
Predicting potential microbe‑disease 
associations based on auto‑encoder and graph 
convolution network
Shanghui Lu1,2, Yong Liang1,3*, Le Li1, Rui Miao4, Shuilin Liao1, Yongfu Zou2, Chengjun Yang5 and Dong Ouyang6 

Introduction
Microbial communities are collections of microorganisms that live together in 
the same environment and share a common living space. They are a structural and 
functional unit that is widely present in ecosystems and can be found in all large 
organisms and their bodies [1]. Research over the past few decades has shown that 
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the DAEGCNDF model predicting potential associations between microbes and dis-
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microbial communities play a crucial role in human health. During the long process 
of evolution, microbes form an interdependent and mutually restrictive relationship 
with the host through individual adaptation and natural selection, while their micro-
environment and immune system are in a dynamic equilibrium state [2]. When this 
dynamic balance is disrupted, the host’s transcription, translation, and DNA repair 
mechanisms may be affected, which can in turn affect human health. In addition, 
microbial communities can also play a key role in regulating the efficacy and toxicity 
of anticancer drugs by regulating host immunity and microbial enzyme degradation 
mechanisms [3]. For example, changes in the structure of the oral microbiome in a 
healthy state, that is, changes in the taxonomic composition and relative abundance 
of the oral microbiome, can lead to the occurrence of dental caries and periodontal 
disease [4]. Lelouvier, Benjamin, et al. [5] revealed the relationship between changes 
in the blood microbiome of obese patients and liver fibrosis through qualitative and 
quantitative analysis of blood bacterial DNA. It has been proven that Helicobacter 
pylori is associated with a variety of gastrointestinal diseases and was classified as a 
Group 1 carcinogen by the World Health Organization in 2017 [6–9].

In addition, some microorganisms are considered to be beneficial to human health. 
Streptococcus thermophilus, which is widely used in the food industry, is considered to 
be beneficial to human health. The proportion of adults who consume yogurt contain-
ing Streptococcus thermophilus while undergoing antibiotic treatment and suffer from 
antibiotic-associated diarrhea is lower than that of the control group [10]. Bifidobacte-
rium is distributed in both the human oral cavity and vagina, and is abundant in the 
human digestive tract. Like Streptococcus thermophilus, it is considered beneficial to 
human health and is widely used in the food and pharmaceutical industries. It is com-
monly used in the routine treatment of ulcerative colitis and has been proven to have a 
role in alleviating the disease [11].

As the above research shows, microbial communities can have a crucial impact on 
human health through a variety of mechanisms. Therefore, identifying potential micro-
bial-disease associations is of great significance for clinical treatment, human health 
care, drug development, and understanding the relationship between microbes and the 
human body. In other words, identifying potential microbial-disease associations has 
practical significance and real-world demand. Further discovery of potential microbial-
disease associations not only helps us to better understand the conditions and mecha-
nisms of interaction between microbes and the human body, but also helps to further 
understand the occurrence and progression mechanisms of microbe-related diseases, 
and provides new medical solutions for precision treatment, new drug development, 
and postoperative intervention. However, the number of proven microbial-disease asso-
ciations is still far from meeting the demand. Therefore, it is necessary and imperative 
to accelerate the identification of potential microbial-disease associations. Thanks to 
their efficiency, low cost, and ability to predict potential associations on a large scale 
of computational models, computational models capable of predicting potential micro-
bial-disease associations have been developed and widely applied. These models can 
be categorized into four types based on different prediction strategies: matrix decom-
position-based methods, label propagation-based methods, path-based methods, and 
machine learning-based methods.
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Although many models for predicting potential microbial-disease associations are 
based on random walk methods, Qiu et al. [12] have shown that many commonly used 
random walk methods essentially perform implicit matrix decomposition. Therefore, 
we combine random walk-based methods with matrix decomposition-based methods 
for discussion. Matrix decomposition methods refer to representing the target matrix 
as the result of matrix operations on two or more matrices. Shen et al. [13] proposed 
a model called CMFHMDA, which is the first microbe-disease association prediction 
model based on matrix decomposition. CMFHMDA takes the microbe-disease associa-
tion matrix, microbe Gaussian similarity kernel, and disease Gaussian similarity kernel 
as inputs to the model and then predicts potential microbe-disease associations. Later, 
Zou et al. [14] proposed the BiRWHMDA model based on bi-random walk, which con-
structs a network of microbial similarity and a network of disease similarity through the 
microbial-disease association matrix, and then connects these two networks to establish 
a microbial-disease association heterogeneous network and performs bi-random walk 
on this heterogeneous network to make predictions. Similar models include BiRWMP 
[15], NMFMDA [16], MSLINE [17], and MVFA [18], etc. The main disadvantage of 
the matrix decomposition-based methods is that the performance of the model suffers 
greatly when the matrix is sparse.

The Label Propagation Algorithm (LPA) is a graph-based semi-supervised learning 
method. The basic idea of LPA is to propagate labels in the data according to pre-given 
rules. This algorithm was proposed by Zhu et al. [19] in 2002. Since its introduction, the 
algorithm has been widely used in relation prediction models. For example, Yin et al. [20] 
and Gao et al [21]. proposed the MDA-MSFLP model and the MKL-LP model, respec-
tively, both of which use the label propagation algorithm to predict potential micro-
bial-disease associations. Zhao et al. [22] proposed a model called PLPMDA, which is 
based on an improved label propagation algorithm called “Pre-completion-based Label 
Propagation” to predict potential microbial-drug associations. Similar models include 
MDLPHMDA [23], NBLPIHMDA [24], etc. The LPA is characterized by its simplicity 
and efficiency, with the disadvantage of unstable results per iteration and low accuracy.

The basic idea of Path-based methods is to predict the potential relationships by cal-
culating the path score between microbial nodes and disease nodes in a heterogeneous 
network composed of microbes and diseases. Chen et al [25]. proposed the first model 
for predicting microbial-disease associations, KATZHMDA, based on the path-based 
method. This model first calculates the Gaussian interaction profile kernel similarity for 
microbes and diseases separately, then calculates the KATZ [26] measure and makes 
predictions. The authors believe that the Gaussian interaction profile kernel similarity 
and KATZ measure play a crucial role in the performance of KATZHMDA. Inspired 
by KATZHMDA, Li et  al. [27] proposed the BWNMHMDA model, which replaces 
the KATZ measure with a bidirectional recommendation measure and makes predic-
tions on the resulting bidirectional weighted network. Later, considering the advantages 
of the KATZ measure and the sparsity of the microbial-disease association matrix, Li 
et  al. [28] proposed the KATZBNRA model based on the Bipartite Network Recom-
mendation Algorithm and KATZ measure to predict potential microbial-disease asso-
ciations. In addition, there are other models based on the Path-based method, such as 
PBHMDA [29], WMGHMDA [30], MDPH_HMDA [25], etc. These types of methods 
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are insufficient in extracting high-order structural information from nodes and are also 
limited by the definition and selection of paths.

Machine learning methods (including deep learning methods) have been widely 
applied in association prediction in recent years, such as microbe-disease association 
prediction, microbe-drug association prediction, miRNA-disease association prediction, 
and recommendation systems. For example, in the prediction of microbe-drug associa-
tions, Long et al. [31] utilized GCN (Graph Convolutional Networks) and Conditional 
Random Field (CRF) to establish a model named GCNMDA for predicting human 
microbe-drug associations. Subsequently, they proposed the EGATMDA [32] model 
based on the hierarchical attention mechanism, which demonstrated superior perfor-
mance in predicting human microbe-drug associations compared to GCNMDA. Sample 
imbalance is a major issue faced by these types of methods.

In the field of microbe-disease association prediction, Peng et al. [33] proposed ABH-
MDA, considering the low proportion of positive samples, they used the k-means algo-
rithm to cluster negative samples into 23 categories and randomly selected the same 
negative samples in each category, then composed these negative samples into negative 
samples for model training. The ABHMDA model also weights multiple weak classifi-
ers and then forms a strong classifier to predict potential microbe-disease associations. 
Wang et al. [34] proposed the DSAE_RF model based on the deep sparse autoencoder 
neural network and random forest. The DSAE_RF model uses a deep sparse autoen-
coder neural network to extract features of microbe-disease pairs, and then uses the 
extracted features as inputs to the random forest model to predict potential microbe-
disease associations. Inspired by the ABHMDA model, Wang et al. compared the impact 
of two types of negative sample sampling on model performance, that is, comparing the 
impact of k-means algorithm sampling and simple random sampling on model perfor-
mance. The results show that negative sampling through the k-means algorithm can 
effectively screen reliable negative samples and thereby improve model performance. In 
addition, graph neural networks have also been well applied in relation prediction. For 
example, Liu et al. [35] proposed a model based on a multi-component Graph Attention 
Network (GAT [36]) for microbe-disease association prediction. This model consists of 
three parts: a decomposer and combiner based on attention mechanism, and a predic-
tor based on a fully connected network. Similarly, Li et al. [37] proposed a model named 
GATMDA based on GAT for predicting miRNA-disease associations. Wang et al. [38] 
used Principal Component Analysis (PCA) to extract node features, and then used these 
features as inputs to a two-layer Relation Graph Convolutional Network (RGCN [39]) to 
predict potential microbe-disease associations. Jiang et al. [40] proposed a model named 
KGNMDA, which built a knowledge graph on microorganisms and diseases. KGN-
MDA used a graph neural network to learn their representations, and proposed a scor-
ing function to predict microbe-disease associations. Models such as MDAGCAN [41], 
GCNMA [42], MLAGCNMDA [43], etc. also use graph neural network methods.

Although the methods above have achieved certain success in inferring potential 
microbial-disease associations, these methods also have their own drawbacks. For 
example, models based on graph neural networks can extract node feature infor-
mation and topological information well, but in order to prevent “over smoothing”, 
the number of layers in related models is usually only 2–3 layers, which means that 
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the information obtained by the model is low-order features of the nodes. Although 
models based on other neural networks can increase the number of layers of the net-
work to a large extent, they cannot handle graph structure data well. Based on this 
consideration, we propose the DAEGCNDF model. Our model uses a Deep Sparse 
Auto-Encoder neural network(DAE) to extract deep features of microbial-disease 
pairs, and uses a GCN model to extract low-order features of microbial-disease pairs, 
then concatenates the deep features with the low-order features and uses Deep For-
est for microbial-disease association prediction. The DAE, a model formulated by 
the combination of stacked and sparse autoencoders and proposed by Lee et al. [44] 
in 2020, has been widely applied in feature learning and dimension reduction. The 
Deep Forest(DF) model was proposed by Zhou et al. [45] in 2018. This deep model 
is an extension of the decision tree model, characterized by fewer hyperparameters, 
determining model complexity by a data-driven approach, and not relying on gradi-
ent backpropagation. Experiments show that this model has excellent robustness and 
performance.

The specific steps can be divided into five. First, we separately calculate the four 
similarities of microbes and diseases and fuse them. In the second step, the fused 
similarity matrix is used as the initial input of the GCN module of the model to 
extract the low-order feature matrix of microbes and diseases. In the third step, a 
low-order feature vector of microbe-disease pairs is constructed from the extracted 
low-order feature matrix. In the fourth step, an initial feature vector of microbe-
disease pairs is constructed from the fused similarity matrix, and this initial feature 
vector is input into the DSA module of the model to extract a high-order feature vec-
tor of microbe-disease pairs. In the fifth step, the low-order feature vector and high-
order feature vector of microbe-disease pairs are concatenated and used for latent 
microbe-disease association prediction with Deep Forest. Our experimental results 
show that the model has an average AUC and AUPR of 0.9700 and 0.9690 in 10-fold 
cross-validation, which fully demonstrates the effectiveness of the model’s predic-
tive performance. In addition, to further evaluate the performance of the model, we 
also conducted ablation experiments, comparisons of various negative sample selec-
tion methods, performance comparisons with other methods, comparisons of vari-
ous classifiers, and studies on two cases. The experimental results further verify the 
performance of DAEGCNDF. In summary, our research results will help to further 
understand the relationship between microbes and diseases, assist in disease diag-
nosis, treatment and prognosis, and play a supporting role in traditional biological 
experiments and medical experiments.

Overall, our research has the following main contributions: 

1. We use a deep sparse Auto-Encoder neural network to extract high-order feature 
vectors of microbe-disease pairs.

2. We use GCN to extract low-rank feature matrices of microbes and diseases, and 
construct low-rank feature vectors of microbe-disease pairs.

3. We concatenate the high-rank feature vectors and low-rank vectors of microbe-dis-
ease pairs and use Deep Forest for latent microbe-disease association prediction. The 
experimental results demonstrate the effectiveness of our model.
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Materials and methods
Human microbe‑disease associations database

Currently, there are three microbial-disease associations datasets, namely HMDAD 
[46], Disbiome [47], and Peryton [48]. Similar to the research conducted by Wang 
et  al. [34], the data used in this paper is obtained by merging datasets of HMDAD, 
Disbiome, and Peryton. The basic information of the three datasets above and the 
integrated dataset used in this paper is shown in Tables 1 and 2, respectively. In this 
paper, the degree refers to the node degree of the microbe-disease association matrix, 
that is, the number of edges associated with that node. It should be noted that after 
merging the three datasets above, we removed duplicate and irrelevant items. As a 
result, we obtained 1177 microbes, 134 diseases, and 4499 microbe-disease associa-
tions, and the microbe-disease associations network was represented by a bipartite 
graph. An adjacency matrix Y ∈ RNm×Nd was used to represent the microbe-disease 
associations. In the matrix Y , the rows represent Nm microbes, and the columns 
represent 134 diseases. If a microbe mi(1 ≤ i ≤ Nm ) is associated with a disease dj
(1 ≤ j ≤ Nd ), then Yij = 1 , otherwise Yij = 0 . When Yij = 1 , we consider it as a posi-
tive sample, otherwise, it is considered as a negative sample. In this way, we obtained 
4499 positive samples from the integrated dataset(MDAID).

Diseases similarity

In this study, we employ four distinct methods to calculate disease similarity: seman-
tic similarity, Gaussian Interaction Profile kernel similarity(GIP), cosine similarity, 
and sigmoid kernel function similarity.

Table 1 The basic information about HMDAD, Disbiome, and Peryton

Database Microbes Diseases Associations

HMDAD 292 39 450

Disbiome 1582 352 8645

Peryton 1396 43 4172

Table 2 The basic information about the integrated dataset(MDAID)

Name Number

Min degree Microbes 1

Diseases 1

Max degree Microbes 59

Diseases 255

Average degree Microbes 3.8

Diseases 33.6

Total Microbes 1177

Diseases 134

Associations 4499
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Diseases semantic similarity

The calculation of disease similarity is very important for downstream tasks. Xuan [49] 
proposed a method for calculating similarity based on disease ontology information. The 
disease similarity calculated by this method is called disease semantic similarity. Since 
its proposal, disease semantic similarity has been widely used in various researches. Dis-
ease ontology information can be obtained from the Human Disease Ontology (DO) [50] 
( http:// www. disea se- ontol ogy. org) or the the Medical Subject Headings (MeSH) database 
( https:// www. ncbi. nlm. nih. gov/), and each disease in the two database above can be repre-
sented as a Directed Acyclic Graph (DAG). Our calculation of disease semantic similarity is 
based on DAG, and the specific steps are as follows: Firstly, let DAG(di) = (di,T (di),E(di)) 
represent the directed acyclic graph of disease di , which encompasses disease di , its ances-
tor nodes T (di) , and the set of edges E(di) that directly connect from the ancestral nodes 
to node T (di) . The semantic contribution value of disease dk to di can then be calculated by 
using the equation:

In this context, dk ′ denotes the children node of dk , and FC signifies the contributing 
factor of semantic decay. As per the study by Xuan et al. [49], we set FC = 0.5 . We have 
determined the contributing factor of disease di to itself to be 1. Drawing from Eq (1), it 
can be deduced that an increase in the distance from disease dk to disease di results in 
a decrease in the semantic contribution factor. Conversely, a decrease in this distance 
leads to an increase in the semantic contribution factor. The final semantic value of dis-
ease di can be calculated by using the formula:

The proposition is that diseases with a higher number of shared DAGs are deemed more 
similar. Based on this premise, the disease semantic similarity between disease di and dj 
can be determined by employing the equation:

Gaussian interaction profile kernel similarity for diseases

Due to the excellent performance capabilities of GIP, it has been used in many studies to 
describe the similarity complement of microbes and diseases. Specifically, the Gaussian 
interaction profile kernel similarity for any two diseases, denoted as di and dj , can be deter-
mined by using the equation:

(1)SCdi(dk) =
1, if dk = di
max{FC × SCdi(dk ′ )}, other

(2)SemV (di) =
∑

dk∈T (di)

SCdi(dk).

(3)DS(di, dj) =

∑

dk∈T (di)∩T (dj)

(SCdi(dk)+ SCdj (dk))

SemV (di)+ SemV (dj)
.

(4)GDS(di, dj) =exp
(

−γd�DB(di)−DB(dj)�
2
)

,

http://www.disease-ontology.org
https://www.ncbi.nlm.nih.gov/
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In this context, the binary vector DB(di) is equivalent to the ith row of the matrix Y , 
which signifies the relationships between disease di and all microbes. The term Nd = 134 
indicates the number of diseases. The value of αd was set to 1, as suggested in the studies 
by Chen et al.  [51].

Cosine similarity for diseases

Cosine similarity is used to evaluate the similarity between two vectors by calculating 
the cosine of the angle between them. It has been widely applied in various research 
fields and has demonstrated excellent performance [46, 52]. Therefore, this paper also 
uses cosine similarity to calculate the similarity between diseases. In particular, the 
cosine similarity between any two diseases, di and dj , can be determined by employing 
the subsequent equation:

Sigmoid kernel function similarity for diseases

Studies have demonstrated that the sigmoid kernel function falls under the category of 
global kernel functions, thereby enabling the effective extraction of global character-
istics from samples. The similarity measure derived from the sigmoid kernel function 
has found application in the research conducted by Han et al. [53] and Wang et al. [34]. 
Inspired by their work, this paper also employs the sigmoid kernel function similarity 
measure to ascertain the similarity between diseases and microbes. For any given pair 
of diseases, di and dj , their similarity based on the sigmoid kernel function can be com-
puted as follows:

Microbes similarity

This section presents four distinct computational techniques for determining microbe 
similarity, namely functional similarity, Gaussian interaction profile kernel similarity, 
cosine similarity, and sigmoid kernel function similarity.

Microbes functional similarity

The computation of microbial functional similarity hinges on the premise that microbes 
with similar functions have a higher likelihood of being linked to analogous diseases. 
Following the same method as Liu et al. [54], we assume that any two microbes mi and 
mj are associated with disease groups Di = {dik |1 ≤ k ≤ p} and Dj = {djl |1 ≤ l ≤ q} 
respectively, and the similarity of dik with disease group Dj can be calculated by the fol-
lowing formula:

(5)γd =αd/





1

Nd

Nd
�

i=1

�DB(di)�
2



.

(6)CDS(di, dj) =
DB(di) ·DB(dj)

�DB(di)� × �DB(dj)�
.

(7)SDS(di, dj) = tanh

(

1

134
DB(di) ·DB(dj)

)

.
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Where a is the semantic similarity between disease dik and djl , which is the element of 
the disease semantic similarity matrix DS in the ik − th row and jl − th column. Subse-
quently, the functional similarity between microbes mi and mj can be determined as:

Gaussian interaction profile kernel similarity for microbes

In a manner akin to the previously described method for calculating microbe similari-
ties, the GIP similarity between two microbes, denoted as di and dj , can be determined as 
follows:

Within this framework, the binary vector MB(mi) aligns with the ith column of matrix 
Y , thereby delineating the associations between microbe mi and all encompassing dis-
eases. In a similar vein, the value of αm is designated as 1.

Cosine similarity for microbes

In a manner akin to the computation of cosine similarity between two diseases, the cosine 
similarity between two microbes can be ascertained utilizing the subsequent equation:

Sigmoid kernel function similarity for microbes

Similarly, the sigmoid kernel function similarity between microbes can be computed in the 
following equation:

Multi‑source features fusion for microbes and diseases

The fusion of multi-source features has been proven by many studies to be beneficial 
in improving model performance. Therefore, we fuse the four disease features and four 

(8)Sim(dik ,Dj) = max
djl∈Dj

(

DS(dik , djl)
)

.

(9)
FMS(mi,mj) =

∑

1≤k≤p

Sim(dik ,Dj)

p+ q

+

∑

1≤l≤q

Sim(djl ,Di)

p+ q
.

(10)GMS(mi,mj) =exp
(

−γm�MB(mi)−MB(mj)�
2
)

,

(11)γm =αm/

(

1

Nm

Nm
∑

i=1

�MB(mi)�
2

)

.

(12)CMS(di, dj) =
MB(mi) ·MB(mj)

�MB(mi)� × �MB(mj)�
.

(13)SMS(mi,mj) = tanh

(

1

1177
MB(mi) ·MB(mj)

)

.
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microbial features above. The fusion operations are performed using Eqs. (14) and (15) 
respectively to obtain the fused disease and microbial features.

Negative sample selection method

In this study, due to the fact that negative samples far outnumber positive samples, bal-
ancing positive and negative samples and selecting high-quality negative samples for 
model training can improve model performance, thereby enhancing the efficiency and 
effectiveness of the model in predicting potential microbe-disease associations. Peng 
et al. [33] and Wang et al. [34], in their research, used the KMeans algorithm to cluster 
negative samples into 23 classes. They then randomly selected an equal number of sam-
ples from each cluster as negative samples. Finally, they combined the selected negative 
samples with all positive samples to serve as training samples for the model. In their 
research, the parameter k of the KMeans algorithm was set to 23. Their experiments 
showed that selecting negative samples through the KMeans algorithm can improve the 
model’s AUC and AUPR by about 2 % . Inspired by their work, we used four clustering 
algorithms for negative sample selection: KMeans, Gaussian mixture, Spectral cocluster-
ing, and Spectral biclustering. We also conducted an evaluation of these four negative 
sampling methods. Like the aforementioned research, we retained all positive samples. 
When conducting experiments on the MDAID dataset, we selected 4508 negative sam-
ples, while for the HMDAD dataset, we selected 450 negative samples.

Model framework

Deep Auto-Encoder models have good representational efficiency and can extract 
rich data features. The work of Wang et al. [34] also shows that the classification effect 
extracted based on the deep Auto-Encoder model is superior to the baseline model. 
However, the work of Wang et al. [34] did not fully utilize the information brought by the 
graph structure. We note that Peng et al. [55] proposed a GCN network based on bipar-
tite graphs to predict potential carcinogenic genes, and their work shows that this net-
work can extract low-order information brought by the graph structure well. In addition, 
the Deep Forest model proposed by Zhou et  al. [45] outperforms traditional machine 
learning methods on multiple datasets. Inspired by these works, we designed a widely 
effective computational framework DAEGCNDF for predicting potential microbial-dis-
ease associations. The flowchart of the DAEGCNDF model is shown in Fig.  1, which 
can be divided into five parts: (1) Similarity calculation (Fig. 1A), (2) Similarity fusion 
(Fig. 1B), (3) Extraction of low-order features (Fig. 1C), (4) Extraction of high-order fea-
tures (Fig. 1D), (5) Feature fusion and prediction using deep forest model (Fig. 1E).

The work of Wang et al. [34] suggests that utilizing the multiple similarities between 
microbes and diseases can enhance model performance. As shown in Fig. 1A, B, we cal-
culated four types of similarities for both microbes and diseases, and integrated these 

(14)FuD(di, dj) =
DS+GDS+ CDS+ SDS

4
.

(15)FuM(mi,mj) =
FMS+GMS+ CMS+ SMS

4
.
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similarities. To extract the information brought by the graph structure and avoid over-
smoothing, as shown in Fig. 1C, we used a two-layer GCN module to extract the low-
rank features of the nodes. To compensate for the inability of the GCN module to extract 
higher-rank information, as shown in Fig. 1D, we introduced a four-layer Auto-Encoder 
model to extract the high-rank features of the nodes. Finally, we concatenated the low-
rank features and high-rank features, and used the deep forest model for prediction.

GCN module

The Graph Convolutional Model can learn the hidden layer representation of nodes by the 
features of neighboring nodes and local graph structure. This model requires the adjacency 
matrix of the graph and the feature matrix of nodes as initial inputs. Inspired by Peng et al. 
[55], the specific process of the GCN module is as follows: First, matrices FuM and FuD are 

Fig. 1 The overview of DAEGCNDF framework. A Similarity calculation. B Similarity fusion. C Extraction of 
low-rank features. D Extraction of high-rank features. E Feature fusion and prediction using Deep Forest 
model
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used as the initial features of microbes and diseases. To make the dimensions of these two 
initial features consistent, we use Eq. (16) for dimension reduction. Then, we use Eq. (17) to 
aggregate neighborhood features. Finally, we use Eq. (18) for local graph structure learning.

Where W
(0)
M ∈ R1177×h1 ,W

(0)
D ∈ R134×h1 ,W

(1)
1 ∈ Rh1×h2 ,W

(1)
2 ∈ Rh1×h2 are learnable 

weight matrices, while bM , bD, b1 are learnable bias vectors with a dimension of h1 . 
D1 =

∑

j Yij + 1 and D2 =
∑

i Yij + 1 are diagonal matrices, P̃ = D
− 1

2
1 YD

− 1
2

2  . ⊙ repre-
sents the element-wise multiplication.

After calculating according to the formula above, as shown in Eq.  (19), by adding the 
aggregated neighborhood features and the learned local graph structure information and 
activating them with an activation function, we can obtain the low-rank features of nodes 
with neighbor node features and local graph structure information. It should be noted that 
Eqs. (17) and (18) constitute the first layer of the GCN module. We can summarize the pro-
cess above into the following formula:

Where N(M) and N(D) respectively represent the set of neighbors for microbes and dis-
eases in the network. σ represents the ReLU activation function.

Like a general GCN, our GCN module can also stack multiple graph convolution lay-
ers. Let l represent the number of layers of the graph convolution layer, and LM(l) and 
LD

(l) respectively represent the final microbial features and disease features learned 
by the GCN model from the microbe-disease network, that is, the low-rank features 
of microbes and diseases. Formally, a l ≥ 2-layer GCN model can be represented by the 
following Eq.  (20). In this paper, the number of layers in our GCN module is 2, that is, 
l = 2,LM = LM

(l),LD = LD
(l).

(16)
LinM =FuM ·W

(0)
M + bM ,

LinD =FuD ·W
(0)
D + bD.

(17)
NM

(1) =P̃ · LinD ·W
(1)
1 ,

ND
(1) =P̃

T · LinM ·W
(1)
1 .

(18)
GM

(1) =
((

P̃ · LinD
)

⊙ LinM

)

·W
(1)
2 + b1,

GD
(1) =

((

P̃
T · LinM

)

⊙ LinM

)

·W
(1)
2 + b1.

(19)

LM
(1) =GCN

(1)
M

(

{LinM,LinD,Y}i∈N (M)

)

=σ

(

NM
(1) +GM

(1)
)

,

LD
(1) =GCN

(1)
D

(

{LinM,LinD,Y}i∈N (D)

)

=σ(ND
(1) +GD

(1)).

(20)
LM

(l) =GCN
(l)
M

(

{LM(l−1),LD(l−1),Y}i∈N (M)

)

,

LD
(l) =GCN

(l)
D

(

{LM(l−1),LD(l−1),Y}i∈N (D)

)

.
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As shown in Eq. (21), the association matrix Y of microbes and diseases is reconstructed 
by using the inner product of the low-rank features of microbes and diseases output by 
the GCN model. Here, σ represents the sigmoid activation function. In addition, we use 
Eq.  (22) as the loss function for the reconstruction of the microbe-disease association 
matrix.

Where E represents the edge set of the microbe-disease network, while n is the number 
of edges. Neg refers to the set of negative samples, which is of size n and obtained by 
negative sampling, while ŷij represents the value of the reconstructed adjacency matrix 
Ŷ.

Deep auto‑encoder module

Deep Auto-Encoder is an unsupervised learning model that can efficiently learn the 
latent information of sample data. This model typically consists of an encoder and a 
decoder. The aim of the deep Auto-Encoder is to reconstruct the input, thereby ena-
bling the neural network to learn the most informative latent features of the input 
data, making it widely used in feature extraction.

For any disease di , we take the i-th row FuDi of matrix FuD as its initial feature 
vector; similarly, for any microbe mi , we take the j-th row FuMj of matrix FuM as 
its initial feature vector. We concatenate FuDi and FuMi to obtain the feature vector 
of disease-microbe pair di −mj , at which point the dimension of the feature vector 
of disease-microbe pair di −mj is 1311. We use a deep Auto-Encoder to extract the 
effective features of disease-microbe pairs. Specifically, the encoder and decoder of 
the model can be represented by Eqs. (23) and (24) respectively.

Where k ≥ 1 and t ≥ 1 represent the number of layers in the encoder and decoder, 
respectively. Following the study of Wang et al [34], we set them both to 4. σ (k)

e  and σ (t)
d  

represent the activation functions of the encoder and decoder respectively, and in this 
paper, they are both set to sigmoid function. W(k)

e  , b(k)e  and W(t)
d  , b(t)d  are the learnable 

parameters of the encoder and decoder. In addition, z(0) is the initial input data x, and 
x(0) = z(4).

As shown in Eq. (25), the model’s loss is composed of mean squared error and KL 
divergence, where θ is the weight coefficient.

(21)Ŷ =σ

(

LM · LDT
)

.

(22)L =−
1

n





�

�i,j�∈E

log ŷij +
�

�i,j�∈Neg

�

1− log ŷij
�



.

(23)z(k) =σ (k)
e

(

W
(k)
e z(k−1) + b(k)e

)

.

(24)x(t) =σ
(t)
d

(

W
(t)
d x(t−1) + b

(t)
d

)

.
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Ultimately, the z(4) obtained by the model is treated as the high-order feature vector of 
the disease-microbe pair.

Prediction of microbe‑disease associations by deep forest model

Deep Forest is a decision tree ensemble method proposed by Zhou et al in 2018 [45]. 
This method first preprocesses the input features using multi-granularity scanning, then 
inputs the obtained feature vectors into a cascading forest for training, and uses cross-
validation to generate each cascade, effectively avoiding overfitting. As shown in Fig. 1E, 
we take the i-th row LDi of the low-rank feature matrix LD of the disease extracted by 
the GCN module and the j-th row LMj of the low-rank feature matrix LM of the micro-
organism as the low-rank feature vectors of disease di and microorganism mj respec-
tively. By concatenating LDi and LMj , we can obtain the low-rank feature vector of the 
disease-microorganism pair di −mj . Afterwards, we concatenate the high-rank feature 
vector and the low-rank feature vector to obtain the final feature vector of the disease-
microbe pair. Finally, we input the final feature vector of the disease-microbe pair into 
the Deep Forest model for latent microbe-disease associations prediction.

Result
Parameter details and model evaluation

We implemented our model using PyTorch and PyG, with both the GCN module and 
the Deep Auto-Encoder module utilizing Adam as the optimizer. For the GCN module, 
we set the number of network layers to 2, with the dimensions of the hidden layer and 
output layer set to 256 and 128 respectively. We used a default dropout rate of 0.5, and 
set the number of model training iterations and learning rate to 1000 and 0.001 respec-
tively. For the Deep Auto-Encoder module, as previously mentioned, we set the number 
of layers for both the encoder and decoder to 4, with the dimensions of each network 
layer being 1311, 1152, 576, 288, 144, 288, 576, 1152, and 1131 respectively (see Fig. 1E). 
The number of model training iterations and initial learning rate were set to 150 and 0.01 
respectively, with ReduceLROnPlateau used for automatic optimization of the learning 
rate. For the Deep Forest model, we set ’n_estimators’ and ’criterion’ to 17 and ’entropy’, 
respectively.

In this study, we conducted experiments using 10-fold cross-validation and evaluated 
the model using a variety of metrics, namely AUC, AUPR, Recall, Precision (Pre), Accu-
racy (Acc), and F1-score. Considering that MDAID is a large dataset, to further demon-
strate the performance of our model, we also conducted experiments on the HMDAD 
dataset. As indicated in Table 3, our model achieved good performance on both datasets.

Comparison of methods for selecting negative samples

We noticed that in the microbe-disease association matrix Y , a value of “1” indicates 
the presence of a microbe-disease association, indicating a positive sample. Conversely, 
a value of “0” represents an unknown or negative sample. This suggests that there is 
an issue with false negatives in these negative samples, highlighting the importance of 
selecting reliable negative samples during the model training phase. Wang et  al. [34] 

(25)LDAE = MSE(x, x(4))+ θ · KL(x, x(4)).
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and Peng et al. [33] employed KMeans clustering to group negative samples into 23 cat-
egories and subsequently randomly selected 196 negative samples from each category, 
resulting in a total of 4508 negative training samples. The advantage of this approach 
lies in ensuring that negative samples contribute to model training for each type of data 
feature, thereby avoiding biased learning during model training. In this study, we employ 
five methods for selecting negative samples: random sampling, KMeans clustering sam-
pling, Gaussian mixture clustering sampling, spectral co-clustering sampling, and spec-
tral bi-clustering sampling.

As shown in Table 4, sampling negative samples by clustering methods can effectively 
improve model performance. Among them, KMeans clustering sampling has the best 
effect on improving model performance, improving model performance by about 4 % 
compared to random sampling. However, the effect of Gaussian mixture clustering sam-
pling on improving model performance is almost the same as that of KMeans clustering 
sampling.

Ablation experiments

To evaluate the impact of low-rank and high-rank features on the predictive perfor-
mance of the model, we divided the features of the disease-microbe pairs into three 

Table 3 The experimental results of the DAEGCNDF model based on 10-fold cross-validation

Dataset: MDAID

Testing set Acc(%) Pre (%) Recall (%) F1‑score (%) AUC (%) AUPR (%)

1 92.34 92.35 92.33 92.34 97.71 98.01

2 90.68 90.62 90.68 90.65 97.42 97.12

3 90.01 90.03 90.01 90.01 96.65 96.37

4 89.90 89.89 89.86 89.87 96.04 95.65

5 91.01 90.97 91.05 91.00 97.42 97.61

6 91.79 91.79 91.79 91.79 97.55 97.71

7 90.12 90.11 90.19 90.12 95.87 95.36

8 89.67 89.65 89.69 89.66 96.36 96.40

9 90.22 90.34 90.13 90.19 97.03 96.87

10 93.11 93.14 93.10 93.11 97.90 97.90

Average 90.89 ± 1.16 90.89 ± 1.17 90.88 ± 1.16 90.87 ± 1.17 97.00 ± 0.72 96.90 ± 0.94

 Dataset: HMDAD

Testing set Acc(%) Pre (%) Recall (%) F1‑score (%) AUC (%) AUPR (%)

1 91.11 91.25 90.84 91.00 97.66 97.65

2 90.00 90.00 90.18 89.89 97.07 9755

3 85.56 86.25 85.87 85.54 94.85 94.86

4 86.67 86.84 86.84 86.67 96.14 96.28

5 86.67 87.16 86.94 86.67 95.45 96.30

6 83.33 83.90 83.78 83.33 93.25 94.78

7 92.22 92.16 92.26 92.20 97.17 97.49

8 90.00 90.18 90.00 90.00 97.93 98.11

9 88.89 89.00 88.69 88.80 96.78 96.82

10 86.67 86.74 86.67 86.66 96.94 97.37

Average 88.11 ± 2.77 88.35 ± 2.58 88.21 ± 2.62 88.08 ± 2.75 96.32 ± 1.44 96.72 ± 1.16
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groups: LRF, HRF, and LHRF. Group LRF represents predictions made using only low-
rank features, Group HRF represents predictions made using only high-rank features, 
and Group LHRF represents predictions made after concatenating low-rank and high-
rank features.

From Table 5, we can see that the low-rank features of disease-microorganism pairs 
contribute more to the model performance than the high-rank features. This may be due 
to our GCN module’s ability to effectively aggregate the features of diseases and micro-
organisms through neighboring nodes. Furthermore, when low-rank and high-rank fea-
tures are combined, the model’s performance surpasses that of predictions made using 
only a single feature.

Comparison of different classifiers

To evaluate the contribution of Deep Forest (DF) to predictive performance, we selected 
nine benchmark models, including a three-layers MLP neural network commonly used 
as a benchmark model, and eight traditional machine learning models. These are Logis-
tic Regression (LR), Support Vector Machine (SVM), Naive Bayes (NB), Decision Tree 
(DT), AdaBoost Classifier (ABC), Gradient Boosting Classifier (GBC), K-Nearest Neigh-
bors (KNN), and Random Forest(RF). The prediction results are shown in Table 1.

As can be seen from the results in Table  6, the Deep Forest classifier outperforms 
the other nine benchmark classifiers across all evaluation metrics. Furthermore, these 
results indicate that while Random Forest outperforms other traditional machine 

Table 4 Comparison of methods for selecting negative samples based on MDAID dataset

The bold result indicates the best one in each column

Methods AUC (%) AUPR (%)

Random sampling 92.88 92.85

KMeans clustering 97.00 96.90
Gaussian mixture clustering 96.95 96.85

Spectral coclustering 93.71 93.98

Spectral biclustering 94.93 94.96

Table 5 Results of the ablation experiments on model DAEGCNDF based on 10-fold cross-validation

The bold result indicates the best one in each column

Dataset: MDAID

Experiments Acc(%) Pre (%) Recall (%) F1‑score (%) AUC (%) AUPR (%)

LRF 90.75 90.75 90.74 90.74 96.85 96.78

HRF 86.67 86.67 86.65 86.65 94.63 94.64

LHRF 90.89 90.89 90.88 90.87 97.00 96.90

 Dataset: HMDAD

Experiments Acc(%) Pre (%) Recall (%) F1‑score (%) AUC (%) AUPR (%)

LRF 85.56 85.86 85.77 85.56 95.89 96.11

HRF 85.89 85.48 85.56 85.51 95.04 96.12

LHRF 88.11 88.35 88.21 88.08 96.32 96.72
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learning models, Deep Forest, as an improved model of Random Forest, demonstrates 
superior performance. Therefore, our choice of Deep Forest as the final classifier is both 
reasonable and reliable.

Comparison of other methods

To further evaluate the performance of our model, we selected six of the latest microbe-
disease associations prediction methods for comparison with our model, based on the 
dataset in this paper and 10-fold cross-validation. The names of the models and the 
experimental results are shown in Table 7.

From the experimental results in Table 7, it is evident that our model, DAEGCNDF, 
outperforms the benchmark models in terms of AUC and AUPR values. Specifically, 
our model achieved an AUC value of 97.00% and an AUPR value of 96.90% , which are 
approximately 2.22% and 2.59% higher than the second-place model, respectively. We 
attribute the optimal performance of our DAEGCNDF model to four main reasons. 
Firstly, the GCN module employed in our model effectively captures low-order features 
from bipartite graphs representing microbes and diseases with a graph structure. Sec-
ondly, the DAE module successfully extracts complex high-rank features from disease-
microbe pairs, thereby eliminating noise present in these initial features after undergoing 
DAE processing. Furthermore, by combining both low-rank and high-rank features, we 

Table 6 Experimental results of different classifiers based on 10-fold cross-validation

The bold result indicates the best one in each column

Dataset: MDAID

Experiments Acc(%) Pre (%) Recall (%) F1‑score (%) AUC (%) AUPR (%)

MLP 90.25 90.24 90.26 90.24 96.54 96.30

LR 85.10 85.10 85.09 85.08 92.87 92.05

SVM 89.67 89.67 89.65 89.654 95.54 94.84

NB 79.47 79.75 79.47 79.40 85.66 86.89

DT 85.49 85.48 85.48 85.47 90.04 91.22

ABC 84.61 84.61 84.59 84.59 92.91 92.28

GBC 88.53 88.55 88.53 88.51 95.45 94.99

KNN 87.51 87.67 87.52 87.48 94.01 94.23

RF 90.38 90.38 90.39 90.37 96.68 96.48

DF 90.89 90.89 90.88 90.87 97.00 96.90

 Dataset: HMDAD

Experiments Acc(%) Pre (%) Recall (%) F1‑score (%) AUC (%) AUPR (%)

MLP 88.11 88.20 88.14 88.08 95.48 95.87

LR 86.67 83.93 83.71 83.59 89.61 84.37

SVM 87.78 88.19 87.94 87.73 94.27 91.89

NB 77.44 78.11 77.46 77.30 84.48 85.82

DT 84.00 84.28 84.01 83.94 89.40 90.92

ABC 85.33 85.65 85.43 85.28 93.47 91.96

GBC 86.44 86.61 86.50 86.40 95.45 95.87

KNN 87.00 87.22 87.03 86.95 93.83 94.34

RF 87.44 87.63 87.47 87.41 95.41 95.86

DF 88.11 88.35 88.21 88.08 96.32 96.72
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are able to better represent information pertaining to disease-microbe pairs and conse-
quently enhance classifier performance. Lastly, the deep forest cascade structure utilized 
by our model enables effective utilization of input features for prediction purposes.

Case studies
To evaluate the performance of DAEGCNDF further, we conducted two types of case 
studies on this model: predicting potential microbe-disease associations based on known 
information and predicting new microbe-disease associations based on unknown infor-
mation. In the first type of case study, all known microbe-disease association information 
was used for training purposes. Subsequently, predictions were made for all unknown 
associations corresponding to a given disease while ranking them according to their pre-
diction scores. Finally,the top ten microbes with highest scores were validated using lit-
erature sources. In the second type of case study, the disease under study was treated 
as a completely new disease, and its association information with microbes would be 
removed before model training, which means that there is no information about this dis-
ease during model training. Similar to the first type of case study, we ranked the scores 
of all microbes corresponding to the same disease and took the top 10 microbes for vali-
dation by relevant literature. It is important to note that conducting the second type of 
case study allows us to assess our model’s ability to predict microbial associations with 
new diseases when no prior disease-microbe related information is available.This reflects 
how well our model can guide actual experiments.

Colorectal cancer is a common malignant tumor in the gastrointestinal tract, with 
early symptoms often not obvious [59]. Therefore, about 20% of newly diagnosed colo-
rectal cancer patients have already experienced cancer cell metastasis [60]. Early diag-
nosis of colorectal cancer is of great significance for the treatment of the disease and 
improving the survival time of patients [61]. Although the cause of its onset is not yet 
fully understood, more and more evidence suggests that gut microbes have an impact on 
the occurrence, progression, metastasis, treatment, and prognosis of colorectal cancer. 
For example, Gao et  al. [62] found that Lactococcus and Fusobacterium are relatively 
enriched in colorectal cancer tissues. Wang et  al. [63] found that Salmonella enterica 
is involved in the progression of colorectal cancer. Therefore, further study of the rela-
tionship between colorectal cancer and microbes will help us further understand its 

Table 7 The experimental results of different models based on 10-fold cross-validation

The bold result indicates the best one in each column

Dataset: MDAID Dataset: HMDAD

Methods AUC (%) AUPR (%) AUC (%) AUPR (%)

NTSHMDA [56] 75.67 18.56 74.97 18.19

NCPHMDA [57] 79.89 17.86 79.01 17.43

LRLSHMDA [58] 79.92 18.19 79.99 18.21

KATZHMDA [25] 81.35 19.78 81.44 19.89

ABHMDA [33] 94.78 92.89 94.11 94.61

KGNMDA [40] 93.87 94.07 93.15 94.13

DSAE_RF [34] 94.48 94.31 94.49 94.69

DAEGCNDF(our) 97.00 96.90 96.32 96.71
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pathogenesis and is of great significance for its early screening, auxiliary diagnosis, and 
assistance. In view of this, we chose colorectal cancer for the two types of case studies 
above. As can be seen from Table 8, in the first type of case study, 8 out of the top 10 
microbes predicted to be associated with colorectal cancer were confirmed by literature. 
In addition, in the second type of case study (see Table 9), all of the top 10 microbes pre-
dicted to be associated with colorectal cancer were confirmed by literature.

Autoimmune hepatitis is a chronic progressive inflammatory disease of the liver 
mediated by autoimmune reactions, which can manifest in acute or chronic forms 
[64, 65]. In severe cases, it can rapidly progress to cirrhosis and liver failure, threat-
ening life [66]. The disease occurs worldwide, with an incidence rate exceeding 
forty-two per hundred thousand in certain ethnic groups [67]. The disease requires 
timely and long-term treatment, and untimely or improper treatment can greatly 
affect the patient’s 10-year survival rate [68]. Currently, a large amount of research 
has confirmed that autoimmune hepatitis is related to changes in the composition 
of the gut microbiota. For example, Liwinski et al. [69] found that Bifidobacterium 
affects the remission of autoimmune hepatitis. Wei et al. [70] found that Veillonella 
not only has a strong correlation with autoimmune hepatitis but also affects the 

Table 8 Predicting the top 10 potential microbes associated with colorectal cancer by DAEGCNDF

Colorectal cancer

Rank Microbes Evidence

1 Veillonella PMID: 22761885

2 Clostridium PMID: 26992426

3 Sporobacter Unconfirmed

4 Ruminococcus gnavus PMID: 36893736

5 Corynebacterium PMID: 27863401

6 Vivictivallis Unconfirmed

7 Holdemania PMID: 23733170

8 Oscillospira PMID: 31358825

9 Subdoligranulum PMID: 29995183

10 Shigella PMID: 35663463

Table 9 Predicting the top 10 new microbes associated with colorectal cancer by DAEGCNDF

Colorectal cancer

Rank Microbes Evidence

1 Lactobacillus PMID: 15828052

2 Lachnospiraceae PMID: 28988196

3 Prevotella PMID: 33488574

4 Streptococcus PMID: 21247505

5 Ruminococcus PMID: 36585646

6 Pseudomonas PMID: 25699023

7 Megasphaera PMID: 35727391

8 Fusobacterium PMID: 25699023

9 Enterobacteriaceae PMID: 25182170

10 Porphyromonas PMID: 33425779
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progression of hepatitis. Lou et  al. [71] found that a combination of Bacteroides, 
Ruminococcaceae, Lachnospiraceae, Veillonella, Roseburia, and Ruminococcaceae 
can distinguish autoimmune hepatitis patients from healthy controls, suggesting 
that certain microbes or their combinations can serve as markers for autoimmune 
hepatitis. Therefore, it is practically significant to choose autoimmune hepatitis 
as a case study. Tables  10 and 11 reveal that, of the top 10 microbes projected to 
potentially associate with autoimmune hepatitis, 8 have been validated by literature. 
Furthermore, among the top 10 microbes predicted to form new associations with 
autoimmune hepatitis, five have been substantiated by literature.

Examining the four experimental outcomes from the aforementioned pair of case 
studies, our model exhibits strong performance across both types of experiments. 
This demonstrates the model’s robust practical guidance capabilities. Consequently, 
our model’s predictive results can be leveraged to enhance the efficiency of tradi-
tional biomedical experiments and reduce their duration.

Table 10 Predicting the top 10 potential microbes associated with autoimmune hepatitis(AIH) by 
DAEGCNDF

AIH

Rank Microbes Evidence

1 Prevotella PMID: 32640728

2 Lachnospiraceae PMID: 32850468

3 Faecalibacterium PMID: 32383181

4 Bacteroides PMID: 32850468

5 Roseburia PMID: 32850468

6 Actinomyces PMID: 34094998

7 Dialister PMID: 32640728

8 Rothia Unconfirmed

9 Ruminococcus PMID: 36519162

10 Faecalibacterium prausnitzii Unconfirmed

Table 11 Predicting the top 10 new microbes associated with autoimmune hepatitis(AIH) by 
DAEGCNDF

AIH

Rank Microbes Evidence

1 Ruminococcus PMID: 36519162

2 Corynebacterium Unconfirmed

3 Acinetobacter Unconfirmed

4 Lactobacillus PMID: 26191211

5 Pseudomonas Unconfirmed

6 Bacteroides PMID: 32850468

7 Firmicutes Unconfirmed

8 Fusobacterium PMID: 29969462

9 Parabacteroides PMID: 32640728

10 Roseburia PMID: 32850468
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Discussion and conclusion
The human body is a vast ecosystem teeming with microbes, many of which play a piv-
otal role in our health and the onset, progression, and treatment of diseases. As such, 
understanding the intricate relationships between these microbes and diseases is crucial 
for disease prevention, clinical practice, and biomedical research. Traditional biomedical 
experiments in this field often face hurdles due to their lengthy duration, high costs, and 
strict requirements for experimental conditions. While computational methods offer 
a way to circumvent these challenges to some degree. They are not without their own 
limitations. These include the inadequate extraction and utilization of data features, less-
than-optimal methods for selecting reliable negative samples, and a lack of precision in 
model predictions.

In this study, we introduce DAEGCNDF, a novel computational model designed to 
predict associations between microbes and diseases. Our approach involves calculating 
four distinct types of similarity for both microbes and diseases, which are then fused to 
generate a comprehensive set of initial features. We employ GCN to extract high-rank 
features of diseases and microbes, while the DAE module is used to distill low-rank fea-
tures of disease-microbe pairs. In the process of selecting negative samples for training, 
we compared five different sampling methods to ensure the selection of reliable negative 
samples. Our findings indicate that KMeans clustering sampling and Gaussian mixture 
cluster clustering sampling enhance model performance by approximately 4 % . In the 
final step, we concatenate the low and high-rank features of disease-microbe pairs and 
utilize a deep forest for predicting potential microbe-disease associations. Through abla-
tion experiments, classifier selection experiments, and case studies, our computational 
framework demonstrates significant potential in identifying potential microbe-disease 
associations.

From the experimental results, the performance of our model is superior to the base-
line model, and we believe there are four main reasons. First, the GCN variant module 
suitable for bipartite graphs can effectively extract the low-order information of nodes. 
Second, the DAE module can effectively extract the high-order features of the microbe-
disease pair. Third, unlike the traditional random selection of negative samples, we used 
KMean for negative sample sampling. Fourth, the performance of the deep forest clas-
sification is superior to traditional machine learning methods.

Nonetheless, our model does have certain limitations that warrant further refinement 
in the future. This includes the need to devise superior methods for selecting reliable 
negative samples and to delve into the mathematical principles that underpin the differ-
ences in these methods. Moreover, the interplay between drugs, ncRNA, microbes, and 
diseases presents an opportunity for extracting novel features of microbes and diseases. 
This is an area that is yet to be fully explored. Our future work will concentrate on these 
two pivotal aspects.
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