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Abstract 

Background: The success of AlphaFold2 in reliable protein three-dimensional (3D) 
structure prediction, assists the move of structural biology toward studies of protein 
dynamics and mutational impact on structure and function. This transition needs tools 
that qualitatively assess alternative 3D conformations.

Results: We introduce MutAmore, a bioinformatics tool that renders individual images 
of protein 3D structures for, e.g., sequence mutations into a visually intuitive movie 
format. MutAmore streamlines a pipeline casting single amino-acid variations (SAVs) 
into a dynamic 3D mutation movie providing a qualitative perspective on the muta-
tional landscape of a protein. By default, the tool first generates all possible variants 
of the sequence reachable through SAVs (L*19 for proteins with L residues). Next, it 
predicts the structural conformation for all L*19 variants using state-of-the-art models. 
Finally, it visualizes the mutation matrix and produces a color-coded 3D animation. 
Alternatively, users can input other types of variants, e.g., from experimental structures.

Conclusion: MutAmore samples alternative protein configurations to study 
the dynamical space accessible from SAVs in the post-AlphaFold2 era of structural biol-
ogy. As the field shifts towards the exploration of alternative conformations of proteins, 
MutAmore aids in the understanding of the structural impact of mutations by provid-
ing a flexible pipeline for the generation of protein mutation movies using current 
and future structure prediction models.

Keywords: Protein structure prediction, Single amino-acid variant, Protein mutation 
movie

Background
AI has changed structural biology and its impact

The remarkable success of AlphaFold2 [1] in effectively predicting protein three-dimen-
sional (3D) structure from sequence is shifting paradigms in structural biology and 
beyond. AlphaFold2 combines advanced Artificial Intelligence (AI) with evolutionary 
information from multiple sequence alignments (MSAs). Reliable 3D predictions for 
over 200 million proteins [2] have begun to change molecular biology. Concurrently, 
protein Language Models (pLMs) have emerged as a new approach to represent protein 
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sequences [3–5]. Downstream prediction methods based on pLM embeddings (vectors 
representing the last hidden layers of the pLMs: Fig. 1 [4]) find new solutions, e.g., in 
structure prediction methods such as ESMFold [6]. Embeddings allow predictions at 
unprecedented speed [7, 8], often outperforming state-of-the-art methods [9] using the 
combination of evolutionary information introduced three decades ago for secondary 
structure prediction [10] and eclipsed by AlphaFold2.

From available 3D model to dynamics?

In the post-AlphaFold2 era, structural biology moves toward a deeper exploration of 
alternative protein conformations and mutational landscapes [11]. Many proteins sig-
nificantly change function upon minor sequence changes [12–14]. Understanding these 
changes will be critical to unlocking the complexities of protein function, protein evolu-
tion, and disease progression at the molecular level.

Despite its immense success, AlphaFold2 often fails to correctly predict the effect 
of missense mutations upon 3D structure [7, 8, 15]. Even if it correctly captured such 
effects, it would still be too resource-intensive to be used to explore the mutational space 
of an average protein, e.g., by evaluating all possible single amino-acid substitutions 
(SAVs) even for short proteins [7, 8]. Structure predictions based on pLMs such as ESM-
Fold or EMBER2 [7] offer both the necessary speed and promise higher sensitivity to 
small changes in input sequences (Fig. 2 [8]).

Many methods have been developed to predict the effects of sequence variants upon 
protein function, including SIFT [16], PolyPhen [17], SNAP2 [18], GEMME [19], Deep-
Sequence [20], Packpred [21], Tranception [22] and VESPA [23] (for a longer list: [22, 
24]). On the other hand, tools such as I-Mutant [25, 26], FoldX [27], PoPMuSiC [28], 
DUET [29], or INPS-MD [30] aim at predicting the structural impact of mutations by 
providing estimates for changes in stability, folding or dynamics, which greatly helps 
our understanding of disease emergence. Despite convincing examples for how to use 
the numerical output from such methods to rationalize on static images about possible 

Fig. 1 MutAmore pipeline. The tool generates mutated (all possible SAVs) versions of the input sequences 
and predicts 3D structure for each, e.g., using ColabFold [33] or ESMFold [6]. Optionally, experimental 
structures for mutants can be input as an alternative to predictions. MutAmore computes the structural 
difference between each mutant and the predicted wild-type structure and renders mutation profiles 
along with 3D visualizations. After merging both, the tool renders the final protein mutation movie (PMM). 
MutAmore can be run in a two-step process, e.g., predicting structure (orange) on a server machine and 
running the rendering steps (blue) on a desktop machine
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dynamical changes [21, 29, 31], none of these methods directly displays the actual struc-
tural change in the 3D conformation.

Imagine we had fast and accurate structure predictions for all L*19 SAV mutants of 
a protein with L residues. How to visualize those data? Today, no comprehensive and 
accessible visualization tools for alternative protein conformations are available. To fill 
this void, we introduced MutAmore (MutAtion movie renderer), a tool that provides 
a pipeline rendering a mutated protein sequence into a dynamic 3D protein mutation 
movie (PMM), thereby making the analysis of mutational landscapes accessible and tan-
gible. The implementation and results presented highlight the potential of MutAmore to 
fill a growing need within the structural biology field. Its efficient visualizations could aid 
research of protein dynamics, function, evolution, and disease mechanisms.

Implementation
MutAmore is designed to create an animated visualization of the mutational landscape 
of proteins. Inputting a protein amino acid sequence (or a set thereof ) as a FASTA file 
[32], MutAmore first generates all possible single amino acid variants (SAVs) for this 
sequence(s) and uses a structure prediction model to predict 3D structure for each SAV 
(Fig. 1). We provide a ready-made interface to ESMFold [6] and ColabFold/AlphaFold2 
[33] along with documentation on how to easily use any other prediction model input-
ting FASTA files and outputting PDB files. Optionally, a user can provide experimental 
structures for some of the mutants to MutAmore. These variants are then skipped during 
the prediction stage.

MutAmore computes a mutation profile by assessing the structural divergences 
between each mutated protein and the (predicted) wild-type structure. The local 

Fig. 2 Single frame of protein mutation movie (PMM). Left panel: 3D visualization of the prediction for one 
single amino-acid variant (SAV). The respective SAV is indicated in the top-left corner (residue position 83: 
native lysin (K) mutated into isoleucine (I)) and the affected residue is rendered in black in the visualization. 
All other residues are colored by the AlphaFold2 predicted confidence in the AlphaFold2 color scheme 
(blue: high confidence; yellow–red: low confidence). Right panel: the mutation profile shows the structural 
difference between mutant and wild-type structure with residue indices running along the vertical axis and 
substitution amino-acids on the horizontal. The currently displayed SAV in each frame is indicated by a black 
border. The movie frame shown was rendered in a screen resolution of 3840 × 2160
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Distance Difference Test (lDDT) [34] tallies scores across all residues to derive a single 
score for each structure pair (typically wild-type/native vs. SAV). Structures similar to 
the wild-type have scores near one while divergent structures approach zero. These data 
are then visualized as a mutation matrix (19 × protein length) using Python-Pillow [35].

3D visualizations of all variants are created via the PyMOL API [36] and color-coded 
to indicate predicted confidence levels (blue for high confidence, yellow–red for low con-
fidence; following the AlphaFold2 standard). All recent 3D structure prediction methods 
include predicted lDDT values as confidence scores, including systems which do not 
build on top of the AlphaFold2 architecture, such as RoseTTAFold [37] and EMBER3D 
[8]. PyMOL aligns all 19*L SAV structures to the original wild-type prediction prior to 
rendering to maintain uniformity in viewing angles in the final animated visualization.

MutAmore then assembles the final frames of the animation in residue index order 
(from first at the N-terminus to the last at the C-terminus), merging the 3D renderings 
with the mutation profile to create the PMM with ffmpeg [38]. Rendered at a rate of 19 
frames per second, each residue remains in focus for one second and shows all potential 
SAVs for this position in the protein. The mutated position in each frame is rendered 
in black in both the 3D visualization and the mutation profile. Details of the SAVs dis-
played in each frame are indicated in the top-left corner through the standard single-
letter amino acid code: XnY meaning that the wild-type amino acid X at residue position 
n is mutated to amino acid Y (Fig. 2: K76H).

When users provide experimental structures—or otherwise their own labels—in a 
PDB-formatted file, the visual output highlights the differences between predictions and 
experimental models by showing the latter at full opacity while applying slight transpar-
ency to the former, giving the visual impression of “filling in the gaps” between known 
structures with predictions.

Users can adapt the resolution of the final animation to their needs, e.g., choosing 
high-quality for publications or lower resolution clips for web sharing. The mutation 
profile automatically scales to the specified vertical resolution for optimal visual inter-
pretability. The 3D visualization rendered by PyMOL automatically chooses a zoom 
level, which allows enough space to accommodate structural changes caused by muta-
tions. MutAmore lets experienced users override the zoom level manually where needed.

MutAmore also lets users render subsets of the most impactful mutations, e.g., top-50: 
those with the highest effect upon 3D. In this mode, the framerate is slightly reduced 
(slowed down) for better visual comparison.

Many advanced structure prediction systems require robust and substantial GPU 
resources. Therefore, MutAmore provides an option for a two-step process: computation 
of all mutation predictions using a server machine, and subsequent processing and ren-
dering of the animated visualization on a desktop computer.

Results
We evaluated MutAmore on an Intel Xeon Gold 6248 CPU with a NVidia Quadro RTX 
8000 GPU (48  GB) using twelve proteins ranging in lengths from 72 to 639 residues, 
including both globular and membrane proteins. Although AlphaFold2 [1] or its faster 
spin-off ColabFold [33] outperform ESMFold [6], the latter seems slightly better at 
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capturing the effects of SAVs upon structure [7, 8]. We also used ESMFold to predict 
3D structures because it is substantially faster which mattered for the 55,879 SAVs in all 
twelve samples. Then we generated movies at the default resolution of 1280 × 720 (720p) 
and 3840 × 2160 (4 K, Table 1).

The time required for structure predictions substantially varies with the method used. 
ColabFold, utilized for the five smallest proteins only, accumulated over a week of GPU 
time, given the non-linear scale with protein length, this rapidly becomes infeasible for 
longer proteins. ESMFold obtained predictions for all twelve proteins in about 16 days, 
with the bulk of the computation time dedicated to the longest samples (11 days for the 
protein with 639 residues). In contrast, the predictions for the nine smaller proteins were 
computed by ESMFold in 30 h. The tremendous increase in runtime by protein length 
(Additional file 1: Fig. S13) is due to GPU memory limitations. Structure prediction sys-
tems such as ESMFold compute multiple samples in parallel, to fill memory as efficiently 
as possible. For shorter proteins, this allows batches of up to dozens of simultaneous 
predictions. Longer sequences require more computation time and more memory. This 
limits the number of samples that can be processed concurrently, leading to an exponen-
tial increase in total runtime. Overall, these numbers highlight the need for future struc-
ture predictions with both increased speed and memory efficiency to properly explore 
the mutational landscape of longer proteins.

Given the 3D predictions, creating the animated visualizations is considerably faster. 
The majority of MutAmore’s processing time is devoted to the rendering of 3D visualiza-
tions, followed by the composition of final frames.

After generating structure predictions on our server hardware, we applied MutAmore’s 
rendering pipeline on a consumer grade laptop with an Intel Core i7 6700HQ CPU to 
compare performance with the server environment. Performance decreased by roughly 
30%, showing that MutAmore fits to readily available hardware, at least for shorter 
proteins.

Table 1 Benchmark of MutAmore in 720p and 4 K resolution for twelve proteins

Runtime of individual pipeline steps in seconds for screen resolutions 720p and 4 K, summed up over twelve proteins with 
lengths between 72 and 639 residues (total number of SAVs/3D predictions: 55,879; total number of seconds playtime: 
2941). Structure prediction with ESMFold [6] and structural similarity computation using lDDT [34] are naturally unaffected 
by larger image sizes, but 3D rendering with PyMOL [36], compositing (putting together the individual image pieces) 
and movie rendering (encoding individual frames to a movie) scale with a factor closer to the increase in screen estate. 
Additional file 1: Tables S1–S12 in the Supporting Online Materials break down the runtime for each of the twelve proteins 
while Additional file 1: Fig. S13 visualizes the scaling of runtime with protein length. The 1.4 million seconds required for the 
ESMFold 3D predictions amounted to about 16 days

Runtime in seconds

720p resolution 4 K resolution

Prediction (ESMFold) 1,423,814

3D rendering 26,893 106,829

Structural similarity 4008 4224

Mutation profile rendering 4472 16,871

Compositing final frames 4730 33,032

Movie rendering 172 1012

Total (rendering) 40,275 161,968

Total (rendering + prediction) 1,464,089 1,585,782
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Enhancing the resolution required additional runtime. Rendering at 4  K increased 
the processing time for the 3D visualization, compositing, and rendering by a factor of 
three to seven over rendering at 720p (Table 1), but generally less than the increase in 
amount of pixels (4 K/720p = 9×). The time for computing structural similarity and for 
generating the profile did not differ much between 720p and 4 K (Table 1). We provide a 
detailed breakdown of the runtime of all pipeline steps on the twelve individual samples 
in the Additional file 1: Tables S1–S12. Even at 4 K, the total processing time for MutA-
more remained substantially below that needed to predict structures even with ESMFold 
for all but the shortest protein sequences (Additional file 1: Fig. S13).

Limitations

A profound consequence of all attempts to visualize the dynamics of 3D objects lies 
in the obstruction of internal parts. For instance, buried residues and changes of local 
regions around these will remain obscured from our 3D movies. For some proteins, such 
as beta barrels, a cleverly chosen viewing angle might provide a better perspective, but 
globular proteins do not provide such an alternative. Transparency might address such 
issues, but transparency tends to cause a lack of depth perception and too much visual 
clutter to clearly comprehend the visual information being presented. Thus, it remains 
unclear how to show internal structural changes of proteins in a visually concise manner 
apart from going back to two-dimensional distance maps, which are only intuitive to a 
well-trained structural expert.

Another implicit limitation for using 3D predictions for all 19-non-native SAVs is in 
the substantial demand on computing resources of today’s prediction methods. This 
becomes particularly challenging for long proteins (Additional file 1: Fig. S13), MutA-
more would greatly benefit from future prediction systems that are leaner without hav-
ing to sacrifice performance [8].

Too few high-resolution experimental structures establish the effect of point muta-
tions upon 3D to evaluate how well prediction methods capture SAV effects. Proxy-
ing deep mutational scanning data [39] might suffice to establish correlations between 
observed and predicted impact upon function without probing how well methods pre-
dict the effect of SAVs upon 3D structure and dynamics. Once more experimental data 
of variant structures will be available, MutAmore could be extended to serve as a bench-
marking tool for the sensitivity of structure prediction.

A webserver for MutAmore might ease the access for users with less experience in 
computational biology. While we are looking for the resources to realize such a project, 
we provide a Google Colab Notebook linked on the MutAmore website and allows the 
creation of PMM’s without the need of a local installation.

Conclusions
We designed MutAmore to bridge a crucial gap in the post-AlphaFold era. By render-
ing conceivable and visually comprehensible protein mutation movies (PMMs) of single 
amino-acid substitutions (SAVs), MutAmore enhances the exploration and understand-
ing of alternative protein conformations brought on by mutations. This is particularly 
significant in translating the depth and complexity of the protein mutational landscape. 
Our benchmark demonstrated the efficiency and versatility of MutAmore even for 
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high-definition 4 K video settings. The tool effectively balances computational load by 
allowing multi-step operation across multiple systems, ensuring usability across varied 
system capabilities. We hope that structural biology increasingly shifts toward routine 
analysis of alternate protein conformations. MutAmore supports such a more dynamic 
perspective on protein structures and might aid analyzing protein function and studying 
protein evolution.

Availability

MutAmore is publicly available and is free for all users.
Project name: MutAmore.
Project home page: https:// github. com/ kWeis senow/ MutAm ore
Operating systems: Linux.
Programming language: Python.
Other requirements: ffmpeg 4.1 or higher, PyMOL 2.2 or higher.
License: MIT.
Any restrictions to use by non-academics: None.

Abbreviations
3D  Three-dimensional (coordinates)
3D structure  Three-dimensional coordinates of protein structure
AI  Artificial Intelligence
API  Application programing interface
Embeddings  Fixed-size vectors derived from pre-trained pLMs
GPU  Graphical processing unit
PDB  Protein Data Bank
PIDE  Percentage pairwise sequence identity
pLM  Protein Language Model
PMM  Protein mutation movie

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859- 023- 05610-8.

Additional file 1. In figures S1-S12 we show screenshots of all protein mutation movies used for benchmarking. Cor-
responding tables S1-S12 indicate runtimes for all individual samples, including prediction time using ESMFold and 
all MutAmore rendering pipeline steps. Figure S13 visualizes the scaling of runtime for prediction and rendering 
steps with sequence length.
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