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Introduction
In the literature, several reviews present graph embedding models used to solve mul-
tiple tasks such as pathogen-host protein interactions, predicting drug efficiency, link-
ing a metabolite with a metabolic network, etc [1–3]. However, wide spread application 
of graph embedding techniques in the life-science community has been scarce, which 
may be in part because the complex mathematical framework underlying graph embed-
ding requires considerable bioinformatical expertise. To make graph embedding known 
to a wider research community we have focused our review to be accessible for wet-lab 
biologists as well as bioinformaticians, mainly using more accessible wording for life sci-
entists and focussing on potential future applications.

Biological data is usually presented as graphs; some of the most famous ones are rep-
resented in the book Cellular Biochemical Networks (Editor: Gerhard Michal), which 
describes the known metabolomic network of eukaryotic cells and comprises most of 
the cellular metabolites and their interactions (i.e., possible conversions and connections 
between metabolic pathways such as sugar and amino acid metabolism). Although tradi-
tional biology tools have been extremely successful in identifying most components and 
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some of the major linear interactions contained in the Cellular Biochemical Networks 
graphs, one of the significant challenges in biology is comprehending the nonlinear or 
dynamic interactions among the cellular constituents to unravel the organization and 
interactions within cellular networks. For example, understanding which metabolic sub-
networks are active in a particular cell type under specific conditions is critical to deci-
pher the influence of the metabolic network on cellular function.

Mass spectrometry (MS) is an excellent example of a tool for understanding the under-
lying interactions among large numbers of cellular constituents. MS-based metabolomic 
and proteomics studies can follow various linear and nonlinear interactions (based 
on signal abundances) and dynamic interactions from time series measurements. The 
interactions are visualized via correlation plots of the MS signals [4, 5]. In a correlation 
plot, metabolites, proteins, etc., are represented as dots (or nodes), and a line illustrates 
their correlations with other network elements. Using carefully designed experiments 
and bioinformatic tools makes it possible to model and quantify the different types of 
interactions between the nodes. Hence, a traditional approach in molecular biology is to 
compare two or more graphs to identify which metabolites or proteins in the biological 
network are associated with a particular physiology (i.e., disease) or phenotype of inter-
est [4, 5].

Unfortunately, clear insight into biological information via visual inspection of the cor-
relation plots is challenging due to the large number of biological species present in cells 
that MS can detect. Furthermore, artifacts such as the presence of ghost peaks or batch 
effects can futher obscure the information within these graphs [4, 5]. Graph embedding 
techniques have been developed to analyze complex graphs of diverse origins. A graph 
embedding technique takes graphs as input and converts the graphs into a matrix of vec-
tors (i.e., a lower-dimensional latent space), thus allowing researchers to better identify 
the interactions between their different elements. Although graph embedding tech-
niques have been applied to various fields of study, e.g., to analyze relationships between 
client and providers in financial transactions [6], to recommend locations using recom-
mender systems [7], or to detect malware [8]; they have not been routinely applied to 
biological systems and are not well-known to life-scientists.

This review discusses the suitability of graph embedding techniques for analyzing 
masss spectrometry- and sequencing-based biomedical data and explains the theoretical 
background to understand graph embedding. We classify graph embedding techniques 
from the perspective of biomedical data, considering the canonical classification, thereby 
subdividing graph embedding techniques into random walk-based, matrix factorization-
based, and deep learning-based algorithms. Additionally, we review articles that applied 
graph embedding for link prediction, node classification, and node clustering tasks on 
biomedical data and highlight novel biological insights obtained by graph embedding. In 
particular, we will focus on protein–protein and drug–protein interactions. Our review 
will help future readers to identify, which graph embedding models can be applied to 
solve a given task on biomedical datasets, which datasets can be used, and which metrics 
are available to evaluate the results.

The paper is structured as follows: section “Theory of graphs embeddings” contains 
the necessary definitions and summarizes the theoretical background of graph embed-
ding. Then, section “Applications of graph embeddings in mass spectrometry- and 
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sequencing-based biomedical data” describes the existing applications of graph embed-
ding techniques on biomedical data. Finally, section “Conclusion” discusses conclusions 
and future applications.

Theory of graphs embeddings
Background techniques

To be able to understand graph embedding, we first must introduce the term word 
embedding, which transforms a group of words (i.e., text) into a matrix of vectors 
and is frequently used in natural language processing (NLP) [9]. In more detail, word 
embedding technique results in the (n-dimensional) vector representation of a word 
(token) within a text [10]. Since words often occur in the same semantic or syntactic 
context, a cosine similarity measure among the vectors in the matrix can be used to 
identify the relationship between words. Hence, the semantic and syntactic similarity 
between words can be mathematically identified [11, 12]. For example, word embed-
ding is used when a word processing program suggests a phrase after the computer 
user types just a few words. Two different strategies were proposed for word embed-
ding (i.e., architectures): Continuous bag-of-words (CBOW) [13] predicts a word 
wi in one particular position in the sentence based on the context of words surround-
ing that position wi−2,wi−1,wi+1,wi+2 , while continuous skip-gram model [13] 
predicts the context (surrounding words) with respect to a particular word in the sen-
tence. The first formulation of skip-gram model defines the conditional likelihood 
P(wcontext | wcenter) ≈ P(wo | wc) utilizing the function softmax [13, 14],

where o is the index of the context word (output) in the dictionary, c is the index of the 
central word (input) in the dictionary, and W is the vocabulary.

Similarly, continuous bag-of-words defines conditional likelihood P(wc | wo1 , . . . ,wo2m) 
[13, 14], where o1, . . . , o2m are the indexes of the context words in the dictionary.

Although the skip-gram architecture performs slightly worse on syntactic tasks than 
the CBOW model, it does much better on semantic tasks [13]. Executing the definition 
(Equ. 1) has a very high computational cost [13, 14]. Therefore, [15] optimized the train-
ing process of the skip-gram model by adding the hierarchical softmax and 
negative sampling techniques.

Graph embedding is applied to dot (scatter) graphs. In analogy to word embed-
ding, in graph embedding a point (i.e., node) in a graph is considered as a word, which 
is surrounded by other points (i.e., words). Furthermore, the graph contains informa-
tion about the relationship between any two given points (words); this relationship is 
defined as an edge between two nodes. Hence, graph embedding can be used to create a 
matrix of vectors for all the nodes in a graph based on their edges by using the following 

(1)P(wo | wc) =
exp(u⊤o vc)
|W |
i=1

exp(u⊤i vc)

(2)P(wc | wo1 , . . . ,wo2m) =
exp

( 1

2m
u⊤o (vo1 + · · · + vo2m)

)

∑|W |
i=1

exp
( 1

2m
u⊤i (vo1 + · · · + vo2m)

)
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analogy [16–19]: given a sequence of words, Sn
1
= (w1,w2, . . . ,wn) where wi ∈ W  , it can 

be inferred P(wn | w1,w2, . . . ,wn−1) ≈ P(vi | v1, v2, . . . , vi−1) and vi represents a node in 
a graph G.

Graph embedding

The following definitions are useful to better understand and develop graph embedding 
and its applications.

Definition 1 (Graph) In mathematics and computer science, a graph is a scat-
ter plot with a defined data structure. Let G be a graph, defined as G = (V ,E) where 
V = {v1, v2, . . . , vn} is a set of nodes (vertices), and E represents the connection (edge) 
between 2 nodes (vi, vj) ∈ V  [1, 20–23]. Given a graph (Fig. 1a), this graph can be rep-
resented by an adjacency matrix: is 1 when there is an edge from node vi to node vj , and 
is 0 when there is no edge (Fig. 1b). The adjacency list groups the neighboring nodes of 
each node vi (Fig. 1c), while the edge list consists of ordered pairs (vi, vj) when there is an 
edge from node vi to node vj (Fig. 1d) [20, 21, 24, 25].

Definition 2 (Homogeneous and heterogeneous graphs) In a homogeneous graph, all 
nodes and/or edges are of the same type. For example, in the friends’ network, each node 
represents a person, and an edge represents friendship between two people. In contrast, 
in heterogeneous graphs, nodes and edges can be of different types. Heterogeneous 
graphs are exemplified by an education network, in which there may be nodes represent-
ing teachers and students, and it is possible to have the relationships (edges) between 
teachers (colleagues), between teachers and students, and between students (classmates) 
[1, 20, 21, 24]. By their nature, biochemical networks can be defined as homogeneous or 
heterogeneous graphs. For example, protein–protein interaction studies are represented 
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c d
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Fig. 1 Graph representation
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in homogeneous graphs [26–29], while miRNA-disease/gene interaction studies are rep-
resented by heterogeneous graphs [30–32].

Definition 3 (Directed and undirected graphs) In directed graphs (digraph), the list 
of nodes (i.e., vertices) that generates the graph is ordered, and each interaction (i.e., 
edge) has a direction. Traversal in this type of graph is done according to the direction of 
the interactions among nodes, while in undirected graphs traversal can be done in both 
directions [1, 20, 21, 24]. In metabolic pathways, both types of graphs are present. Meta-
bolic pathways, in which each product (i.e., node) is solely dependent on its precursor 
(i.e., a previous node in the pathway), can be defined as directed. However, most meta-
bolic pathways are represented as undirected graphs, since their chemical reactions are 
reversible and regulated by feedback loops, where downstream products influence the 
formation of their upstream precursors (e.g., in glycolysis) [33, 34].

Definition 4 (First-order and second-order proximity) The first-order proximity meas-
ures the proximity between a pair of nodes vi , vj , and represents the weight w of the edge 
eij ( w ≥ 0 ). If the edge does not have a weight, then the default value is 0. Then, first-
order proximity is defined as the neighborhood of the node vi containing a set of adja-
cent nodes Nvi = {vk | eik > 0, k �= i} . The second-order proximity measures the num-
ber of 2-hop paths between a pair of nodes vi, vj [2, 24].

Definition 5 (Graph embedding) Given a graph as input G = (V ,E) , graph embed-
ding (see Fig. 2) is defined as a mapping function f : vi → Zi ∈ R

d (latent space) with 
i ∈ {1, 2, . . . , n} where d ≪ |V| and Zi is a vector of dimension d known as an embedding 
[2, 22, 24].

Classification of graph embedding techniques

Most commonly, graph embedding techniques are classified as either matrix factoriza-
tion-based, random walk based, or deep learning-based [1, 2, 22–24, 35].

However, in the literature, an alternative classification has been introduced based on 
the point of view of the mathematical problems, which can be vector point-based, gauss-
ian distribution-based, or based on dynamic graph embedding [1]. Vector point-based 
approaches aim to project the nodes of a high-dimensional graph onto low-dimensional 
vectors within a vector space [1]. Gaussian distribution-based methods allow the vector 
representation (embedding) of a node as potential functions of continuous densities in a 
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Fig. 2 Graph embedding scheme
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vector space. [1]. Dynamic graph embedding is often the method of choice for practi-
cal applications, as many networks are dynamic and evolve, leading to the addition of 
removal of nodes or edges [1].

Alternatively, it was proposed that embedding techniques can be grouped from the 
perspective of biomedical networks, including biomedical relation data, biomedi-
cal knowledge graphs, biomedical ontology, or clinical data, in non-attributed network 
embedding and attributed network embedding [36]. Below is the classification of non-
attributed network embedding [1, 2, 22, 24, 35, 36] and attributed network embedding 
[2, 36]. Table 1 shows the graph embedding models published by category.

Mathematical concepts behind graph embeddings

Shallow embeddings are the earliest graph embedding technique applied to life-science 
data based on homogenous networks (i.e., networks based on only one biological entity, 
such as proteins). Shallow graph embeddings are subdivided into random-walk and 
matrix-factorization algorithms. Examples of random-walk algorithms are (DeepWalk 
[16] and Node2vec [17]; while matrix-factorization examples are graph factorization 
[43] and GraphRep [44].

DeepWalk [16] was the first graph embedding technique used to represent the verti-
ces (nodes) of a homogeneous graph in vectors [91]. The process begins when the ran-
dom walk algorithm generates a sequence of vertices. The model is then trained using 
the skip-graph algorithm [13]. Finally, the result is the vector representation for each 
vertex, also called embedding.

Node2vec [17] is a generalization of DeepWalk [16]. The authors added two 
parameters, p, and q, which drive the generation of paths (see Fig.  3) by using the 
idea of breadth-first traversal (BFS) and depth-first traversal (DFS). When q > 1 , 
the traversal approaches BFS, and the random walks lead to a micro-view of node 

Table 1 Network embedding models

Category Publications

Non-attributed network

Shallow embeddings [16, 17, 19, 37–53]

Graph neural networks [54–62]

Attribute network

Semantic matching models [63–78]

Translational distance models [79–85]

Meta‑path‑based methods [18, 86–90]

b a c

d

e

f

g

Fig. 3 BFS (red arrows) and DFS (blue arrows) traversals, from node A with a path length of 3
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neighborhoods. In contrast, q < 1 is an exploration macro-view that approximates a 
DFS traversal for node neighborhoods [1]. The authors of the base article used the 
values of p = 1 , q = 2 for a micro-view and the values of p = 1 , q = 0.5 for a macro-
view. The parameters p and q also control how fast a path is explored, and the neigh-
borhood of an initial node vi is left. The authors performed multi-label classification 
and link prediction experiments to verify their proposal. Results were evaluated using 
the F1-score metric.

While Deepwalk and Node2vec provided a solution to tasks such as link predic-
tion, node classification, node clustering (community detection), and visualization, 
two random-walk algorithms, Netpro2vec [92] and Pathway2vec [33], were pro-
posed to better analyze biomedical datasets.

Netpro2vec [92]: In the techniques described above, nodes of a network were 
transformed into tokens. Instead, the main concept of Netpro2vec is to transform 
networks into documents. The process is carried out in 3 steps: 1) building the prob-
ability distributions representing each graph, 2) extracting tokens from probability 
distributions, and 3) building the graph embedding using token extraction. The graph 
is then represented as a word document (a set tokens), and the Doc2vec (document 
embedding) technique is applied to obtain the graph embedding [93]. The proposal 
was compared with other techniques of whole-graph embeddings to solve classifica-
tion tasks in gene networks. The results were evaluated based on accuracy, precision, 
recall, F-measure, and Matthews correlation coefficient (MCC) metrics.

Pathway2vec [33] incorporates multiple random walk-based techniques, Node-
2vec [17], Metapath2vec, Metapath2vec++ [18], JUST [94], and RUST [33], 
to represent learning by automatically generating features of metabolic pathways. It 
consists of three layers that interact: compounds, enzymes, and pathways. This inter-
action between layers results in a heterogeneous network of multi-layer information, 
and each layer has associated nodes. The layered architecture captures meaningful 
relationships to learn a low-dimensional space based on neural embeddings of meta-
bolic features. Finally, applying the skip-gram [13] model, the embeddings for each 
node are extracted. Pathway2vec was applied for node clustering, embedding visu-
alization, and pathway prediction tasks. Evaluation of the results was performed using 
MetaCyc software and F1-micro metric.

Graph Factorization (GF) [43]: GF is a factorization technique based on partition-
ing a graph to minimize the number of neighboring vertices instead of edges between 
partitions. GF begins from the assumption that the information regarding the pres-
ence of an edge (i, j) with a weight Yij can be captured by the inner product between 
vertices with attributes 〈Zi,Zj〉 . Finally, the value of the vector Z is determined by the 
following objective function:

where � is the regularization parameters, E is the list of edges. To validate their proposal, 
the authors applied GF on a graph of 200 million vertices and 10 billion edges. In order 
to evaluate convergence and execution time, they used 3 architectures: a single machine, 

(3)f (Y ,Z, �) =
1

2

∑

(i,j)∈E

(Yij − �Zi,Zj�)
2 +

�

2

∑

i

�Zi�
2
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a synchronous parallel implementation and an asynchronous parallel implementation. 
The results showed that asynchronous parallel implementation is very beneficial for 
scalability.

GraRep [44]: GrapRep is a model for learning node representation. This model cap-
tures the relational information of different k-steps with different values of k between 
vertices of the graph, directly manipulating different global transition matrices defined 
on the graph without slow and complex sampling processes. GraRep defines different 
loss functions and optimizes each model with matrix factorization techniques, con-
structing global representations of each node by combining the different model repre-
sentations. Experiments were run to solve the node clustering and node classification 
tasks on linguistic networks and social networks, respectively. In both tasks, GraRep 
showed an empirical efficiency of the learned representations compared to the LINE 
and DeepWalk models.

While shallow-embedding algorithm applications focus on solving link prediction, 
node classification, and community detection tasks, more complex problems such as 
graph matching, subgraph matching, and calculating the maximum common subgraphs 
require more complex models. Graph-neural network (GNN) algorithms can address 
these problems by combinatorial optimization using graph theory. Furthermore, these 
problems are solved through representation learning (deep learning); for example, in 
[95] a GNN model is proposed that addresses the subgraph matching problem for molec-
ular fingerprint detection.

Graph Convolutional Network (GCN): Kipf et al. [56] present GCN for semi-super-
vised learning that works directly on graphs. GCN is a variation of convolutional neural 
networks. It scales linearly with the number of edges and encodes the local structure of 
the graph and features of nodes. The task of node classification is approached on a graph 
with partially labeled nodes, using a neural network f(X, A) trained in a supervised envi-
ronment with node feature matrix X and adjacency matrix A ∈ R

N×N . For this purpose, 
a multilayer GCN is considered with the following layer-wise propagation rule.

where Ã = A+ IN is the adjacency matrix of undirected graph with added loops, IN 
is the identity matrix, D̃ii =

∑

j Ãij and W (l) is a layer-specific trainable weight matrix, 
σ(.) is an activation function, H (l) ∈ R

N×D is the matrix of activations in the lth layer 
H (0) = X . The experiments were run on 4 datasets (Citeseer, Cora, Pubmed, and NELL), 
and the results showed that CGN significantly outperforms DeepWalk.

In the case of attribute data—biomedical data based on heterogeneous networks (i.e., 
networks based on more than one biological entity, such as drug–protein target interac-
tions)—the graph embedding algorithms must consider both the node distribution and 
the edge information of the graph. Embeddings are generated that encode the proximity 
between nodes based on their attributes and connectivity patterns. Graph embeddings 
algorithms for attribute data can be divided into semantic matching models (e.g., DDKG, 
DistMult, etc.), translational distance models (e.g., TransE, TransR), and meta-
path-based methods (e.g., Metapath2vec).

DDKG: Xiaori et al. [96] used an approach denominated “attention-based knowledge 
graph representation learning framework” or DDKG to simultaneously consider drug 

(4)H (l+1) = σ(D̃− 1
2 ÃD̃− 1

2H (l)W (l))
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attributes and triple facts in knowledge graphs (KG). A triple fact is the link between one 
entity (e.g., metabolite, protein, etc.), usually referred as subject or head, and another 
entity referred as object or tail. The relationship between this two entities is referred 
as relationship or label. Xiaori et al.’s work aimed to use all the information available in 
biomedical KGs and improve the results in the link prediction task in drug–drug inter-
action (DDI) networks. The proposal was developed in 4 steps: 1) Building the KG, 2) 
Generating the initial embeddings for each drug according to its KG, 3) Generating the 
global embeddings of the drugs considering the node-embeddings of their neighbors, 
4) finally, DDKG determines the probability of interaction of drugs in pairs with their 
respective embeddings through a binary classification. The experiments were conducted 
on two biomedical KGs and compared with ten state-of-the-art models, including LINE 
and SDNE. Results obtained from DDKGs were evaluated by metrics of accuracy, sensi-
tivity, specificity, AUC, and AUPR, demonstrating that DDKGs outperformed the state-
of-the-art models.

DistMult [67] considered learning entity and relationship representations in knowl-
edge bases (KBs) using the neural-embedding approach. The learning process seeks to 
learn entity and relationship representations such that valid triple facts (i.e., known facts) 
receive high scores. The triple facts are denoted by ( e1 , r, e2 ), where e1 is the subject, e2 
is the object, and r is the relationship between the two. The first layer of the model pro-
jects a pair of entities from the input into low-dimensional vectors, and the second layer 
combines these two vectors into a scalar to be compared by a scoring function. Entity 
representation learning can be defined as:

where f can be a linear/nonlinear function, W is a parameter matrix, W can be initialized 
randomly/pre-trained, and X is a one-hot/n-hot vector representing the input entities 
e1 and e2 . DistMult was empirically evaluated for link prediction tasks on the Free-
base dataset. The results showed that a bilinear model successfully captures the compo-
sitional semantics of the relationships. It is also reported that DistMult outperforms 
TransE with a top-10 accuracy of 73.2% versus 54.7%.

TransE: Antoine et al. [80] addressed the problem of embedding different class entities 
(e.g., metabolites, proteins, etc.) and relationships of multi-relational data in low-dimen-
sional latent spaces. The primary condition is that all the different entities (e.g., protein, 
metabolite, gene, etc.) must be present in a directed graph. In this directed graph, a tri-
ple fact consists of one entity (designated head), which is related to another entity (des-
ignated tail) by an edge (designated label). TransE is an energy-based model that learns 
embeddings of low-dimensional entities. For TransE the relationships are represented 
as translations in latent space; if a strong relation (edge) exists among two nodes (i.e., 
head and tail), then the embedding of the tail entity must be similar to the embedding of 
the head entity plus some vector that satisfies the relationship. For its simplicity, TransE 
has a small number of parameters and is scalable. Experiments showed that TransE 
performs well and significantly outperforms the RESCAL method in the link prediction 
task on two large knowledge base, Firebase and Wordnet.

TransR [82]: In contrast to the TransE model, where entities and relations (edges) are 
embedded in the same latent space, in TransR it was proposed to build the embeddings 

(5)ye1 = f (WXe1), ye2 = f (WXe2)
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of the entities and the edges in separate latent spaces linked by specific relation matri-
ces, yielding one entity space and multiple relation spaces. TransR was based on the 
idea that entities that have a relationship of the form (head, label, tail) are first projected 
from the entity space into the r-relation space as hr and tr with Mr operation, and then 
hr + r ≈ tr . The relation-specific projection can make the head/tail entities that actu-
ally hold a strong relation (edge) close to each other and also move away those that do 
not. In the experiments, Lin et al. [82] evaluated the model with three tasks: link predic-
tion, triple classification, and relational fact extraction using the WordNet and Freebase 
datasets. The results showed that TransR obtains significant improvements compared 
to TransE. Additionally, they proposed CTransR, a combination of TransR and 
Clustering.

Metapath2vec [18]: Unlike DeepWalk [16] and Node2vec [17], Metapath-
2vec, guides and generates paths using random walks through meta-path schemes. It 
captures the structural and semantic relationships between different types of nodes in 
heterogeneous networks. Formally, a meta-path is defined as a path P represented by, 
P : V1

R1
−→ V2

R2
−→ . . .Vt

Rt
−→ Vt+1 . . .

Rl−1
−−→ Vl , where R = R1 ◦ R2 ◦ · · · ◦ Rl−1 defines 

complex relationships between node types V1 and Vl . The skip-gram architecture is 
also used by Metapath2vec to determine embeddings. Dong et, al. [18] evaluated 
their proposal on heterogeneous graphs for solving multi-classification nodes, node 
clustering, and similarity search problems. The results were evaluated using the F1-score 
metric.

Applications of graph embeddings in mass spectrometry‑ 
and sequencing‑based biomedical data
Applications of graph embedding techniques for mass spectrometry- and sequencing-
based data covered in this review are summarized in Table 2 [26, 31, 33, 92, 97, 98]. By 
their nature, certain—OMICs data can be stored in a graph data structure. For example, 
gene–gene, protein–protein, and metabolite-metabolite interactions can be stored in 
homogeneous graphs. In contrast, heterogeneous graphs can contain multiple species, 
e.g., drug–protein, gene–protein interactions, etc. and analyzing these graphs can con-
tribute to biological knowledge. However, computational tools to study graph data struc-
tures in biological graphs can suffer from high computational and space costs, especially 
in large-scale information containing graphs [28]. Graph embedding algorithms can then 
be used to identify interactions between heterogeneous nodes such as: drug–target [26, 
99–101], miRNA-disease [30, 31], miRNA-target [32], miRNA-gene [32], microbe-drug 
[102], gene–disease [31, 103], gene–pathway [31], cell–gene [104], chemical–disease 
[31]. On the other hand, the interaction between homogeneous nodes may be protein–
protein [26–29], drug–drug [34, 100, 102], microbe-microbe [102], gene–gene [104].

As an example, Su et  al. [28] applied graph embedding to improve the identifica-
tion of protein–protein interactions. To avoid the high computational cost of identi-
fying the possible protein–protein interactions based on previous graph embedding 
techniques, the authors studied different approaches (algorithms) to accelerate graph 
embedding and improve its accuracy. The authors’ contribution was 2-fold. Firstly, 
their approach denominated LPPI integrated protein attributes into the graph embed-
ding task. This way, multi-view information was used, improving the accuracy of the 
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Table 2 Summary of graph embedding on biomedical data

AUPR area under precision‑recall curve, ROC receiver operating characteristics, AUC  area under the curve ROC, MCC 
Matthews correlation coefficient, DBI Davies–Bouldin index, NMI normalized mutual information, ARI adjusted rand index, 
MMR maximum matching ratio, MAP mean average precision

Techniques Dataset Applications Evaluation Metrics

Combined DeepWalk, 
LINE, Node2vec, and 
SDNE [26]

MATADOR, PubTator, and 
BioGRID

Link prediction AUC, AUPR, MAP, Avg. 
R‑precision, and Precision@k

HeteWalk [115] HPRD, MISIM, MimMiner, 
DisGeNET, and miRTarBase

Link prediction AUC 

Cascade model [97] BioChem, Drug Bank, and 
PubChem

Link prediction Accuracy, hits@10, and AUC 

[29] Krogan, Dip, and BioGRID Node clustering Precision, recall, F‑score, 
fraction, geometry accu‑
racy, and MMR

HNERMDA [102] MDAD and aBiofilm Link prediction Accuracy, AUC, and AUPR

PmDNE [30] HMDD3.0 Link prediction AUC, AUPR, precision, accu‑
racy, recall, and F1‑score

HO‑VGAE [27] HI‑II‑14, HI‑III, Lit‑BM‑13, 
BioGRID, and Bioplex

Link prediction AUPR, Precision@k

HMNE [105] Lazega, CKM, DBLP, 
C.elegans, H.genetic, PPI, 
and Twitter

Link prediction and node 
classification

F1‑micro, F1‑macro, and 
AUC 

TriModel [99] DrugBank_FDA, KEGG_
MED, and Yamanishi_08

Link prediction AUC and AUPR

FactorHNE [103] DisGeNet, HPO and 
Orphanet, STRING 10

Link prediction AUPR, AUC, Precision@K, 
and Recall@K

 [100] DrugBank_FDA, UNIPROT Link prediction, node 
clustering

Accuracy

Hybrid model GVS [31] GO, HPRD, CTD, HMDD 
and MATADOR

Link prediction Accuracy and F1‑score

DeepWalk and Node2vec 
[98]

DrugBank, Bio2RDF, 
human disease net‑
work, SIDER, KEGG, and 
PharmGKB

Link prediction AUC and AUPR

Netpro2vec [92] LFR, MREG, Kidney 
RNASeq, Brain fMRI 
COBRE, Breast RNAseq, 
Breast Microarray, MUTAG 

Node classification Accuracy, precision, recall, 
F‑score, and MCC

BiLSTM [101] Human, DUD‑E, and 
ChEMBL

Node classification AUC, precision, and recall

scLINE [104] Usoskin, Li, Pollen, Patel, 
Darmanis, Camp, Muraro, 
and Petropoulos

Node clustering DBI, NMI, ARI, Jaccard and 
Purity

PRD [34] Bio2RDF, and DDI Corpus Link prediction AUC, AUPR

ACNE and ACNE‑ST [116] Cora, Citeseer, Wiki, and 
DBLP_C4

Node classification and 
node clustering

F1‑micro and F1‑macro

Pathway2vec [33] EcoCyc, HumanCyc, Ara‑
Cyc, YeastCyc, LeishCyc, 
and TrypanoCyc

Link prediction and node 
clustering

F1‑micro

LPPI [28] PPI network and 
GraphSAGE‑PPI

Link prediction and Node 
Classification

Accuracy, sensitivity, preci‑
sion, MCC, and AUC 

MRMTI [32] miRTarBase, miRBase, 
HumanNet, and biomaRt

Link prediction AUC, AUPR, precision, recall, 
F1‑score, and balanced 
accuracy

CANE [117] Disease Encylopedia Sec‑
tion of XYWY.com.

Link prediction Precision@k and recall@k
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graph embedding process. Secondly, the graph was reconstructed using the Graph-
Zoom algorithm to reduce the graph’s size. Therefore, the authors could acceler-
ate the efficiency of the embedding algorithms. Combining the above two aspects, 
the authors’ algorithm, LPPI, saves execution time without losing accuracy (AUC 
0.99996) in identifying protein–protein interactions in a large dataset.

Despite representing a major advance in the use of graph embedding, Su et al. [28] 
only used a homogeneous dataset from protein data. However, biological information 
from systems biology studies is typically derived from multi-omics datasets and con-
tain heterogeneous information (DNA, RNA, protein, and metabolite information). 
Furthermore, as the network of interactions is time or condition-sensitive, multilayer 
networks must be considered [4].

Gong et  al. [105] proposed the use of a multilayer network embedding to handle 
data sets with multiple types of nodes and edges found in heterogeneous graphs. This 
approach becomes extremely useful for evaluating the performance of node embed-
ding in link prediction, which tries to predict edges that most likely will appear in the-
oretical networks (not experimentally measured data); this is similar to the approach 
performed by bioinformatics in in-silico studies. As some tested datasets are very 
large and complex, it is hard to predict links on the whole node sets. Hence, Gong 
et al. [105] suggested first extracting a core set of nodes of each dataset and conduct-
ing link prediction in these core sets. Hence, many authors similar to Gong et al. are 
encouraging the use of more complex graph-embedding algorithms that are based on 
combinations of the above-mentioned ones. These combinations of graph-embedding 
algorithms are known as encores or graph neural networks.

For example, Ray et al. [106] used a combination of graph-embedding algorithms as 
proposed by Gong et al. to generate a graph embedding encore algorithm approach 
to identify potential drugs that could affect the protein–protein interaction (PPI) 
between the SARS-CoV-2 virus and its human target proteins. The SARS-CoV-2 viral 
protein and human interaction datasets (i.e., protein interaction graph) were based on 
the experimental data obtained by Gordon et al. [107] by means of affinity-purifica-
tion mass spectrometry (AP-MS) screening and on the theoretical data by Dick et al. 
[108].

The graph embedding-based algorithm proposed by Ray et  al. [106] to repurpose 
drugs against COVID-19 considered that the available data was heterogeneous. They 
suggested to combine three different data sets: (i) SARS-CoV-2—host protein interac-
tions, (ii) human protein–protein interactions, and (iii) drug–human protein interac-
tions to predict possible novel treatments to interfere with infection. As described by 
Gong et al. [105], these three datasets were very large and complex; hence, Ray et al. 
[106] had to reduce the dataset complexity by performing the data reduction step, 
i.e., a first graph embedding based on the Nod2vec algorithm to obtain the feature 
matrix ( X ). In the second step, the novel graph embedding algorithm denominated 
variational graph autoencoder (VGAE) was used for link prediction tasks. As input, 
VGAE receives the adjacency matrix ( A ) and the feature matrix ( X ) from the original 
graph ( X replaces the one-hot matrix that the VGAE model uses by default and also 
helps improve prediction precision). The encoder of VGAE converts the input data 
to lower-dimensional representation ( Z ) and the decoder takes Z to reconstruct the 
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original input in ( ̂A ), where Â is similar to A , and in Â new connections between the 
different types of nodes can be discovered.

The results of Ray et al. [106] were compatible with those observed by other authors. 
For example, Ray et  al. [106] identified the angiotensin-converting enzyme-2 (ACE-2) 
as a potential drug target against SARS-CoV-2 [109, 110]. Interestingly, the authors also 
found that drugs used to prevent Malaria and pneumocystis pneumonia (PCP) relapses, 
such as Primaquine, have therapeutic potential against SARS-CoV-2 based on the inter-
action of Primaquine with the TIM complex, consisting of TIMM29 and ALG11.

Similarly, Zitnik et  al. [111] used a graph convolutional network, a combination 
of graph-embedding algorithms with a convolutional neural network that can work 
directly on graphs, to predict clinical side effects in patients taking multiple drugs 
simultaneously.

As in the case of Ray et al. [106], Zitnik et al. [111] combined multimodal graphs of 
protein–protein interactions, drug–protein target interactions, and known clinical drug 
side effects. Their new graph embedding algorithm, named Decagon, could accurately 
predict drug side effects in patients with complex diseases or co-existing conditions 
necessitating simultaneous medication for their treatment.

The use of shallow embeddings, such as (Nod2vec) is limited as shallow embeddings 
do not share information between the nodes and do not take advantage of the charac-
teristics of the nodes in the coding process. To mitigate these limitations, graph neural 
networks (GNN) have more sophisticated encoders that take advantage of the structure, 
features, and attributes of graphs [112].

Su et  al. [113] proposed constrained multi-view nonnegative matrix factorization 
(CMNMF), a model based on GNN, to determine the similarity between drugs and 
viruses within their space of characteristics (latent space). Therefore, CMNMF is ori-
ented towards preserving drug and virus similarity information as much as possible. 
Then, they apply a graph convolutional network (GCN) with attention-based neighbor 
sampling to optimize the vectorial representation of drugs and viruses in virus-drug 
associations (VDA) networks, whereas VDA networks are considered heterogeneous 
graphs. The experiments were executed on three VDA datasets to identify possible drugs 
against SARS-CoV-2. The embedding algorithm from Su et al. outperformed other mod-
els and was evaluated with the accuracy, F1, AUC, and AUPR metrics.

Decagon, a DeepWalk neural graph embedding, outperformed baseline algorithms by 
up to 69% (accuracy). Specifically, Decagon could automatically predict side effects with 
a known strong molecular basis with high precision, but still performed well on predict-
ing side effects with a non-molecular basis due to its effective sharing of model param-
eters across edge types.

Finally, Nelson et  al. [114] mentioned the advantages of graph embedding tech-
niques compared to other techniques that operate directly on biological/biomedical 
networks. One advantage is a more rapid analysis of the learnt embedding. Unlike the 
tasks mentioned in the other works (link prediction, node classification, and node clus-
tering), Nelson et al. [114] demonstrated the usefulness of graph embeddings for more 
specific tasks in biology, such as protein network alignment, protein module detec-
tion, and protein function prediction. Taken together, these examples establish the 
high value of graph embedding techniques for the analysis of mass spectrometry—and 
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sequencing-based—OMICs datasets. Several other applications have been published, 
which could not be discussed in greater detail, but have been showcased in Table 2 and 
classified for the use for (i) link prediction, (ii) node classification, and (iii) node cluster-
ing tasks.

Although Table 2 shows how graph embedding algorithms have become popular for 
representing biomedical data, several major limitations are apparent that limit the gen-
eral applicability of graph embedding to life sciences:

• Most graph embedding algorithms have been developed to accomplish a specific task 
on a specific dataset, with no standards or even flexibility for incorporating other 
datasets. For using the same graph embedding algorithm to solve a different task, the 
new data set must be rewritten, thus limiting the application for other researchers.

• Shallow-embedding algorithm applications are limited in their applications, such as 
link prediction, node classification, and community detection tasks. More complex 
problems such as graph matching, subgraph matching, and calculating the maximum 
common subgraphs require more complex models requiring combinatorial optimi-
zation (graph theory). Furthermore, these problems are solved through representa-
tion learning (deep learning). However, most deep-learning graph embedding tech-
niques are not deterministic because they use probabilities to perform their tasks, 
yielding similar, but not identical results for different runs.

• Loss of structural information: graph embedding methods typically aim to preserve 
the proximity of nodes based on their graph structure. However, they may lose cer-
tain structural information during the embedding process. For instance, (i) higher-
order relationships within the graph may not be accurately captured. Furthermore, 
(ii) graph embeddings may not effectively leverage node attributes or features. 
Node attributes (metadata) can provide valuable information in life sciences, such 
as measurement conditions. It may be computationally expensive to maintain graph 
embeddings for (iii) dynamic data sets where nodes and edges are frequently added, 
removed, or modified (due to experimental conditions).

• Interpretability: The interpretability of graph embeddings can be more challenging 
compared to other clustering techniques, as it is often difficult to interpret the spe-
cific features or relationships each dimension captures.

Addressing these limitations is an active area of research, and researchers continue to 
develop new techniques and algorithms to enhance the performance and versatility 
of graph embedding methods to make them more applicable to life-science research 
questions.

Conclusion
As can be easily appreciated from the by far not exhaustive list of discussed algorithms 
for graph embedding in this review, there is currently not yet a gold standard for graph 
embedding for biological data emerging that can provide reliable data for biologists and 
serve as a reference point for future developments of in the field. So far, the presented 
applications for graph embedding on biological data have all been developed for the spe-
cific data sets at hand. All these studies have thus mainly remained theoretical, focusing 
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on the development of computational techniques rather than taking the interpretation of 
the data to the identification of novel biology or drug developments. Yet, with the ever-
growing datasets available to life science researchers, the community needs novel tools 
to understand better the underlying biological processes. Given their nature of reducing 
the dimensionality of complex data, graph embedding algorithms are an exciting and 
novel tool for extracting novel insight from large biological datasets (Table 2). We envi-
sion that graph embedding will become an essential tool aiding hypothesis generation 
leading to novel biological discoveries.

Specifically, graph embedding techniques hold significant potential in various biologi-
cal and biomedical research fields. In the context of the drug–disease association (DDA), 
disease-gene association (DGA), drug–target interaction (DTI), protein–protein inter-
action (PPI), and drug–drug interaction (DDI) (Table 2), graph embedding methods can 
provide valuable insights and aid in understanding complex relationships. By represent-
ing drugs, diseases, genes, targets, and proteins as nodes in a graph and capturing their 
interactions as edges, graph embedding algorithms can (i) infer novel insight into a bio-
logical system based on information about its elements (i.e., link prediction), (ii) classify 
the relevance of biological elements (e.g., proteins, metabolites, etc.) and their interac-
tions within a system (i.e., node classification), and (iii) identify a phenotype or physiol-
ogy of interest based on the networks formed by their elements (i.e., node clustering).

Furthermore, with the help of low-dimensional representations obtained using graph-
neural networks (GNN) algorithms, it is possible to encode the underlying relationships 
and functional associations to find similarities between individuals sharing the same 
condition (e.g., graph matching or subgraph matching). These low-dimensional embed-
dings can then be leveraged to gain an understanding of the underlying molecular events 
occurring within the biological system (i.e., molecular phenotype characterization).

Hence, the ability to integrate multiple data sources, such as genomic, transcrip-
tomic, proteomic, metabolomic, and clinical data, further enhances the predictive 
power and potential impact of graph embedding techniques, mainly in the field of 
personalized medicine, paving the way for improved disease management, identify-
ing potential therapeutic targets, elucidating underlying molecular mechanisms, and 
exploring drug synergy or adverse interactions.

In conclusion, this increased predictive power gained by using graph embedding 
techniques on biological data will allow life-science researchers to conduct more 
targeted experiments by extracting novel unseen links. Developing applications will 
require substantial further research on the bioinformatic side to identify the most 
promising approaches to be applied to specific types of datasets, as well as thor-
ough experimental validation of the generated outputs. Despite posing a challenging 
problem to either field, the rapid rise of AI tools in our everyday life as a researcher 
will certainly fuel interest in incorporating novel AI-based analysis methods on high 
dimensional biological data. Therefore, we anticipate that graph embedding applica-
tions will soon be invaluable in the broader life science community.
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