(05) 80360‑2.
 2. Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioin‑

form. 2004;5:113. https:// doi. org/ 10. 1186/ 1471‑ 2105‑5‑ 113.
 3. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using diamond. Nat Methods. 2015;12:59–60.

https:// doi. org/ 10. 1038/ nmeth. 3176.
 4. Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets.

Nat Biotechnol. 2017;35:1026–8. https:// doi. org/ 10. 1038/ nbt. 3988.
 5. Trolle T, McMurtrey CP, Sidney J, Bardet W, Osborn SC, Kaever T, Sette A, Hildebrand WH, Nielsen M, Peters B. The

length distribution of class I restricted T cell epitopes is determined by both peptide supply and MHC allele specific
binding preference. J Immunol Baltim Md. 1950;2016(196):1480–7. https:// doi. org/ 10. 4049/ jimmu nol. 15017 21.

 6. Chang ST, Ghosh D, Kirschner DE, Linderman JJ. Peptide length‑based prediction of peptide‑MHC class II binding.
Bioinforma Oxf Engl. 2006;22:2761–7. https:// doi. org/ 10. 1093/ bioin forma tics/ btl479.

 7. Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, Wheeler DK, Sette A, Peters B. The immune epitope
database (IEDB): 2018 update. Nucl Acids Res. 2019;47:D339–43. https:// doi. org/ 10. 1093/ nar/ gky10 06.

 8. Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, Rawlings SA, Sutherland A, Premkumar L, Jadi
RS, et al. Targets of T cell responses to SARS‑CoV‑2 coronavirus in humans with COVID‑19 disease and unexposed
individuals. Cell. 2020;181:1489‑1501.e15. https:// doi. org/ 10. 1016/j. cell. 2020. 05. 015.

 9. Savage J, Johns CB. Food allergy: epidemiology and natural history. Immunol Allergy Clin North Am. 2015;35:45–59.
https:// doi. org/ 10. 1016/j. iac. 2014. 09. 004.

 10. Cianferoni A, Muraro A. Food‑Induced Anaphylaxis. Immunol Allergy Clin North Am. 2012;32:165–95. https:// doi.
org/ 10. 1016/j. iac. 2011. 10. 002.

 11. Lewis SA, Sutherland A, Soldevila F, et al. Identification of cow milk epitopes to characterize and quantify disease‑
specific T cells in allergic children. J Allergy Clin Immunol. 2023;152(5):1196–209. https:// doi. org/ 10. 1016/j. jaci. 2023.
07. 020.

 12. Sarkizova S, Klaeger S, Le PM, Li LW, Oliveira G, Keshishian H, Hartigan CR, Zhang W, Braun DA, Ligon KL, et al. A large
peptidome dataset improves HLA class I epitope prediction across most of the human population. Nat Biotechnol.
2020;38:199–209. https:// doi. org/ 10. 1038/ s41587‑ 019‑ 0322‑9.

 13. Boyer RS, Moore JS. A fast string searching algorithm. Commun ACM. 1977;20:762–72. https:// doi. org/ 10. 1145/
359842. 359859.

 14. Horspool RN. Practical fast searching in strings. Softw Pract Exp. 1980;10:501–6. https:// doi. org/ 10. 1002/ spe. 43801
00608.

 15. Knuth DE, Morris JH Jr, Pratt VR. Fast pattern matching in strings. SIAM J Comput. 1977;6:323–50. https:// doi. org/ 10.
1137/ 02060 24.

 16. Gusfield D. Algorithms on strings, trees, and sequences: computer science and computational biology. 1st ed.
Cambridge England: Cambridge University Press; 1997.

 17. O’Leary NA, Wright MW, Brister JR, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic
expansion, and functional annotation. Nucl Acids Res. 2016;44(D1):D733–45. https:// doi. org/ 10. 1093/ nar/ gkv11 89.

 18. Koşaloğlu‑Yalçın Z, Blazeska N, Vita R, et al. The cancer epitope database and analysis resource (CEDAR). Nucl Acids
Res. 2023;51(D1):D845–52. https:// doi. org/ 10. 1093/ nar/ gkac9 02.

 19. Trybulec, W.A. Pigeon Hole Principle. J Formaliz Math. 1990; 2: 0.
 20. The UniProt Consortium. UniProt: the Universal Protein Knowledgebase in 2023. Nucl Acids Res.

2023;51(D1):D523–31.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://github.com/IEDB/PEPMatch
https://github.com/IEDB/PEPMatch
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1186/1471-2105-5-113
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1038/nbt.3988
https://doi.org/10.4049/jimmunol.1501721
https://doi.org/10.1093/bioinformatics/btl479
https://doi.org/10.1093/nar/gky1006
https://doi.org/10.1016/j.cell.2020.05.015
https://doi.org/10.1016/j.iac.2014.09.004
https://doi.org/10.1016/j.iac.2011.10.002
https://doi.org/10.1016/j.iac.2011.10.002
https://doi.org/10.1016/j.jaci.2023.07.020
https://doi.org/10.1016/j.jaci.2023.07.020
https://doi.org/10.1038/s41587-019-0322-9
https://doi.org/10.1145/359842.359859
https://doi.org/10.1145/359842.359859
https://doi.org/10.1002/spe.4380100608
https://doi.org/10.1002/spe.4380100608
https://doi.org/10.1137/0206024
https://doi.org/10.1137/0206024
https://doi.org/10.1093/nar/gkv1189
https://doi.org/10.1093/nar/gkac902

	PEPMatch: a tool to identify short peptide sequence matches in large sets of proteins
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Implementation
	Collection of relevant tools and algorithms
	Application datasets
	Exact matching: MHC class I eluted ligands dataset
	Mismatching: SARS-CoV-2 and neoepitope datasets
	Best match: milk allergen dataset

	PEPMatch: k-mer mapping algorithm
	Exact matching
	Mismatch searching
	Best match searching

	Results
	Establishing benchmark
	Benchmark results
	Exact matching: MHC class I eluted ligands dataset
	Mismatching: SARS-CoV-2 and neoepitope datasets
	Best match: milk allergen dataset

	Discussion
	Conclusion
	Anchor 25
	Acknowledgements
	References

