
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Faltejsková and Vondrášek  
BMC Bioinformatics          (2023) 24:487  
https://doi.org/10.1186/s12859-023-05613-5

BMC Bioinformatics

PAPerFly: Partial Assembly-based Peak 
Finder for ab initio binding site reconstruction
Kateřina Faltejsková1,2*   and Jiří Vondrášek1* 

Abstract 

Background: The specific recognition of a DNA locus by a given transcription factor 
is a widely studied issue. It is generally agreed that the recognition can be influenced 
not only by the binding motif but by the larger context of the binding site. In this work, 
we present a novel heuristic algorithm that can reconstruct the unique binding sites 
captured in a sequencing experiment without using the reference genome.

Results: We present PAPerFly, the Partial Assembly-based Peak Finder, a tool 
for the binding site and binding context reconstruction from the sequencing data 
without any prior knowledge. This tool operates without the need to know the refer-
ence genome of the respective organism. We employ algorithmic approaches that are 
used during genome assembly. The proposed algorithm constructs a de Bruijn graph 
from the sequencing data. Based on this graph, sequences and their enrichment 
are reconstructed using a novel heuristic algorithm. The reconstructed sequences 
are aligned and the peaks in the sequence enrichment are identified. Our approach 
was tested by processing several ChIP-seq experiments available in the ENCODE data-
base and comparing the results of Paperfly and standard methods.

Conclusions: We show that PAPerFly, an algorithm tailored for experiment analysis 
without the reference genome, yields better results than an aggregation of ChIP-seq 
agnostic tools. Our tool is freely available at https:// github. com/ Caeph/ paper fly/ 
or on Zenodo (https:// doi. org/ 10. 5281/ zenodo. 71164 24).

Keywords: ChIP-seq, DNA recognition, Transcription factor, Peak analysis, Algorithm, 
Graph theory

Background
Gene expression regulation is one of the fundamental cell processes. Many mechanisms 
of this process have been observed; some of them involve specific binding of a transcrip-
tion factor to a particular short DNA sequence. This process is often studied in vivo by 
ChIP-seq [1] (chromatin immunoprecipitation followed by high-throughput sequenc-
ing). It is also possible to capture the binding site in vitro; a multitude of methods can be 
used to do so: for example SELEX-seq [2], SMiLE-seq [3] and others [4].

Such an experiment is necessarily followed by a computational analysis of the resulting 
data. The first step of this analysis consists of read mapping to a reference genome of the 
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studied organism. Subsequently, the analysis follows with “peak calling” – identification 
of sequences that are significantly enriched in the experimental data [1, 5, 6]. There are 
a number of computational tools available for these tasks. Mapping of the sequencing 
reads to the reference genome can be facilitated by Bowtie or BWA mappers [7]. For the 
peak calling, MACS is a very popular option [8, 9].

This established pipeline assumes that the genome of the studied organism is known. 
There are a great number of ongoing genome sequencing efforts—genome analysis 
projects concerning more than 5000 eukaryotic organisms are indicated in the GOLD 
database [10]. As of February 2022, these analyses were completed and published for 
more than 550 eukaryotic organisms. At least partial information on 40 000 eukaryotic 
genomes is also available in the GOLD database. Still, the process of sequencing the 
complete genome of an organism is an expensive and tedious task. It may not be avail-
able for a structurally aberrant genome or for a metagenomic sample.

Recent efforts also show that using a reference genome can introduce some bias into 
the analysis results, as it appears that genomic diversity cannot be captured by a single 
reference sequence [11–13]. In the case of human genetic data, great differences can be 
found in the amount of genetic data for people of different descents, leading to uneven 
coverage of the human genomic diversity [11].

From the identified peaks, the binding motif can be identified with MEME or other 
tools [14, 15]. It appears that the area around the binding motif can be meaningful, too. 
Some indications that a binding motif specificity is influenced by its surroundings have 
been observed for a multitude of transcription factors [16–18].

Modern approaches to genome assembly translate the sequencing reads to a de Bruijn 
graph [19]. The genome assembly process is often translated into a search for an Eulerian 
path in this graph, i.e. a path that traverses all edges in the graph exactly once [20–22].

In this work, a novel algorithm is proposed for binding site reconstruction from 
the sequences acquired in a ChIP-seq experiment (or any experiment that produces 
sequences of different enrichment) even without the known reference. Even though 
there were some attempts at de novo ChIP-seq analysis [23], this is the first specialized 
algorithm to do so. Our approach allows the user to escape any bias that could have been 
caused by the reference genome. The ab initio approach to the binding site reconstruc-
tion allows the user not to consider the size of the specifically recognized area. Addition-
ally, by omitting the need to use the reference genome we hope to extend the array of 
organisms for which gene regulation studies can be performed.

Methods
PAPerFly takes in raw sequencing reads from a ChIP-seq experiment (or similar; our 
workflow does not use any assumptions about the particularities of the ChIP-seq experi-
ment design) and the size of k-mer (the value of k) as input and outputs significantly 
enriched sequences (“peaks”) with their respective significance.

Algorithm and implementation

The steps of the PAPerFly algorithm are outlined in Fig. 1A. Each replicate in the experi-
ment is processed on its own using the following steps:
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• Identification of k-mers in the sequencing reads followed by calculation of the num-
ber of occurrences of each k-mer in the data and correction of the counts with 
regards to the control experiment

• Identification of the k-mers with low abundance and putting them aside
• Construction of a de Bruijn graph (see Fig. 1B) from k-mer with sufficient abundance
• Bubble removal to correct sequencing errors and simplify the de Bruijn graph
• Partial assembly of the sequences represented by the weakly connected components 

of the graph
• Exact string matching of subsequences on longer sequences
• Alignment of the k-mers with low abundance to the reconstructed sequences
• Peak identification using a Gaussian hidden Markov model and a Mann-Whitney U 

test

The outlined steps are discussed below in more detail. An intersection (with some toler-
ance for errors) of the sequences identified during the replicate peak calling is then given 
as output.

Graph preparation

The first four steps in the proposed workflow can be considered preparation of the de 
Bruijn graph for the partial assembly. Firstly, the algorithm traverses the sequencing 
reads with a sliding window of size k and identifies the sequences of k-mers and their 
respective numbers of observations. This is done for every replicate separately (a pre-
paratory step for peak calling). The k-mer counts of the treatment replicates are then 
summed. Then, the k-mers with a low number of observations are pruned and a de 
Bruijn graph G is constructed from the remaining k-mers. The removal of the less fre-
quent k-mers aims to eliminate sequencing errors, as well as to strengthen the signal of 
the studied binding site sequence. We do not map canonical k-mers on each other.

For the de Bruijn graph construction, we use BCALM2 [24] (version v2.2.3, git com-
mit 9b7b581). The BCALM2 is able to merge the non-branching paths into a single ver-
tex; this leads to a significant lowering of the number of vertices. As BCALM2 merges 
canonical k-mers, we additionally calculate the abundance of every unique k-mer using 
the jellyfish program [25] (version 2.3.0). The insufficiently abundant k-mers are pruned; 
the vertices merged by BCALM2 can be divided when applying the sufficient abundance 
criterion. The pruned k-mers are later included in the alignment.

The abundance threshold is user-defined; it can be set as an absolute value or it is pos-
sible to set the threshold as the p-th percentile of the k-mer counts (the k-mers with a 
single occurrence are considered sequencing errors and are not included in the k-mer 
counts distribution—we are using the default parameters in BCALM2). During the 
algorithm testing, the latter option was used, as it allows the estimation of a reasonable 
threshold without any prior knowledge of the sequencing experiment parameters. By 
setting this threshold, the user is capable of controlling the program distinguishing capa-
bilities; if the processed ChIP-seq experiment is noisy, setting a high abundance thresh-
old (e. g., 95th, 99th percentile) allows one to mitigate the effect.

Subsequently, the de Bruijn graph G is deconstructed into weakly connected compo-
nents, i.e. connected components of the undirected variant of G. Our partial assembly 
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algorithm is based on finding paths in the graph, so each weakly connected component 
of G can be processed separately. This greatly reduces the time and space complexity 
of the partial assembly and alignment algorithms below. The deconstruction is imple-
mented using the networkx Python library [26] (version 2.5).

The weakly connected components are then subjected to error correction. Short 
bubbles are removed using a variant of the Tour Bus algorithm proposed for the Vel-
vet genome assembler [21]. As the algorithm can lead to a decrease in connectivity, the 
deconstruction step is repeated.

Partial assembly

During the partial assembly, every weakly connected component C of the graph G is 
processed on its own. Firstly, we transform the component C to a directed acyclic graph 
(DAG). Then, a single longest path in the DAG is found (see Fig. 1C, step 1). This is pos-
sible in linear time using a topological sorting of vertices.

On it, the k-mer with the lowest abundance is identified (a path bottleneck). Using 
topological sorting, we are able to identify all the longest paths that pass the path bot-
tleneck (Fig. 1C, step 2).

The abundance of the bottleneck is an upper bound on the total abundance of all paths 
passing through this vertex. If more than one path passes through the bottleneck, the 
abundance is distributed between them. However, if the total bottleneck abundance A is 
lower than the number of paths passing through it, it is clear that not all of the identified 
paths were present in the original sequence. In that case, we have to pick at most A iden-
tified paths and assign them the abundance. Here, we divide the abundance uniformly to 
as many paths as we can reconstruct while the abundance values remain a positive inte-
ger (Fig. 1C, step 3). In doing so, we have “consumed” every usage of the total bottleneck 
k-mer. No other sequence can use the k-mer anymore; therefore, we can remove it from 
the graph (Fig. 1C, step 4).

At this point, we reconstruct the sequences represented by the identified paths. Addi-
tionally, for every path we subtract the path abundance from each k-mer the path used. 
We remove those with zero abundance.

The entire partial assembly algorithm (mainly the DAG construction) is discussed in 
more detail in Additional file 1: section S1. It is implemented in C# and relies heavily on 
the LINQ library.

Subsequence search

Here, the shorter sequences reconstructed during the partial assembly are mapped to 
longer ones using an exact match string search. If we consider two sequences s1, s2 such 
that s1 is a subsequence of s2 , the two sequences were acquired during the partial assem-
bly of the same weakly connected component. Therefore, we process the weakly con-
nected components separately during the first step.

In each component, we map the shorter sequences onto the longer sequences using 
the Aho-Corasick algorithm [27]. As a result of this stage, we acquire a set of the longest 
reconstructed sequences with information on the abundance for each position. This part 
is also implemented in C#.
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Low abundance k‑mers mapping

The low abundance k-mers are mapped to a best match reconstructed sequence using 
the NCBI BLAST+ tool [28]. For the BLAST mapping, the program uses words of 
size 10 and the 10−3 threshold for the E-value of the hit. If the k-mer is sufficiently 
identical (checked using an identity percentage threshold parameter), the k-mer 
abundance is added to the abundance profile. The user can also filter the k-mers to 
map by thresholding their absolute abundance.

Peak calling

From the steps above, we have prepared reconstructed sequences. For every sequence, 
the abundance of each position is available.

In the first steps of the algorithm, k-mer counts were prepared for every replicate in 
both the treatment and control experiments. For each reconstructed sequence, posi-
tion abundances are calculated for every replicate. If a k-mer is present in multiple 
reconstructed sequences, the k-mer count in replicate is divided between the occur-
rences in the same proportion as the reconstructed counts. In doing so, an integer 
matrix A of shape r × l is created for each reconstructed sequence, where r denotes 
the number of replicates (either control or treatment) and l denotes the sequence 
length.

Using a Gaussian hidden Markov model (GHMM), the reconstructed sequences are 
then broken down into segments corresponding to different GHMM states using the 
HMMlearn implementation  (github.com/hmmlearn/hmmlearn). The resulting state 
sequence is then smoothed: if a short segment (up to units of base pairs) of state x 
is found between two sufficiently long segments of state y, state x is in that segment 
replaced with y.

Subsequently, we compare the segment in the array of abundances corresponding 
to a treatment replicate with the segment in the respective control abundances array 
segment using a Mann–Whitney U test [29] with Bonferroni correction [30]. We 
opted for the Mann–Whitney U test because it makes no assumption on the underly-
ing distribution. Although the standard data processing pipeline ChIP-seq peak call-
ing assumes Poisson distribution of the read abundance [8], here, we cannot depend 
on this assumption due to the nature of the partial assembly process.

If multiple replicates are present in an experiment, the program reports an intersec-
tion of the peaks identified in different replicates.

Additional remarks

For grammar check of this article, the online tool Grammarly was used (https://app.
grammarly.com/, free online version).

Results
Method comparison on mouse embryonic stem cells (ESC)

To compare our tool with the previous work of He et  al. [23], we replicated their 
analysis on a ChIP-seq dataset from mouse embryonic stem cells (GSE11431) [31]. 
First, we simulated an analysis without a known reference genome on the acquired 
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dataset using PAPerFly with k set as the read length minus one and with the lowest 
abundance possible. Then, we mapped the results of our analysis to the mouse refer-
ence genome (mm8, to be consistent with the analysis in GSE11431) as well as to the 
peak sequences identified by a standard peak-calling analysis using the NCBI Blast+ 
tool. We constrained the query sequences by length – only those longer than 1.5k 
were used for mapping. A sequence identified by PAPerFly is considered mapped if 
a match was found at least at 95% sequence identity in the target database. A subse-
quence with such property was sufficient. Based on the ratio between the length of 
the mapped subsequence and the chiptig length, further filtering was done during the 
analysis.

Our analysis produces two types of output that both reconstruct the binding site. 
The first one is the result of the low abundance k-mer mapping to the reconstructed 
sequences (see Fig. 1A, further denoted as PAPerFly chiptigs) and serves as an input to 
probabilistic peak calling. The term “chiptig” was coined by He et  al. [23] and comes 
from mixing the “chip” abbreviation with the term “contig” used in genome assembly. 
The second one is the output of probabilistic peak calling (further denoted as PAPer-
Fly peaks). The former constitutes a broader binding site reconstruction, while the latter 
identifies sequences with high treatment counts.

We started with mapping the PAPerFly chiptigs to the mouse genome. Then, we 
checked whether the PAPerFly chiptig contained a peak sequence identified by the stand-
ard analysis for different mapping cutoffs. A mapping cutoff denotes a minimal portion 
of the mapped subsequence in the entire PAPerFly chiptig. The results can be found in 
Table 1. With an 80% mapping cutoff, the average of 62% of PAPerFly chiptigs contains 
a peak sequence as is found by the standard peak-calling. This exceeds the results of He 
et al. [23] by almost 10% on average. Furthermore, our results are more consistent. As 
there is another step to get Papefly peaks from PAPerFly chiptigs, we employed a “link if 

Table 1 Results of the PAPerFly chiptigs analysis from mouse ESC ChIP-seq

The columns correspond to different mapping cutoffs—the lowest possible portion of a mapped subsequence of a PAPerFly 
chiptig to the mouse genome. The fraction is calculated from all sufficiently long PAPerFly chiptigs

TF 40% 50% 60% 70% 80% 90%

CTCF 0.503035 0.495266 0.439670 0.350571 0.201262 0.096140

E2f1 0.869511 0.854042 0.837325 0.804391 0.773703 0.725798

Esrrb 0.863810 0.840952 0.805714 0.780476 0.747143 0.699048

Klf4 0.813272 0.811728 0.774691 0.716049 0.621914 0.524691

Nanog 0.676176 0.666924 0.636083 0.576715 0.376253 0.294526

Oct4 0.847377 0.847377 0.798092 0.720191 0.645469 0.588235

STAT3 0.983392 0.978147 0.966783 0.952797 0.925699 0.897727

Smad1 0.250792 0.247625 0.200127 0.132996 0.072198 0.039265

Sox2 0.564948 0.558763 0.523711 0.472165 0.439175 0.391753

Suz12 0.839806 0.839806 0.830097 0.815534 0.786408 0.786408

Tcfcp2I1 0.926601 0.920374 0.913701 0.908808 0.895907 0.876335

Zfx 0.950083 0.934276 0.900166 0.836938 0.763727 0.677205

c-Myc 0.919619 0.919619 0.910082 0.900545 0.877384 0.858311

n-Myc 0.814246 0.756983 0.685754 0.631285 0.575419 0.530726

p300 0.909498 0.894012 0.833448 0.723331 0.631796 0.540950
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possible” logic in the PAPerFly chiptigs construction. This could explain some part of the 
observed error as well as the inconsistency between different mapping cutoffs.

As a next step of the analysis, we mapped PAPerFly peaks to the peaks acquired by the 
standard analysis. If we allow up to 4 mismatches on the edges of the standard analysis 
peak, more than 75 % of PAPerFly peaks have a match in the standard analysis peak (see 
Table 2). No length-based filtering was done here.

For the TFs that have a binding site motif without a cofactor in the JASPAR database 
as of October 2023 (Klf4, Esrrb, Sox2, STAT3, Tcfcp2l1) [32] we calculated the maximal 
possible affinity for every corresponding PAPerFly peak using Biopython PSSM scoring 
[33]. We did the same for the peaks identified by the standard analysis. The affinity dis-
tribution is similar (see Fig. 2A).

Human ChIP‑seq data, effect of read length

We also tried out our work on human ChIP-seq data. We took the human TF ChIP-seq 
datasets that were used for testing in the work of He et al. [23]. All of these ChIP-seq 
experiments used a read length of at most 50bp. To describe the effect of the read length, 
we took a ChIP-seq experiment with the read length of 100bp for every previously pro-
cessed TFs. Again, we are using k as read length minus one.

As here the peaks identified by the standard peak-calling were much larger than in 
the mouse dataset and more varied in size, we opted out of the mapping to the human 
genome and only mapped PAPerFly chiptigs and PAPerFly peaks to the ones from the 
standard analysis. For the human datasets, we also examine the effect of the size of the 
chiptig expressed as a function of the read length (see Table 3). We are generally more 
successful with reconstructing the peak if longer reads are available.

However, reconstructing binding sites from longer reads can be problematic if the 
control dataset contains highly similar sequences. We encountered this issue with 

Table 2 Results of the PAPerFly peak analysis from mouse ESC ChIP-seq

TF Matched 
PAPerFly peak 
portion

CTCF 0.650831

E2f1 0.822615

Esrrb 0.692163

Klf4 0.760542

Nanog 0.773144

Oct4 0.790123

STAT3 0.821007

Smad1 0.739212

Sox2 0.779143

Suz12 0.833877

Tcfcp2I1 0.781115

Zfx 0.790626

c-Myc 0.772591

n-Myc 0.719416

p300 0.780683
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experiments ENCFF002ELA and ENCFF424HPQ where there are similar k-mers in 
the treatment and control database and the (unnormalized) k-mer counts in the control 
dataset exceed those in treatment (see Fig.  2B). Then again, it is easy to identify such 
a failure even without the validation step: only two PAPerFly chiptigs longer than 1.5k 
were reconstructed for ENCFF002ELA and 16 for ENCFF424HPQ while for others, this 
number was in the lower thousands (2593 chiptigs on average). A similar failure was 
observed for the short-read experiment ENCFF000YOW (read length 27), where only 14 
chiptigs longer than 1.5k was reconstructed. We also attribute this failure to high control 
k-mer counts, however, the differences between this experiment and the high-perform-
ing ones are less distinct. ENCFF000YOW is also an experiment with the shortest read 
length among those used for validation.

Here, we demonstrate using only chiptigs longer than 1.25k for PAPerFly peak identi-
fication. This option is available in the program. Our validation experiments show that 
filtering out too short chiptigs increases the program accuracy (from 49.8% (on average) 
of PAPerFly peaks having a match without filtering to 83.3% with the 1.25k filter, not 
including the failed experiments).

Processing a multi‑replicate experiment

To analyze the performance of the program and the effect of parameters on it, we picked 
three other human TF ChIP-seq experiments available in the ENCODE database [34] 
(see Table 4). Each of them was tested for different k-mer lengths (21, 25, 31, 35) and k-
mer abundance cutoffs (99 %, 95 %, 90 %, 80 %).

To compare the output of PAPerFly with the peak calling analysis that uses the refer-
ence genome, we mapped the PAPerFly peaks to corresponding peak sequences depos-
ited in ENCODE using the NCBI BLAST+ tool as described above. To gain more insight 

Table 3 Results of the PAPerFly chiptigs and peaks analysis from human experiments ChIP-seq

In each of the columns, there is the portion of the PAPerFly chiptigs (or peaks) that match a peak sequence as is found by 
standard peak-calling methods. Only the chiptigs that match a standard peak from at least 75% are counted. For long-read 
experiments ENCFF002ELA and ENCFF424HPQ and for the short-read experiment ENCFF000YOW, less than 20 PAPerFly 
chiptigs longer than 1.5k were found. For other long-read experiments, lower thousands of chiptigs were reconstructed. 
Peaks were reconstructed only from chiptigs longer than 1.25k

Ident Read Chiptigs Chiptigs Chiptigs Chiptigs Peaks
Length ≥ k ≥ 1.1 k ≥ 1.25k ≥ 1.5k

ENCFF000QLL 50 0.792559 0.503727 0.292983 0.179104 0.611732

ENCFF000VPU 36 0.441083 0.201490 0.113473 0.058234 0.910155

ENCFF000WDW 36 0.383082 0.191694 0.118622 0.058065 0.931330

ENCFF000XML 36 0.747459 0.528556 0.373114 0.264857 0.836959

ENCFF000YOW 27 0.590401 0.398515 0.386667 0.285714 0.064128

ENCFF000ZBR 36 0.865953 0.723484 0.553480 0.403001 0.807809

ENCFF002EDN 36 0.507555 0.279538 0.193993 0.108176 0.793017

ENCFF002ELA 100 0.090052 0.000000 0.000000 0.000000 0.177778

ENCFF156EZY 100 0.745610 0.649912 0.451807 0.269036 0.612676

ENCFF263VVK 100 0.733179 0.815248 0.668945 0.537217 0.815476

ENCFF424HPQ 100 0.269091 0.336207 0.400000 0.500000 0.157895

ENCFF489ABL 100 0.812528 0.805628 0.645051 0.502525 0.867299

ENCFF793WFY 100 0.889042 0.925232 0.845278 0.779911 0.984674

ENCFF903KXG 100 0.765208 0.914712 0.829531 0.797917 0.989831
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into the differences, we measured the mapping success by edit distance from the PAPer-
Fly peak to the ENCODE peak. For edit distance calculation, we used the edlib Python 
library (version 1.3.9) [35].

We have compared the replicated PAPerFly peaks to the peak calling result deposited 
in the ENCODE database (ENCODE peaks). Results of this comparison can be found 
in the top plot of Fig.  3. We have observed that k-mer size does not affect the mean 
nor median values of the edit distance between the ENCODE and PAPerFly peak, how-
ever, the width of the interquartile range appears to be growing with a lowering of the 
k-mer length, suggesting more errors and incorrectly reconstructed sequences. The edit 
distance values with both median and mean values around 5 % may be interpreted as 
high, however, the PAPerFly peaks may be interpreted as consensus sequences of several 
ENCODE peak sequences (or their section). We have observed that for a sizable portion 
of the identified peaks, a match can be found in tens or hundreds of ENCODE peaks 
(see the middle plot in Fig. 3). Approximately half of PAPerFly peaks have only up to five 
matches in ENCODE peaks. Around a quarter of PAPerFly peaks has more than 150 
matches.

Discussion
Obviously, the time and space complexity of our method depends on the abundance 
threshold parameter as well as on the k parameter. Beyond that, the complexity depends 
on the sequence variability of the data. The closer the distribution of the sequence k-mers 
is to a uniform distribution, the higher the complexity is. Very noisy ChIP-seq experi-
ments are therefore more time-consuming to process and the results are of low qual-
ity (as demonstrated by the processing of ENCFF002ELA and ENCFF424HPQ). Despite 
that, it is easy to detect such a failure merely by counting the chiptigs longer than 1.5k. 

Table 4 ENCODE experiments used for multi-replicate testing and their respective target 
transcription factor (TF)

Experiment ID Target TF

ENCSR490LWA CEBPG

ENCSR065XVO CHAMP1

ENCSR093FKD CREB3

(See figure on next page.)
Fig. 1 A overview of the PAPerFly algorithm. B: illustration of a node-centric de Bruijn graph for k = 6 . C 
illustration of bottleneck processing in a single iteration B consider two k-mers K1, K2 that are seen in the 
sequencing data. These k-mers constitute nodes of the graph. The nodes K1, K2 are connected by an oriented 
edge if and only if the two k-mers overlap by k − 1 (in this case, 6) characters; furthermore, the sequence 
constructed by contracting the k-mers K1, K2 must occur in the sequencing data. C firstly, the longest path 
in the DAG is identified using a topological sorting of the vertices in the DAG (step 1, path drawn in blue). 
On it, we identify a bottleneck (step 2, orange vertex). Depending on the bottleneck k-mer abundance (in 
this case, 3), we enumerate as many longest paths as possible while the abundance of each path stays a 
non-zero integer. Here, we enumerate three paths (step 3, depicted in blue, green and magenta) and assign 
them abundance of one. Finally, the consumed abundances are subtracted from the k-mer counts. The 
vertices corresponding to zero count k-mer are removed. In every step, at least one such k-mer exists (step 
4, removed edges and vertex are drawn in gray). The process is discussed in more detail in Additional file 1: 
section S1
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Other than that, PAPerFly has limitations in processing highly repetitive sequences. In 
the worst case, the algorithm might misinterpret a highly repetitive sequence as a peak. 
However, mapping on the reference genome can be similarly limited.

Fig. 1 (See legend on previous page.)
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Overall, we were more successful with reconstructing longer patches around the bind-
ing site with longer reads. Even if the long enough chiptig is defined in terms of the used 
k (and therefore the experiment read length), a greater portion chiptigs can be mapped 
to the human genome if longer reads are used. Then again, these experiments are vulner-
able if the control k-mer counts are similar or higher than those in the treatment k-mer 
set. We intend to continue working on this issue.

Within the testing results, we encountered a non-negligible portion of PAPerFly peaks 
that can be mapped to a high number of loci that are bound during the ChIP-seq experi-
ment. This observation raises some interesting questions about the specificity of the rec-
ognition process. It is possible that the DNA sequence or the DNA topology around the 
binding motif influences the binding of the transcription factor [16, 17]. The behavior 
observed in our study may indicate this influence is a part of the recognition done by 
many (if not all) transcription factors. We intend to continue our focus in this direction.

To conclude, here we present a completely new approach to processing ChIP-seq or 
similar experiments with our new tool—PAPerFly. Using PAPerFly, we can “assemble” 
the sequence areas visible in the sequencing experiment and calculate the enrichment 
of these sequences. All these tasks are performed without any mapping to a reference 

Fig. 2 A: Boxplot of maximal affinity to the target TF per peak sequence for peak sequences identified by 
PAPerFly and by the standard analysis for mouse TFs with motifs available in JASPAR. B: Count comparison 
of k-mers in control and in treatment k-mer sets. The k-mers that are present in control but not in treatment 
are not included. Grey arrows highlight the experiments where PAPerFly achieved very low accuracy. These 
are the only ones that have higher control k-mer count interquartile range than treatment k-mer count 
interquartile range
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Fig. 3 Effect of the k-mer size and abundance percentile on the program performance. Top: median edit 
distance between a replicated PAPerFly peak and matched ENCODE peak (indicated by a point). Vertical lines 
indicate the interquartile range of the distribution. Middle: heatmaps of portion of ENCODE peak to which 
a replicated PAPerFly peak is matched corresponding to every tested experiment. Bottom: histograms of 
the amount of ENCODE peaks mapped to a single PAPerFly peak, estimated from all replicates. Bar height 
corresponds to the mean fraction of unique peaks in the respective range. Black vertical line crossing the bar 
denotes the 90 % confidence interval
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genome. This tool could extend the array of organisms viable for transcription studies. 
In addition, it could facilitate transcription studies of an individual without any prior 
assumptions about the individual’s genome, which may prove useful considering the var-
iability found in human genomes of different background [11], for example, by using the 
assembled chiptigs as a basis for variant calling.

Conclusion
We present a new tool to process data from a ChIP-seq or a similar experiment without 
the need for a reference genome. This tool is based on genome assembly algorithms and 
on the calculation of k-mer enrichment. We processed several ChIP-seq experiments 
available in the ENCODE database by this tool and compared the results with the peak 
sequences available in the ENCODE database. As a result, we were able to reconstruct 
a greater portion of peaks than the tools that use a combination of a genome assembly 
software (Velvet, SEECER) and a widely used peak calling software (MACS) [23], pro-
viding a proof of concept of the newly proposed method. PAPerFly can also process an 
experiment with multiple replicates. It is interesting to note that we observed that some 
reconstructed sequences captured in the experiments are present in several ENCODE 
peaks.

The source codes of PAPerFly are publicly available at  https://github.com/Caeph/
paperfly or on Zenodo (https://doi.org/10.5281/zenodo.7116424). A docker image is also 
available on dockerhub (caeph/paperfly).
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